Didier Auroux University of Nice Sophia Antipolis France auroux@unice.fr

Topological asymptotic analysis for image inpainting

Second Workshop on Mathematical Analysis of Images in Bordeaux

LaBRI, Bordeaux

April 7-8th, 2014

INTRODUCTION

Motivations: The topological gradient has been successfully used in electromagnetism, structural mechanics, fluid mechanics, ... for the identification of optimal designs, or optimal sub-domains.

Image processing techniques are often based on the identification of some specific parts: edges, objects, $\ldots \rightarrow$ application of the topological gradient to image processing.

Advantages of the topological gradient: a priori fast and efficient method \rightsquigarrow fast processing (real time) of the images and data, which is often a prerequisite e.g. for medical imaging.

Figure 1: Gaussian probability density function, standard and topological gradients (normalized absolute value).

Figure 2: Standard gradient (a); Topological gradient (b).

TOPOLOGICAL ASYMPTOTIC ANALYSIS

Notations: Let Ω be a bounded open set of \mathbb{R}^n , and let us consider a PDE on Ω :

find
$$u \in \mathcal{V}$$
 such that $a(u, w) = l(w), \forall w \in \mathcal{V}$.

We also consider a cost function $J(\Omega, u)$ measuring a criterion on the solution u of the PDE.

Perturbation: Insertion of a small crack $\sigma_{\rho} = x_0 + \rho \sigma(n) \rightsquigarrow$ perturbed domain $\Omega_{\rho} = \Omega \setminus \sigma_{\rho}$. Perturbed PDE:

find
$$u_{\rho} \in \mathcal{V}_{\rho}$$
 such that $a_{\rho}(u_{\rho}, w) = l_{\rho}(w), \forall w \in \mathcal{V}_{\rho}$.

The cost function can be written as a function of only ρ :

 $j: \rho \mapsto \Omega_{\rho} \mapsto u_{\rho}$ solution of the perturbed PDE $\mapsto j(\rho) := J(\Omega_{\rho}, u_{\rho}).$

Topological gradient: given by the asymptotic analysis when ρ goes to 0:

$$j(\rho) - j(0) = f(\rho)G(x_0) + o(f(\rho)),$$

where $f(\rho) > 0$, $\lim_{\rho \to 0} f(\rho) = 0$, and $G(x_0)$ is called the topological gradient at point x_0 [Masmoudi, 2001].

The minimization of j can be done by inserting cracks at the most negative values of the topological gradient.

Application to Inpainting

Inpainting

Goal: identify the hidden part of the image.

Standard approaches: learning methods [Wen et al., 2006], minimization of the total variation [Chan-Shen, 2000-2005], morphological analysis [Elad et al., 2005-2006], ...

Identification of hidden contours: edge detection technique based on thermal diffusion [Perona-Malik, 1990; Morel et al., 1992; Weickert, 1994-2001]. Use of two measures on the boundary of the hidden part \rightsquigarrow Dirichlet and Neumann problems [A. and Masmoudi, 2006].

Let Ω be a bounded domain in \mathbb{R}^2 , we assume that there is a crack σ^* inside Ω . We impose a flux $\phi \in H^{-1/2}(\Gamma)$ on the boundary Γ of Ω , and we try to localize a crack $\sigma \subset \Omega$ such that the solution $u \in H^1(\Omega \setminus \sigma)$ of

$$\Delta u = 0 \quad in \ \Omega \setminus \sigma,$$

$$\partial_n u = \phi \quad on \ \Gamma,$$

$$\partial_n u = 0 \quad on \ \sigma,$$
(1)

satisfies $u_{|\Gamma} = T$, where T is a function of $H^{1/2}(\Gamma)$.

The compatibility condition (well-posed problem) is:

$$\int_{\Gamma} \phi \, ds = 0,\tag{2}$$

and

$$\int_{\Omega\setminus\sigma} u \, dx = 0. \tag{3}$$

Two boundary conditions \rightsquigarrow two problems, Dirichlet and Neumann:

Find
$$u_D \in H^1(\Omega \setminus \sigma)$$
 s.t.
$$\begin{cases} \Delta u_D = 0 \quad in \ \Omega \setminus \sigma, \\ u_D = T \quad on \ \Gamma, \\ \partial_n u_D = 0 \quad on \ \sigma, \end{cases}$$
(4)

and

find
$$u_N \in H^1(\Omega \setminus \sigma)$$
 s.t.
$$\begin{cases} \Delta u_N = 0 & in \ \Omega \setminus \sigma, \\ \partial_n u_N = \phi & on \ \Gamma, \\ \partial_n u_N = 0 & on \ \sigma. \end{cases}$$
(5)

For the actual crack, the two solutions u_D and u_N are equal. So we consider the cost function:

$$J(\sigma) = \frac{1}{2} \|u_D - u_N\|_{L^2(\Omega)}^2, \tag{6}$$

We introduce the two adjoint states, in $H^1(\Omega)$:

$$-\Delta p_D = -(u_D - u_N) \quad in \ \Omega,$$

$$p_D = 0 \quad on \ \Gamma,$$
 (7)

and

$$\begin{cases} -\Delta p_N = +(u_D - u_N) & in \ \Omega, \\ \partial_n p_N = 0 & on \ \Gamma. \end{cases}$$
(8)

