# Énumération des polyominos dirigés k-convexes

Adrien Boussicault

#### Travail réalisé avec Simone Rinaldi et Samanta Socci

Laboratoire Bordelais de Recherche en Informatique Université Bordeaux, France

UQÀM - 08/05/2015

#### Les polyominos convexes dirigés

- Toutes les cellules sont connectées par une arête ;
- la figure est verticalement et horizontalement convexe ;
- toutes les cellules peuvent être atteintes à partir d'une cellule (la racine, notée S) par un chemin avec des pas Nord et des pas Est.



Tous les polyominos dirigés convexes de demi-périmètre 5



## Les polyominos parallélogrammes

Un polyomino parallélogramme de demi-périmètre n est une paire de chemins de taille n constitués de pas Nord et Est, commençant et terminant au même endroit et ne se rejoignant jamais sauf aux extrémités.



Les polyominos parallélogrammes sont en bijection avec les arbres binaires. [Delest and Viennot, 1984]

## Outline

#### Enumération des Polyominos dirigés convexes

- Bijection principale
- Bijection avec les chemins de Dyck bilatères
- Méthode générale pour calculer les séries génératices
- Exemple de calcul pour le demi-périmètre
- Études de certaines statistiques et certaines familles
  - Taille de la dernière ligne/colonne
  - Largeur et hauteur (Lin, Chang, [1988]) (Bousquet-Mélou  $\heartsuit$  [1992])
  - Nombre de coins
  - Polyominos dirigés convexes symétriques (Emeric Deutsch [2003])
  - Polyominos parallélogrammes (Viennot, Delest [1984])
  - Énumération des polyominos dirigés k-convexes
    - Définition
    - la k-convexité d'un polyomino parallélogramme
    - k-polyominos parallélogrammes (Battaglino, Fedou, Rinaldi, Socci [2013])
    - Énumération des polyominos dirigés k-convexes

## Outline

#### 1 Enumération des Polyominos dirigés convexes

- Bijection principale
- Bijection avec les chemins de Dyck bilatères
- Méthode générale pour calculer les séries génératices
- Exemple de calcul pour le demi-périmètre

#### 2 Études de certaines statistiques et certaines familles

3 Énumération des polyominos dirigés k-convexes































 $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud





 $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud





 $\lambda = eesseses$ 

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud 
$$\begin{split} \lambda \text{ commence par } e \text{ et fini par } s \\ \#\{e \in \lambda\} &= \#\{\text{racine dans } F_e\} + 1 \\ \#\{s \in \lambda\} &= \#\{\text{racine dans } F_s\} + 1 \end{split}$$

A. Boussicault (LaBRI)

Les polyominos dirigés k-convexes

7 / 42

$$\stackrel{\Phi}{\longleftrightarrow} \left( \begin{array}{c} F_e = \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud


Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud



Contraintes :

 $\lambda$  : La coupe  $F_e$  : La forêt des pas Est  $F_s$  : La forêt des pas Sud









$$\stackrel{\Phi}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet \\ \bullet \end{array} \right), F_s = \begin{array}{c} \bullet \\ \bullet \end{array} \right), \lambda = eesses \right)$$

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\uparrow} \stackrel{\bullet}{\uparrow} , F_s = \stackrel{\bullet}{\uparrow} \stackrel{\bullet}{\downarrow} \stackrel{\bullet}{\bullet} , \lambda = eesseses \right)$$

Étape 1: déterminer combinatoirement la coupe  $\lambda$  et les deux forêts  $F_e$  et  $F_s$  en énumérant les contraintes liants  $\lambda$ ,  $F_e$  et  $F_s$ ;

$$\stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} \left( F_e = \begin{array}{c} \bullet & \uparrow \\ \bullet & \bullet \end{array} \right), F_s = \begin{array}{c} \bullet \\ \bullet & \bullet \end{array} \right), \lambda = eesses esses \right)$$

Étape 1: déterminer combinatoirement la coupe  $\lambda$  et les deux forêts  $F_e$  et  $F_s$  en énumérant les contraintes liants  $\lambda$ ,  $F_e$  et  $F_s$ ; Étape 2: écrire les fonctions génératrices comptant certaines statistiques pour la coupe  $\lambda$  et les arbres des forêts  $F_e$  and  $F_s$ en respectant les contraintes énumérées à l'étape précédente;

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right), F_s = \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right)$$

Étape 1: déterminer combinatoirement la coupe  $\lambda$  et les deux forêts  $F_e$  et  $F_s$  en énumérant les contraintes liants  $\lambda$ ,  $F_e$  et  $F_s$ ; Étape 2: écrire les fonctions génératrices comptant certaines statistiques pour la coupe  $\lambda$  et les arbres des forêts  $F_e$  and  $F_s$ en respectant les contraintes énumérées à l'étape précédente;

Étape 3: Composer la série génératrice de la coupe avec celles des forêts pour obtenir la fonction génératrice des polyominos dirigés étudiés.

$$\stackrel{\Phi}{\longleftrightarrow} \left( F_e = \stackrel{\bullet}{\downarrow} \stackrel{\bullet}{\uparrow} , F_s = \stackrel{\bullet}{\uparrow} \stackrel{\bullet}{\downarrow} , \lambda = eessesses \right)$$

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right), F_s = \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \right), \lambda = eessess \right)$$

Étape 1:  $\lambda$  commence par *e* et finie par *s*;

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right), F_s = \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \right), \lambda = eessess \right)$$

Étape 1:  $\lambda$  commence par *e* et finie par *s*; L'expression régulière de la coupe est  $e(e + s)^*s$ ;

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right), F_s = \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \right), \lambda = eessess \right)$$

Étape 1:  $\lambda$  commence par e et finie par s; L'expression régulière de la coupe est  $e(e + s)^*s$ ; Le demi-périmètre = le nombre de sommets de l'arbre plus 2.

Étape 1:  $\lambda$  commence par e et finie par s; L'expression régulière de la coupe est  $e(e + s)^*s$ ; Le demi-périmètre = le nombre de sommets de l'arbre plus 2. Deux pas (1 est et 1 sud) sont associé avec aucun arbre; Étape 2: z compte le demi-périmètre;

Étape 1:  $\lambda$  commence par e et finie par s; L'expression régulière de la coupe est  $e(e + s)^*s$ ; Le demi-périmètre = le nombre de sommets de l'arbre plus 2. Deux pas (1 est et 1 sud) sont associé avec aucun arbre; Étape 2: z compte le demi-périmètre;

S.G. de la coupe : 
$$\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left\lfloor \frac{es}{1-(e+s)} \right\rfloor;$$

Étape 1:  $\lambda$  commence par *e* et finie par *s*; L'expression régulière de la coupe est  $e(e + s)^*s$ ; Le demi-périmètre = le nombre de sommets de l'arbre plus 2. Deux pas (1 est et 1 sud) sont associé avec aucun arbre; Étape 2: *z* compte le demi-périmètre;

S.G. de la coupe : 
$$\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left\lfloor \frac{es}{1-(e+s)} \right\rfloor$$
;  
S.G. des arbres :  $\mathcal{T} = \frac{1-\sqrt{1-4z}}{2}$ ;

Étape 1:  $\lambda$  commence par e et finie par s; L'expression régulière de la coupe est  $e(e+s)^*s$ ; Le demi-périmètre = le nombre de sommets de l'arbre plus 2. Deux pas (1 est et 1 sud) sont associé avec aucun arbre; Étape 2: z compte le demi-périmètre; S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[\frac{es}{1-(e+s)}\right]$ ; S.G. des arbres :  $\mathcal{T} = \frac{1-\sqrt{1-4z}}{2}$ ; Étape 3: Résultat final:  $\mathcal{G}(\mathcal{T}, \mathcal{T}, z, z)$ .

Étape 1:  $\lambda$  commence par e et finie par s; L'expression régulière de la coupe est  $e(e+s)^*s$ ; Le demi-périmètre = le nombre de sommets de l'arbre plus 2. Deux pas (1 est et 1 sud) sont associé avec aucun arbre; Étape 2: z compte le demi-périmètre; S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[\frac{es}{1-(e+s)}\right]$ ; S.G. des arbres :  $\mathcal{T} = \frac{1-\sqrt{1-4z}}{2}$ ;

Étape 3: Résultat final:  $\mathcal{G}(\mathcal{T}, \mathcal{T}, z, z)$ .

$$\mathcal{G}(\mathcal{T},\mathcal{T},z,z)=rac{z^2}{1-2\mathcal{T}}=rac{z^2}{\sqrt{1-4z}}$$

### Outline

#### Enumération des Polyominos dirigés convexes

#### 2 Études de certaines statistiques et certaines familles

- Taille de la dernière ligne/colonne
- Largeur et hauteur (Lin, Chang, [1988]) (Bousquet-Mélou ♡ [1992])
- Nombre de coins
- Polyominos dirigés convexes symétriques (Emeric Deutsch [2003])
- Polyominos parallélogrammes (Viennot, Delest [1984])

#### Énumération des polyominos dirigés k-convexes

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet \\ \bullet \end{array} \right) , F_s = \begin{array}{c} \bullet \\ \bullet \end{array} \right)$$

Étape 1: L'expression régulière de la coupe est  $xe(xe)^* (1 + s(e + s)^*e) (ys)^*ys;$ 

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet & \uparrow \\ \bullet & \uparrow \\ \bullet & \bullet \end{array} \right), F_s = \begin{array}{c} \bullet & \uparrow \\ \bullet & \bullet \\ \bullet & \bullet \end{array} \right)$$

Étape 1: L'expression régulière de la coupe est  $xe(xe)^* (1 + s(e + s)^*e) (ys)^*ys;$ Étape 2: S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[ \frac{xe}{1 - xe} \left( 1 + \frac{es}{1 - (e + s)} \right) \frac{ys}{1 - ys} \right];$ 

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet & \uparrow \\ \bullet & \uparrow \\ \bullet & \bullet \end{array} \right), F_s = \begin{array}{c} \bullet & \uparrow \\ \bullet & \bullet \\ \bullet & \bullet \end{array} \right)$$

Étape 1: L'expression régulière de la coupe est  $xe(xe)^* (1 + s(e + s)^*e) (ys)^*ys;$ Étape 2: S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[ \frac{xe}{1-xe} \left( 1 + \frac{es}{1-(e+s)} \right) \frac{ys}{1-ys} \right];$ S.G. des arbres :  $\mathcal{T} = \frac{1-\sqrt{1-4z}}{2};$ 

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet & \uparrow \\ \bullet & \uparrow \\ \bullet & \bullet \end{array} \right), F_s = \begin{array}{c} \bullet & \uparrow \\ \bullet & \bullet \\ \bullet & \bullet \end{array} \right)$$

Étape 1: L'expression régulière de la coupe est  $xe(xe)^* (1 + s(e + s)^*e) (ys)^*ys;$ Étape 2: S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[ \frac{xe}{1 - xe} \left( 1 + \frac{es}{1 - (e+s)} \right) \frac{ys}{1 - ys} \right];$ S.G. des arbres :  $\mathcal{T} = \frac{1 - \sqrt{1 - 4z}}{2};$ Étape 3: Résultat final:  $\mathcal{G}(\mathcal{T}, \mathcal{T}, z, z).$ 

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet & \uparrow \\ \bullet & \uparrow \\ \bullet & \bullet \end{array} \right), F_s = \begin{array}{c} \bullet & \uparrow \\ \bullet & \bullet \\ \bullet & \bullet \end{array} \right)$$

Étape 1: L'expression régulière de la coupe est  $xe(xe)^* (1 + s(e + s)^*e) (ys)^*ys;$ Étape 2: S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[ \frac{xe}{1-xe} \left( 1 + \frac{es}{1-(e+s)} \right) \frac{ys}{1-ys} \right];$ S.G. des arbres :  $\mathcal{T} = \frac{1-\sqrt{1-4z}}{2};$ Étape 3: Résultat final:  $\mathcal{G}(\mathcal{T}, \mathcal{T}, z, z).$ 

$$\mathcal{G}(\mathcal{T},\mathcal{T},z,z) = xy \cdot rac{(1-\mathcal{T})^2}{(1-x\mathcal{T})\cdot(1-y\mathcal{T})} \cdot rac{z^2}{\sqrt{1-4z}}$$

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet & \uparrow \\ \bullet & \bullet \end{array} \right), F_s = \begin{array}{c} \bullet & \bullet \\ \uparrow & \bullet \end{array} \right)$$

Étape 1: La largeur du polyomino est égal au nombre de sommets à hauteur impaire dans  $F_e$  et à hauteur paire dans  $F_s$ . (Idem pour la largeur à symétrie près)

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet & \uparrow \\ \bullet & \bullet \end{array} \right), F_s = \begin{array}{c} \bullet & \bullet \\ \uparrow & \bullet \end{array} \right)$$

Étape 1: La largeur du polyomino est égal au nombre de sommets à hauteur impaire dans  $F_e$  et à hauteur paire dans  $F_s$ . (Idem pour la largeur à symétrie près)

Étape 2: S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{xz_e y z_s}{es} \left[\frac{es}{1-(e+s)}\right];$ 