The variation of the cost function $j(\rho) := J(u_{\sigma_{\rho}})$ when a small crack (size ρ) is inserted, is given by the topological gradient:

$$j(\rho) - j(0) = f(\rho) \ g(x, n) + o(f(\rho)), \tag{9}$$

with

$$g(x,n) = -\left[(\nabla u_D(x).n) (\nabla p_D(x).n) + (\nabla u_N(x).n) (\nabla p_N(x).n) \right].$$
(10)

Application to inpainting

Let Ω be the image, Γ its boundary, and let $\omega \subset \Omega$ be the unknown subset of the image, and γ its boundary. Let v be the original perturbed image, to be restored. Both Dirichlet and Neumann conditions are available on the boundary of ω .

For a given crack σ inserted in ω , let $u_D(\sigma)$ and $u_N(\sigma) \in H^1(\Omega \setminus \sigma)$ be the solutions of the following Dirichlet and Neumann problems:

$$\begin{cases} \Delta u_D = 0 \quad in \ \omega \setminus \sigma, \\ u_D = v \quad on \ \gamma, \\ \partial_n u_D = 0 \quad on \ \sigma, \\ u_D = v \quad in \ \Omega \setminus \omega. \end{cases}$$
$$\begin{cases} \Delta u_N = 0 \quad in \ \omega \setminus \sigma, \\ \partial_n u_N = \partial_n v \quad on \ \gamma, \\ \partial_n u_N = 0 \quad on \ \sigma, \\ u_N = v \quad in \ \Omega \setminus \omega. \end{cases}$$

Goal: find the cracks σ that minimize the difference between the two solutions:

$$J(\sigma) = \frac{1}{2} \|u_D - u_N\|_{L^2(\Omega)}^2.$$

If $\sigma_{\rho} = x + \rho \sigma(n)$, and $j(\rho) := J(\sigma_{\rho})$, then

$$j(\rho) - j(0) = f(\rho)g(x, n) + o(f(\rho)),$$

where the topological gradient g is ([Amstutz et al., 2001]):

$$g(x,n) = -\left[(\nabla u_D(x).n) (\nabla p_D(x).n) + (\nabla u_N(x).n) (\nabla p_N(x).n) \right].$$

 p_N and p_D are the two adjoint states, corresponding to the two direct solutions u_N and u_D of the unperturbed problems:

$$\begin{cases} -\Delta p_D = -(u_D - u_N) & in \ \omega, \\ p_D = 0 & on \ \gamma, \\ p_D = 0 & in \ \Omega \backslash \omega, \end{cases} \quad in \ \omega, \quad \begin{cases} -\Delta p_N = +(u_D - u_N) & in \ \omega, \\ \frac{\partial_n p_N = 0}{\partial_n p_N} = 0 & on \ \gamma, \\ p_N = 0 & in \ \Omega \backslash \omega. \end{cases}$$

Topological gradient:

$$g(x,n) = -\left[(\nabla u_D(x).n)(\nabla p_D(x).n) + (\nabla u_N(x).n)(\nabla p_N(x).n)\right] = n^T M(x)n,$$

where M(x) is a 2 × 2 symmetric matrix (or 3 × 3 in 3D problems or movies), defined by

 $M(x) = -sym(\nabla u_D(x) \otimes \nabla p_D(x) + \nabla u_N(x) \otimes \nabla p_N(x)).$

Then the minimal value of g(x, n) is reached when n is the eigenvector associated to the most negative eigenvalue $\lambda_{min}(M(x))$ of M(x).

Algorithm:

- Compute the solutions of the two direct problems (unperturbed: $\sigma = \emptyset$).
- Compute the solutions of the two adjoint problems $(\sigma = \emptyset)$.
- Compute the matrix M(x) for each $x \in \omega$.
- Define the set of identified edges:

$$\sigma = \{ x \in \omega; \lambda_{\min}(M(x)) < \delta < 0 \},\$$

where δ is a negative threshold.

• Compute the solution of the direct Neumann (or Dirichlet) problem, perturbed by the insertion of σ .

Original image; Inpainted image by linear diffusion; Inpainted image by the topological gradient.

Original image; Inpainted image by linear diffusion; Inpainted image by the topological gradient.

Figure 3: Original image (a); Hidden edges identified by the topological gradient (b).

(a)

(b)

Figure 4: Original image (a); Inpainted image (b).

Algorithm Complexity

All algorithms consist in solving the following equation:

$$\begin{aligned} -div(c\nabla u) + u &= v \quad in \quad \Omega, \\ \partial_n u &= 0 \qquad \qquad on \quad \partial\Omega, \end{aligned}$$

with various values of c. In the first computations, the conductivity c is constant.

Discrete cosine transform (DCT):

$$\sum_{m,n} \left(1 + c(m\pi)^2 + c(n\pi)^2 \right) \boldsymbol{u}_{m,n} \phi_{m,n} = \sum_{m,n} \boldsymbol{v}_{m,n} \phi_{m,n},$$

where $\phi_{m,n} = \delta_{m,n} \cos(m\pi x) \cos(n\pi y)$ is a cosine basis, and $(v_{m,n})$ are the DCT coefficients of the original image v.