Étape 1: La largeur du polyomino est égal au nombre de sommets à hauteur impaire dans  $F_e$  et à hauteur paire dans  $F_s$ . (Idem pour la largeur à symétrie près)

Étape 1: La largeur du polyomino est égal au nombre de sommets à hauteur impaire dans  $F_e$  et à hauteur paire dans  $F_s$ . (Idem pour la largeur à symétrie près)

$$\begin{split} \text{Étape 2: S.G. de la coupe : } \mathcal{G}(e, s, z_e, z_s) &= \frac{xz_e yz_s}{es} \left[ \frac{es}{1 - (e + s)} \right]; \\ \text{S.G. des arbres : } \mathcal{T}_e &= \frac{xz}{1 - \mathcal{T}_s} \quad \text{et} \quad \mathcal{T}_s = \frac{yz}{1 - \mathcal{T}_e}. \\ \mathcal{T}_e(x, y) &= \frac{1 + (x - y) - \sqrt{(1 + (x - y)z)^2 - 4xz}}{2} \quad \text{et} \quad \mathcal{T}_s(x, y) = \mathcal{T}_e(y, x); \end{split}$$

Étape 1: La largeur du polyomino est égal au nombre de sommets à hauteur impaire dans  $F_e$  et à hauteur paire dans  $F_s$ . (Idem pour la largeur à symétrie près)

$$\begin{split} \text{Étape 2: S.G. de la coupe : } \mathcal{G}(e, s, z_e, z_s) &= \frac{xz_e y z_s}{es} \left[ \frac{es}{1 - (e + s)} \right]; \\ \text{S.G. des arbres : } \mathcal{T}_e &= \frac{xz}{1 - \mathcal{T}_s} \quad \text{et} \quad \mathcal{T}_s = \frac{yz}{1 - \mathcal{T}_e}. \\ \mathcal{T}_e(x, y) &= \frac{1 + (x - y) - \sqrt{(1 + (x - y)z)^2 - 4xz}}{2} \quad \text{et} \quad \mathcal{T}_s(x, y) = \mathcal{T}_e(y, x); \\ \text{Étape 3: Résultat final: } \mathcal{G}(\mathcal{T}_e, \mathcal{T}_s, z, z). \end{split}$$
Série génératrice selon la largeur (x) et la hauteur (y)

Étape 1: La largeur du polyomino est égal au nombre de sommets à hauteur impaire dans  $F_e$  et à hauteur paire dans  $F_s$ . (Idem pour la largeur à symétrie près)

$$\begin{split} \text{Étape 2: S.G. de la coupe : } \mathcal{G}(e, s, z_e, z_s) &= \frac{xz_e yz_s}{es} \left[ \frac{es}{1 - (e + s)} \right]; \\ \text{S.G. des arbres : } \mathcal{T}_e &= \frac{xz}{1 - \mathcal{T}_s} \quad \text{et} \quad \mathcal{T}_s = \frac{yz}{1 - \mathcal{T}_e}. \\ \mathcal{T}_e(x, y) &= \frac{1 + (x - y) - \sqrt{(1 + (x - y)z)^2 - 4xz}}{2} \quad \text{et} \quad \mathcal{T}_s(x, y) = \mathcal{T}_e(y, x); \\ \text{Étape 3: Résultat final: } \mathcal{G}(\mathcal{T}_e, \mathcal{T}_s, z, z). \end{split}$$

$$\mathcal{G}(\mathcal{T}_e, \mathcal{T}_s, z, z) = rac{xyz^2}{\sqrt{(1-(x+y)z)^2 - 4xyz^2}}$$

$$\stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet & \uparrow \\ \bullet & \bullet \end{array} \right), F_s = \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right)$$

Il y a autant de coins NE que de motifs es dans λ.
 L'expression régulière de la coupe est (ee\*xs\*s)(ee\*xs\*s)\*.
 Nb. de coins NO/SE est égal à 1+nb. de sommets internes.

II y a autant de coins NE que de motifs es dans λ.
 L'expression régulière de la coupe est (ee\*xs\*s)(ee\*xs\*s)\*.
 Nb. de coins NO/SE est égal à 1+nb. de sommets internes.

2) S.G. de la coupe : 
$$\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left\lfloor \frac{xesz}{(1-e)(1-s)} \cdot \frac{1}{1-\frac{xesz}{(1-e)(1-s)}} \right\rfloor;$$

Il y a autant de coins NE que de motifs es dans λ.
 L'expression régulière de la coupe est (ee\*xs\*s)(ee\*xs\*s)\*.
 Nb. de coins NO/SE est égal à 1+nb. de sommets internes.

2) S.G. de la coupe : 
$$\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[ \frac{xesz}{(1-e)(1-s)} \cdot \frac{1}{1-\frac{xesz}{(1-e)(1-s)}} \right];$$
  
S.G. des arbres :  $\mathcal{T}_c = z(1 + x(\mathcal{T}_c + \mathcal{T}_c^2 + \dots)) = (1-x)z + \frac{xz}{1-\mathcal{T}_c}$ 

 II y a autant de coins NE que de motifs es dans λ. L'expression régulière de la coupe est (ee\*xs\*s)(ee\*xs\*s)\*. Nb. de coins NO/SE est égal à 1+nb. de sommets internes.
 S.G. de la coupe : G(e, s, z<sub>e</sub>, z<sub>s</sub>) = z<sub>e</sub>z<sub>s</sub> [ xesz / (1-e)(1-s)</sub> · 1 / (1-e)(1-s) / (1-e)(1-s)];

S.G. des arbres : 
$$\mathcal{T}_c = z(1 + x(\mathcal{T}_c + \mathcal{T}_c^2 + \dots)) = (1 - x)z + \frac{xz}{1 - \mathcal{T}_c}$$
  
 $\mathcal{T}_c = \frac{1 + (1 - x)z - \sqrt{(1 + (1 - x)z)^2 - 4z}}{2}$ 

 II y a autant de coins NE que de motifs es dans λ. L'expression régulière de la coupe est (ee\*xs\*s)(ee\*xs\*s)\*. Nb. de coins NO/SE est égal à 1+nb. de sommets internes.
 S.G. de la coupe : G(e, s, z<sub>e</sub>, z<sub>s</sub>) = <sup>z<sub>e</sub>z<sub>s</sub></sup>/<sub>es</sub> [ <sup>xesz</sup>/<sub>(1-e)(1-s)</sub> · <sup>1</sup>/<sub>1-(xesz)/(1-e)(1-s)</sub>]; S.G. des arbres : T<sub>c</sub> = z(1 + x(T<sub>c</sub> + T<sub>c</sub><sup>2</sup> + ...)) = (1 - x)z + <sup>xz</sup>/<sub>1-T<sub>c</sub></sub> T<sub>c</sub> = <sup>1+(1-x)z-√(1+(1-x)z)<sup>2</sup>-4z</sup>/<sub>2</sub>
 Résultat final: x<sup>3</sup> · G(T<sub>c</sub>, T<sub>c</sub>, z, z).

 II y a autant de coins NE que de motifs es dans λ. L'expression régulière de la coupe est (ee\*xs\*s)(ee\*xs\*s)\*. Nb. de coins NO/SE est égal à 1+nb. de sommets internes.
 S.G. de la coupe : G(e, s, z<sub>e</sub>, z<sub>s</sub>) = <sup>z<sub>e</sub>z<sub>s</sub></sup>/<sub>es</sub> [ <sup>xesz</sup>/<sub>(1-e)(1-s)</sub> · <sup>1</sup>/<sub>1-(xesz)/(1-e)(1-s)</sub>]; S.G. des arbres : T<sub>c</sub> = z(1 + x(T<sub>c</sub> + T<sub>c</sub><sup>2</sup> + ...)) = (1 - x)z + <sup>xz</sup>/<sub>1-T<sub>c</sub></sub> T<sub>c</sub> = <sup>1+(1-x)z-√(1+(1-x)z)<sup>2</sup>-4z</sup>/<sub>2</sub>
 Résultat final: x<sup>3</sup> · G(T<sub>c</sub>, T<sub>c</sub>, z, z).

$$\mathcal{G}(\mathcal{T}_c, \mathcal{T}_c, z, z) = \frac{x^4 z^2}{1 - 2\mathcal{T}_c + (1 - x)\mathcal{T}_c^2}$$

$$\stackrel{\bullet}{\longleftrightarrow} \left( F_e = \bigwedge^{\bullet} , F_s = F_e, \lambda = eess \cdot m(eess) \right)$$

$$\stackrel{\bullet}{\longleftrightarrow} \left( F_e = \bigwedge^{\bullet} , F_s = F_e, \lambda = eess \cdot m(eess) \right)$$

Étape 1: On a  $\lambda = u \cdot m(u)$  et  $F_e = F_s$ , où m est le miroir. Expression régulière de la demi-coupe u:  $e(e+s)^*$ .

$$\stackrel{\bullet}{\longleftrightarrow} \left( F_e = \bigwedge^{\bullet} , F_s = F_e, \lambda = eess \cdot m(eess) \right)$$

Étape 1: On a  $\lambda = u \cdot m(u)$  et  $F_e = F_s$ , où m est le miroir. Expression régulière de la demi-coupe u:  $e(e+s)^*$ . Étape 2: S.G. de la demi-coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e}{e} \left[ \frac{e}{1-(e+s)} \right]$ ;

$$\stackrel{\bullet}{\longleftrightarrow} \left( F_e = \bigwedge^{\bullet} , F_s = F_e, \lambda = eess \cdot m(eess) \right)$$

Étape 1: On a  $\lambda = u \cdot m(u)$  et  $F_e = F_s$ , où m est le miroir. Expression régulière de la demi-coupe u:  $e(e+s)^*$ . Étape 2: S.G. de la demi-coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e}{e} \left[ \frac{e}{1 - (e+s)} \right]$ ; S.G. des arbres :  $\mathcal{T} = \frac{1 - \sqrt{1 - 4z}}{2}$ .

$$\stackrel{\bullet}{\longleftrightarrow} \left( F_e = \bigwedge^{\bullet} , F_s = F_e, \lambda = eess \cdot m(eess) \right)$$

Étape 1: On a  $\lambda = u \cdot m(u)$  et  $F_e = F_s$ , où m est le miroir. Expression régulière de la demi-coupe u:  $e(e+s)^*$ . Étape 2: S.G. de la demi-coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e}{e} \left[ \frac{e}{1 - (e+s)} \right]$ ; S.G. des arbres :  $\mathcal{T} = \frac{1 - \sqrt{1 - 4z}}{2}$ . Étape 3: On doit compter deux fois chaque sommet.

$$\stackrel{\bullet}{\longleftrightarrow} \left( F_e = \bigwedge^{\bullet} , F_s = F_e, \lambda = eess \cdot m(eess) \right)$$

Étape 1: On a  $\lambda = u \cdot m(u)$  et  $F_e = F_s$ , où m est le miroir. Expression régulière de la demi-coupe u:  $e(e+s)^*$ . Étape 2: S.G. de la demi-coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e}{e} \left[ \frac{e}{1-(e+s)} \right]$ ; S.G. des arbres :  $\mathcal{T} = \frac{1-\sqrt{1-4z}}{2}$ . Étape 3: On doit compter deux fois chaque sommet. Résultat final:  $\mathcal{G}(\mathcal{T}(z^2), z^2)$ .

$$\stackrel{\bullet}{\longleftrightarrow} \left( F_e = \bigwedge^{\bullet} , F_s = F_e, \lambda = eess \cdot m(eess) \right)$$

Étape 1: On a  $\lambda = u \cdot m(u)$  et  $F_e = F_s$ , où m est le miroir. Expression régulière de la demi-coupe u:  $e(e+s)^*$ . Étape 2: S.G. de la demi-coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e}{e} \left[\frac{e}{1-(e+s)}\right]$ ; S.G. des arbres :  $\mathcal{T} = \frac{1-\sqrt{1-4z}}{2}$ . Étape 3: On doit compter deux fois chaque sommet. Résultat final:  $\mathcal{G}(\mathcal{T}(z^2), z^2)$ .  $\mathcal{G}(\mathcal{T}(z^2), z^2) = \frac{z^2}{\sqrt{1-4z^2}}$ 

Étape 1: Expression régulière de la coupe :  $ee^*s^*s$ .

Étape 1: Expression régulière de la coupe :  $ee^*s^*s$ . Étape 2: S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[\frac{es}{(1-e)(1-s)}\right]$ ;

$$\stackrel{\Phi}{\longleftrightarrow} \left( F_e = \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right) , F_s = \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right)$$

Étape 1: Expression régulière de la coupe :  $ee^*s^*s$ . Étape 2: S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[\frac{es}{(1-e)(1-s)}\right]$ ; S.G. des arbres :  $\mathcal{T} = \frac{1-\sqrt{1-4z}}{2}$ .

Étape 1: Expression régulière de la coupe :  $ee^*s^*s$ . Étape 2: S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[ \frac{es}{(1-e)(1-s)} \right]$ ; S.G. des arbres :  $\mathcal{T} = \frac{1-\sqrt{1-4z}}{2}$ . Étape 3: Résultat final:  $\mathcal{G}(\mathcal{T}, \mathcal{T}, z, z)$ .