The computations of the unperturbed problems are made as follows:

- compute the DCT coefficients $v_{m,n}$ of the original image v.
- compute the DCT coefficients $u_{m,n}$:

$$u_{m,n} = \frac{v_{m,n}}{1 + c(m\pi)^2 + c(n\pi)^2}.$$

• compute the image u from its coefficients $u_{m,n}$ (inverse DCT).

The complexity of a DCT is $\mathcal{O}(n, \log(n))$ operations, where n is the number of pixels of the image.

The perturbed problem can be written as follows:

A(c)u = B,

where u is the unknown (note that the equations are linear!!). As c is close to a constant (sparse edge set), we use a preconditioned conjugate gradient method:

$$\left[A(c_0)^{-1}A(c)\right]u = \left[A(c_0)^{-1}B\right].$$

 \rightsquigarrow the matrix $A(c_0)^{-1}A(c)$ is now close to the identity matrix.

Complexity of the algorithms: $\mathcal{O}(n, \log(n))$ operations \rightsquigarrow real time processing [A. and Masmoudi, 2009].

Université

Sophia Antipolis

Numerical experiments

Figure 5: Computing time versus the image size (old computations, on a very old and tired laptop, with Matlab...imagine a C code for CUDA on a brand new GPU!).

TOPOLOGICAL GRADIENT AND MINIMAL PATHS

Université Improvement of the topological gradient

Main issue: for several applications (segmentation, inpainting), it is crucial to have connected edges.

Figure 6: Inpainting with discontinuous edges.

Idea: instead of thresholding the topological gradient, we will look for the negative valley lines of the topological gradient \rightsquigarrow minimal paths and fast marching methods [Cohen et al., 1997-2005; Tian et al., 2003; Telea et al., 2002].

Minimal paths

Let g be the topological gradient, the idea is to define a potential function, measuring for any point of the image the cost for a path to contain this point. And then we will find the minimal path between two edge points, in order to connect them. For positivity reasons:

 $P(x) = g(x) - \min_{y \in \Omega} \{g(y)\}.$

Let C(s) be a path in Ω , where s represents the arclength. The global cost of C is:

$$J(C) = \int_C (P(C(s)) + \alpha) \, ds,$$

where $\alpha > 0$ is a regularization coefficient, measuring the real length of the path.

Goal: find the minimal path between two points \rightsquigarrow we define a distance function:

$$D(x;x_0) = \inf_{C \in \mathcal{A}(x,x_0)} J(C),$$

where $\mathcal{A}(x, x_0)$ is the set of all paths connecting x and x_0 .

$$\frac{\partial C(s,t)}{\partial t} = \frac{1}{P(C(s,t)) + \alpha} \mathbf{n}_C(s,t),$$

where $\mathbf{n}_C(s,t)$ is the outward unit normal to the front C. We initialize the propagation with C(s,0), an infinitely small circle centered at point x_0 .

Fast marching: the distance function satisfies the following Eikonal equation:

$$\|\nabla_x D(x;x_0)\| = P(x) + \alpha,$$

with the initialization $D(x_0, x_0) = 0$.

 $\rightarrow D(x; x_0)$ is exactly the time t at which the front C initialized at point x_0 reaches x [Tian et al., 2003; Dicker, 2006].

Fast marching algorithm applied to the toplogical gradient:

- Compute the topological gradient of the image (for edge detection or inpainting).
- Set N the number of keypoints, and choose the N keypoints: the main one is the global minimum of the topological gradient, the other ones being the most negative local minima of the topological gradient.
- Compute the distance function with all these keypoints, and the corresponding Voronoï diagram.
- Compute the set of saddle-points: on each edge of the Voronoï diagram, determine the point of minimal distance.
- Sort all these points of minimal distance, from smaller to larger distance.
- Perform the back-propagation from these points: use the saddle-point as an initialization for a descent type algorithm in order to connect the two corresponding keypoints. [A., Cohen and Masmoudi; 2011]

JBAMI 2014 - April 8, 2014

JBAMI 2014 - April 8, 2014

JBAMI 2014 - April 8, 2014

Conclusions and Perspectives

- Hybrid scheme, combining an efficient edge detection by topological asymptotic expansion, and minimal paths for contour completion.
- Extraction/identification of connected edges in 2D.
- Same complexity: $\mathcal{O}(n, \log(n))$ operations \rightsquigarrow real time processing of images and movies.
- Improvement for both segmentation and inpainting applications.
- Extension to 3D problems: almost straightforward.

THANK YOU !

Figure 7: Original image.

Figure 8: Standard gradient (a); Topological gradient (b).

Figure 9: Edges identified by thresholding the topological gradient.

Numerical results

Figure 10: Keypoints (a); Distance function (b).

Figure 11: Voronoï diagram (a); Identified minimal path (b).

Figure 12: Minimal paths on the original image.

Numerical results

Three selected keypoints on the original image; Fast marching applied to the standard gradient, and topological gradient respectively.