Étape 1: Expression régulière de la coupe :  $ee^*s^*s$ . Étape 2: S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[ \frac{es}{(1-e)(1-s)} \right]$ ; S.G. des arbres :  $\mathcal{T} = \frac{1-\sqrt{1-4z}}{2}$ . Étape 3: Résultat final:  $\mathcal{G}(\mathcal{T}, \mathcal{T}, z, z)$ .

$$\mathcal{G}(\mathcal{T},\mathcal{T},z,z)=rac{z^2}{(1-\mathcal{T})^2}$$

## Outline

Enumération des Polyominos dirigés convexes

2 Études de certaines statistiques et certaines familles

Inumération des polyominos dirigés k-convexes

- Définition
- la k-convexité d'un polyomino parallélogramme
- k-polyominos parallélogrammes (Battaglino, Fedou, Rinaldi, Socci [2013])
- Énumération des polyominos dirigés k-convexes

## Outline

#### Enumération des Polyominos dirigés convexes

- Bijection principale
- Bijection avec les chemins de Dyck bilatères
- Méthode générale pour calculer les séries génératices
- Exemple de calcul pour le demi-périmètre

## Études de certaines statistiques et certaines familles

- Taille de la dernière ligne/colonne
- Largeur et hauteur (Lin, Chang, [1988]) (Bousquet-Mélou ♡ [1992])
- Nombre de coins
- Polyominos dirigés convexes symétriques (Emeric Deutsch [2003])
- Polyominos parallélogrammes (Viennot, Delest [1984])

## Énumération des polyominos dirigés k-convexes

## Définition

- la k-convexité d'un polyomino parallélogramme
- k-polyominos parallélogrammes (Battaglino, Fedou, Rinaldi, Socci [2013])
- Énumération des polyominos dirigés k-convexes

## La k-convexité

Un polyomino est dit k-convexe si toute paire de cellules peuvent être connectées par un chemin avec seulement 2 types de pas et au plus k changements de direction.



Exemple de polyomino 2-convexe

# Tout les polyominos dirigés 2-convexes de taille 4

<u>0 t</u>ournant :





#### 2 tournants :



# Les k-polyominos parallélogrammes

Un *k*-polyomino parallélogramme est un polyomino parallélogramme *k*-convexes.

Tous les 2-polyominos parallélogrammes de taille 4 :



## Outline

## Enumération des Polyominos dirigés convexes

- Bijection principale
- Bijection avec les chemins de Dyck bilatères
- Méthode générale pour calculer les séries génératices
- Exemple de calcul pour le demi-périmètre

## Études de certaines statistiques et certaines familles

- Taille de la dernière ligne/colonne
- Largeur et hauteur (Lin, Chang, [1988]) (Bousquet-Mélou ♡ [1992])
- Nombre de coins
- Polyominos dirigés convexes symétriques (Emeric Deutsch [2003])
- Polyominos parallélogrammes (Viennot, Delest [1984])

## Énumération des polyominos dirigés k-convexes

- Définition
- la k-convexité d'un polyomino parallélogramme
- k-polyominos parallélogrammes (Battaglino, Fedou, Rinaldi, Socci [2013])
- Énumération des polyominos dirigés k-convexes

# Les cellules les plus difficiles à connecter et les chemins rebondissants



Les deux chemins rebondissants r(P) et u(P).

#### Proposition

Soit P un polyomino parallélogramme. Le degré de convexité de P est égal au plus petit nombre de tournants entre les deux chemins rebondissants.



 $d_r$  et  $d_u$  sont les images de r(P) et u(P) par  $\Phi$ .

#### Proposition

Soit *P* un polyomino parallélogramme et  $\Phi(P) = (F_e, F_s, \lambda)$ , alors on a : i)  $h(T_1) = h(T_2) \Leftrightarrow d_r$  et  $d_u \in$  différentes forêts  $\Leftrightarrow l(d_r) = l(d_u)$ ;

ii)  $h(T_1) > h(T_2) \Leftrightarrow d_r$  et  $d_u \in T_1 \Leftrightarrow |I(d_r) - I(d_u)| = 1$  et  $d_r, d_u \in T_1$ ;

iii)  $h(T_2) > h(T_1) \Leftrightarrow d_r$  et  $d_u \in T_2 \Leftrightarrow |I(d_r) - I(d_u)| = 1$  et  $d_r, d_u \in T_2$ .

## Proposition

Soit *P* un polyomino parallélogramme et  $\Phi(P) = (F_e, F_s, \lambda)$ , alors on a : i)  $h(T_1) = h(T_2) \Leftrightarrow d_r$  et  $d_u \in$  différentes forêts  $\Leftrightarrow l(d_r) = l(d_u)$ ; ii)  $h(T_1) > h(T_2) \Leftrightarrow d_r$  et  $d_u \in T_1 \Leftrightarrow |l(d_r) - l(d_u)| = 1$  et  $d_r, d_u \in T_1$ ; iii)  $h(T_2) > h(T_1) \Leftrightarrow d_r$  et  $d_u \in T_2 \Leftrightarrow |l(d_r) - l(d_u)| = 1$  et  $d_r, d_u \in T_2$ .



Proposition

Soit *P* un polyomino parallélogramme et  $\Phi(P) = (F_e, F_s, \lambda)$ , alors on a : i)  $h(T_1) = h(T_2) \Leftrightarrow d_r$  et  $d_u \in$  différentes forêts  $\Leftrightarrow l(d_r) = l(d_u)$ ; ii)  $h(T_1) > h(T_2) \Leftrightarrow d_r$  et  $d_u \in T_1 \Leftrightarrow |l(d_r) - l(d_u)| = 1$  et  $d_r, d_u \in T_1$ ; iii)  $h(T_2) > h(T_1) \Leftrightarrow d_r$  et  $d_u \in T_2 \Leftrightarrow |l(d_r) - l(d_u)| = 1$  et  $d_r, d_u \in T_2$ .

Un Autre exemple !

## Proposition

Soit *P* un polyomino parallélogramme et  $\Phi(P) = (F_e, F_s, \lambda)$ , alors on a : i)  $h(T_1) = h(T_2) \Leftrightarrow d_r$  et  $d_u \in$  différentes forêts  $\Leftrightarrow l(d_r) = l(d_u)$ ; ii)  $h(T_1) > h(T_2) \Leftrightarrow d_r$  et  $d_u \in T_1 \Leftrightarrow |l(d_r) - l(d_u)| = 1$  et  $d_r, d_u \in T_1$ ; iii)  $h(T_2) > h(T_1) \Leftrightarrow d_r$  et  $d_u \in T_2 \Leftrightarrow |l(d_r) - l(d_u)| = 1$  et  $d_r, d_u \in T_2$ .



# Degré de convexité d'un polyomino parallélogramme

#### Proposition

Soit P un polyomino parallélogramme et  $\Phi(P) = (F_e, F_s, \lambda)$ . Le degré de convexité de P est égale à

$$max(h(F_e), h(F_s)) - \begin{cases} 0 & si \ h(F_e) = h(F_s); \\ 1 & sinon. \end{cases}$$

# Degré de convexité d'un polyomino parallélogramme

#### Proposition

Soit P un polyomino parallélogramme et  $\Phi(P) = (F_e, F_s, \lambda)$ . Le degré de convexité de P est égale à

$$max(h(F_e), h(F_s)) - \left\{egin{array}{cc} 0 & si \ h(F_e) = h(F_s); \ 1 & sinon. \end{array}
ight.$$



## Outline

#### Enumération des Polyominos dirigés convexes

- Bijection principale
- Bijection avec les chemins de Dyck bilatères
- Méthode générale pour calculer les séries génératices
- Exemple de calcul pour le demi-périmètre

## Études de certaines statistiques et certaines familles

- Taille de la dernière ligne/colonne
- Largeur et hauteur (Lin, Chang, [1988]) (Bousquet-Mélou ♡ [1992])
- Nombre de coins
- Polyominos dirigés convexes symétriques (Emeric Deutsch [2003])
- Polyominos parallélogrammes (Viennot, Delest [1984])
- Énumération des polyominos dirigés k-convexes
  - Définition
  - la k-convexité d'un polyomino parallélogramme
  - k-polyominos parallélogrammes (Battaglino, Fedou, Rinaldi, Socci [2013])
  - Énumération des polyominos dirigés k-convexes

# Série génératrice des arbres de hauteur *k* [Bruijn, Knuth, Rice, 1972]

.

Si on note par  $t_{n,\leq k}$  le nombre d'arbres de taille *n* et de hauteur bornée par *k*. Alors la série génératrice des arbres binaires de hauteur bornée par *k* vaut :

$$\mathcal{T}_{\leq k} = \sum_{0 \leq n} t_{n, \leq k} z^n = \frac{z.F_k}{F_{k+1}}$$

où  $F_k$  est le polynôme de Fibonacci :

$$F_0 = 0,$$
  $F_1 = 1$  et  $F_k = F_{k-1} - zF_{k-2}.$
#### Série génératrice des arbres de hauteur *k* [Bruijn, Knuth, Rice, 1972]

Si on note par  $t_{n,\leq k}$  le nombre d'arbres de taille *n* et de hauteur bornée par *k*. Alors la série génératrice des arbres binaires de hauteur bornée par *k* vaut :

$$\mathcal{T}_{\leq k} = \sum_{0 \leq n} t_{n, \leq k} z^n = \frac{z.F_k}{F_{k+1}}$$

où  $F_k$  est le polynôme de Fibonacci :

$$F_0 = 0,$$
  $F_1 = 1$  et  $F_k = F_{k-1} - zF_{k-2}.$ 

Si on note par  $t_{n,=k}$  le nombre d'arbres de taille *n* et de hauteur égale à *k*. Alors la série génératrice des arbres binaires de hauteur égale à *k* vaut :

$$\mathcal{T}_{=k} = \sum_{0 \le n} t_{n,=k} z^n = \mathcal{T}_{\le k} - \mathcal{T}_{\le k-1}.$$

Série génératrice des *k*-polyominos parallélogrammes Proposition (Battaglino, Fedou, Rinaldi, Socci, 2013) *La fonction génératrice des k-polyominos parallélogrammes est* 

$$\mathcal{P}_{\leq k} = z^2 \mathcal{F}_{\leq k+1}^2 - z^2 \mathcal{F}_{=k+1}^2$$

où  $\mathcal{F}_{\leq k}$  est la série génératrice des forêt de hauteur bornée par k.

Série génératrice des *k*-polyominos parallélogrammes Proposition (Battaglino, Fedou, Rinaldi, Socci, 2013) *La fonction génératrice des k-polyominos parallélogrammes est* 

$$\mathcal{P}_{\leq k} = z^2 \mathcal{F}_{\leq k+1}^2 - z^2 \mathcal{F}_{=k+1}^2$$

où  $\mathcal{F}_{\leq k}$  est la série génératrice des forêt de hauteur bornée par k.

Preuve : Le degré de convexité de P est égal à

$$max(h(F_e), h(F_s)) - \begin{cases} 0 & \text{si } h(F_e) = h(F_s); \\ 1 & \text{sinon.} \end{cases}$$

Série génératrice des *k*-polyominos parallélogrammes Proposition (Battaglino, Fedou, Rinaldi, Socci, 2013) *La fonction génératrice des k-polyominos parallélogrammes est* 

$$\mathcal{P}_{\leq k} = \mathcal{T}_{\leq k+2}^2 - \mathcal{T}_{=k+2}^2$$

Preuve : Le degré de convexité de P est égal à

$$max(h(F_e), h(F_s)) - \begin{cases} 0 & \text{si } h(F_e) = h(F_s); \\ 1 & \text{sinon.} \end{cases}$$

$$\begin{array}{c} \overleftarrow{\bullet} & \overleftarrow{\bullet} \\ \hline \bullet & \overleftarrow{\bullet} \\ \hline \end{array} \begin{pmatrix} \overleftarrow{\bullet} & \overleftarrow{\bullet} \\ \hline \bullet & \overleftarrow{\bullet} \\ \hline \end{array} \begin{pmatrix} \overleftarrow{\bullet} & \overleftarrow{\bullet} \\ \hline \bullet & \overleftarrow{\bullet} \\ \hline \bullet & \overleftarrow{\bullet} \\ \hline \bullet & \overleftarrow{\bullet} \\ \hline \end{array} \end{pmatrix} \begin{pmatrix} \overleftarrow{\bullet} & \overleftarrow{\bullet} \\ \hline \bullet & \overleftarrow{\bullet} \\ \hline \end{array} \end{pmatrix} \begin{pmatrix} \overleftarrow{\bullet} & \overleftarrow{\bullet} \\ \hline \bullet & \overleftarrow{\bullet} \\ \hline \end{array} \end{pmatrix} \begin{pmatrix} \overleftarrow{\bullet} & \overleftarrow{\bullet} \\ \hline \bullet & \overleftarrow{\bullet} \\ \hline \end{array} \end{pmatrix}$$

#### Outline

#### Enumération des Polyominos dirigés convexes

- Bijection principale
- Bijection avec les chemins de Dyck bilatères
- Méthode générale pour calculer les séries génératices
- Exemple de calcul pour le demi-périmètre

#### Études de certaines statistiques et certaines familles

- Taille de la dernière ligne/colonne
- Largeur et hauteur (Lin, Chang, [1988]) (Bousquet-Mélou ♡ [1992])
- Nombre de coins
- Polyominos dirigés convexes symétriques (Emeric Deutsch [2003])
- Polyominos parallélogrammes (Viennot, Delest [1984])

#### Énumération des polyominos dirigés k-convexes

- Définition
- la k-convexité d'un polyomino parallélogramme
- k-polyominos parallélogrammes (Battaglino, Fedou, Rinaldi, Socci [2013])
- Énumération des polyominos dirigés k-convexes

# Énumérer les polyominos dirigés k-convexes : Plan de bataille

 On montre une relation entre l'ensemble des polyominos dirigés k-convexes D<sub>≤k</sub> et deux familles de polyominos dirigés convexes D<sup>-</sup><sub>≤k+1</sub> et FD<sub>=k+1</sub>.

$$\mathbb{D}^{-}_{\leq k+1} = \mathbb{D}_{\leq k} \sqcup \mathbb{F}\mathbb{D}_{=k+1}.$$

- 3) On calcule les séries génératrices  $\mathcal{D}_{\leq k+1}^-$  de  $\mathbb{D}_{\leq k+1}^-$  et  $\mathcal{FD}_{=k+1}$  de  $\mathbb{FD}_{=k+1}$  avec la méthode générale.
- 4) On calcule la série génératrice des polyominos dirigés k-convexes:

$$\mathcal{D}_{\leq k} = \mathcal{D}_{\leq k+1}^{-} - \mathcal{F}\mathcal{D}_{=k+1}$$

#### La famille $\mathbb{D}^-_{< k}$

Soit  $\mathbb{D}_{\leq k}^-$  la famille de polyominos parallélogrammes obtenue par image par  $\Phi^{-1}$  de triplés obtenus en imposant la seule contrainte que  $F_e$  et  $F_s$  sont des forêts de hauteurs bornées par k.

$$\mathbb{D}^-_{\leq k} \subset \mathbb{D}_{\leq k} \subset \mathbb{D}^-_{\leq k+1}$$

Que vaut  $\mathbb{D}^-_{\leq k+1} \setminus \mathbb{D}_{\leq k}$  ?

# Étude de $\mathbb{D}^-_{< k+1}$ .

Soit  $D \in \mathbb{D}^-_{\leq k+1}$ .

Pour que *D* soit de degré k + 1, il faut que les hauteurs de  $F_e$  et  $F_s$  soient égales toutes deux à k + 1. Dans ce cas, *D* est plat.

Soit  $\mathbb{FD}_{=k+1}$  l'ensemble des polyominos dirigés plats de degré exactement égal à k + 1, alors on a:

Proposition

$$\mathbb{D}^-_{\leq k+1} = \mathbb{D}_{\leq k} \sqcup \mathbb{F}\mathbb{D}_{=k+1}$$



A. Boussicault (LaBRI)

Les polyominos dirigés *k*-convexes



A. Boussicault (LaBRI)

Les polyominos dirigés *k*-convexes



A. Boussicault (LaBRI)

Les polyominos dirigés *k*-convexes



A. Boussicault (LaBRI)





A. Boussicault (LaBRI)



A. Boussicault (LaBRI)

Calcul des degrés dans les polyominos dirigés convexes Soit  $I_h = (i_h, j_h)$ . Une cellule (i, j) est de degré k ssi. une des conditions suivantes est vérifiée:

1) 
$$i_{k-1} < i \le i_k$$
 et  $j_{k-1} < j$ ;

2)  $j_{k-1} < j \le j_k$  et  $i_k < i$ .

Les cellules (i, j) telles que  $i_k < i$  et  $j_k < j$  ont un degré plus grand que k.



Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

• les chemins rebondissants passent par le pas Est  $u_e$  et le pas Sud  $u_s$ ;

Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

- les chemins rebondissants passent par le pas Est  $u_e$  et le pas Sud  $u_s$ ;
- si p<sub>1</sub> n'est pas vide alors il commence par un pas Est;

Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

• les chemins rebondissants passent par le pas Est  $u_e$  et le pas Sud  $u_s$ ;

• 
$$p_I \in 1+e (e + s)^*;$$

Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

• les chemins rebondissants passent par le pas Est u<sub>e</sub> et le pas Sud u<sub>s</sub>;

• 
$$p_I \in 1+e (e + s)^*;$$

• si p<sub>r</sub> n'est pas vide, il finit par un pas Sud;

Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

• les chemins rebondissants passent par le pas Est u<sub>e</sub> et le pas Sud u<sub>s</sub>;

• 
$$p_l \in 1+e (e + s)^*;$$

•  $p_r \in 1+(e + s)^*s$ ;

Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

• les chemins rebondissants passent par le pas Est ue et le pas Sud us;

• 
$$p_l \in 1+e (e + s)^*;$$

- $p_r \in 1+(e + s)^*s$ ;
- $\tau$  est un chemin ayant *e.s* pour sous-mot;

Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

• les chemins rebondissants passent par le pas Est u<sub>e</sub> et le pas Sud u<sub>s</sub>;

• 
$$p_I \in 1+e (e + s)^*;$$

- $p_r \in 1+(e + s)^*s$ ;
- $\tau \in e^*e(e + s)^*ss^*$ .

Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

• les chemins rebondissants passent par le pas Est  $u_e$  et le pas Sud  $u_s$ ;

• 
$$p_I \in 1+e (e + s)^*;$$

•  $p_r \in 1+(e + s)^*s$ ;

• 
$$au \ \in \ e^{*}e(e + s)^{*}ss^{*}$$

Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

•  $u_e$  et  $u_s$  sont associés à des arbres de hauteur k + 1;

• 
$$p_I \in 1+e (e + s)^*;$$

•  $p_r \in 1+(e + s)^*s$ ;

• 
$$au \ \in \ e^{*}e(e + s)^{*}ss^{*}.$$

Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

•  $u_e$  et  $u_s$  sont associés à des arbres de hauteur k + 1;

• 
$$p_I \in 1 + e_1(e_1 + s_2)^*;$$

•  $p_r \in 1+(e + s)^*s$  ;

)\*
$$s$$
 ;  $e_2$ ,  $s_2$  : hauteur  $\leq k+1$ 

• 
$$au~\in~e^*e~(e~+s~)^*s~s^*$$

 $e_1, s_1$ : hauteur  $\leq k$ 

Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

•  $u_e$  et  $u_s$  sont associés à des arbres de hauteur k + 1;

• 
$$p_l \in 1 + e_1(e_1 + s_2)^*;$$

•  $p_r \in 1 + (e_2 + s_1)^* s_1;$ 

$$au \in e^*e(e+s)^*ss^*.$$

 $e_1$ ,  $s_1$ : hauteur  $\leq k$ 

$$e_2$$
,  $s_2$ : hauteur  $\leq k+1$ 

Soit D un polyomino dirigé plat de degré k + 1.



La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

•  $u_e$  et  $u_s$  sont associés à des arbres de hauteur k + 1;

• 
$$p_I \in 1 + e_1(e_1 + s_2)^*;$$

•  $p_r \in 1 + (e_2 + s_1)^* s_1;$ 

• 
$$\tau \in e_2^* e_2(e_2 + s_2)^* s_2 s_2^*$$

$$e_1$$
,  $s_1$  : hauteur  $\leq k$ 

$$e_2$$
,  $s_2$ : hauteur  $\leq k+1$ 

1) La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

$$p_{l} \in 1 + e_{1}(e_{1} + s_{2})^{*} \qquad p_{r} \in 1 + (e_{2} + s_{1})^{*}s_{1}$$
$$\tau \in e_{2}^{*}e_{2}(e_{2} + s_{2})^{*}s_{2}s_{2}^{*}$$

1) La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

$$p_l \in 1 + e_1(e_1 + s_2)^*$$
  
 $\tau \in e_2^* e_2(e_2 + s_2)^* s_2 s_2^*$ 

2) La s.g.  $G(e_1, s_1, e_2, s_2, u_e, u_s, z_e, z_s)$  de la coupe  $p_I.u_e.\tau.u_s.p_r$  est

$$\left(1+\frac{e_1}{1-e_1-s_2}\right)u_e\frac{e_2.s_2}{(1-e_2)(1-e_2-s_2)(1-s_2)}u_s\left(1+\frac{s_1}{1-s_1-e_2}\right).$$

1) La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

$$p_l \in 1 + e_1(e_1 + s_2)^*$$
  $p_r \in 1 + (e_2 + s_1)^* s_1$   
 $au \in e_2^* e_2(e_2 + s_2)^* s_2 s_2^*$ 

2) La s.g.  $G(e_1, s_1, e_2, s_2, u_e, u_s, z_e, z_s)$  de la coupe  $p_I.u_e.\tau.u_s.p_r$  est

$$\begin{pmatrix} 1 + \frac{e_1}{1 - e_1 - s_2} \end{pmatrix} u_e \frac{e_2 \cdot s_2}{(1 - e_2)(1 - e_2 - s_2)(1 - s_2)} u_s \left( 1 + \frac{s_1}{1 - s_1 - e_2} \right).$$

$$s_1 \text{ et } e_1 \longrightarrow \mathcal{T}_{\leq k}, \qquad s_2 \text{ et } e_2 \longrightarrow \mathcal{T}_{\leq k+1}, \qquad u_e \text{ et } u_s \longrightarrow \mathcal{T}_{=k+1}$$

1) La coupe s'écrit sous la forme  $P_l \cdot u_e \cdot \tau \cdot u_s \cdot p_s$  où

$$p_l \in 1 + e_1(e_1 + s_2)^*$$
  
 $\tau \in e_2^* e_2(e_2 + s_2)^* s_2 s_2^*$ 

2) La s.g.  $G(e_1, s_1, e_2, s_2, u_e, u_s, z_e, z_s)$  de la coupe  $p_I.u_e.\tau.u_s.p_r$  est

$$\begin{pmatrix} 1 + \frac{e_1}{1 - e_1 - s_2} \end{pmatrix} u_e \frac{e_2 \cdot s_2}{(1 - e_2)(1 - e_2 - s_2)(1 - s_2)} u_s \left( 1 + \frac{s_1}{1 - s_1 - e_2} \right).$$

$$s_1 \text{ et } e_1 \longrightarrow \mathcal{T}_{\leq k}, \qquad s_2 \text{ et } e_2 \longrightarrow \mathcal{T}_{\leq k+1}, \qquad u_e \text{ et } u_s \longrightarrow \mathcal{T}_{=k+1}$$

3) Résultat final:  $G(\mathcal{T}_{\leq k}, \mathcal{T}_{\leq k+1}, \mathcal{T}_{\leq k+1}, \mathcal{T}_{=k+1}, \mathcal{T}_{=k+1}, z, z).$ 

#### Proposition

$$\mathcal{FD}_{=k+1} = z^2 \cdot \left(\frac{z^{k+1}}{F_{2k+3}}\right)^2 \cdot \frac{F_{k+2}}{F_{k+3} - zF_{k+1}}$$

Étape 1: Les forêts sont de hauteur bornée par k.
Fonction génératrice pour  $\mathbb{D}^-_{< k}$ 

Étape 1: Les forêts sont de hauteur bornée par k. Étape 2: S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[ \frac{es}{1 - (e+s)} \right];$  Fonction génératrice pour  $\mathbb{D}^-_{< k}$ 

Étape 1: Les forêts sont de hauteur bornée par k. Étape 2: S.G. de la coupe :  $\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[ \frac{es}{1 - (e+s)} \right]$ ; S.G. des arbres :  $\mathcal{T}_{\leq k} = \frac{zF_k}{F_{k+1}}$ ; Fonction génératrice pour  $\mathbb{D}^-_{< k}$ 

Étape 1: Les forêts sont de hauteur bornée par k.  
Étape 2: S.G. de la coupe : 
$$\mathcal{G}(e, s, z_e, z_s) = \frac{z_e z_s}{es} \left[ \frac{es}{1 - (e+s)} \right]$$
;  
S.G. des arbres :  $\mathcal{T}_{\leq k} = \frac{zF_k}{F_{k+1}}$ ;  
Étape 3: Résultat final:  $\mathcal{G}(\mathcal{T}_{\leq k}, \mathcal{T}_{\leq k}, z, z)$ .

Proposition

$$\mathcal{D}_{\leq k}^{-} = z^2 \cdot \frac{F_{k+1}}{F_{k+2} - z.F_k}$$

## Fonction génératrice des polyominos dirigés k-convexes

$$\mathcal{D}_{\leq k} = \mathcal{D}_{\leq k+1}^{-} - \mathcal{F}\mathcal{D}_{=k+1}$$

## Proposition

La fonction génératrice des polyominos dirigés k-convexes pour  $k \ge 1$  vaut

$$\mathcal{D}_{\leq k} = z^2 \cdot \left(\frac{F_{k+2}}{F_{2k+3}}\right)^2 \cdot F_{2k+2}$$

## Perspectives

- Algorithme de génération aléatoire de polyominos dirigés convexes
- Analyse en moyenne des différentes statistiques pour le polyominos dirigés convexes
- Étude des polyominos convexes (notamment les polyominos *k*-convexe)
- Utilisation des outils pour les tableaux boisés et le PASEP