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Introduction

Motivations: The topological gradient has been successfully used in electro-

magnetism, structural mechanics, fluid mechanics, . . . for the identification of

optimal designs, or optimal sub-domains.

Image processing techniques are often based on the identification of some

specific parts: edges, objects, . . . application of the topological gradient to

image processing.

Advantages of the topological gradient: a priori fast and efficient

method  fast processing (real time) of the images and data, which is often a

prerequisite e.g. for medical imaging.
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Example

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gradient classique
Gradient topologique

Figure 1: Gaussian probability density function, standard and topological gra-

dients (normalized absolute value).
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Comparison of gradients
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Figure 2: Standard gradient (a); Topological gradient (b).
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TOPOLOGICAL ASYMPTOTIC

ANALYSIS
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General formulation

Notations: Let Ω be a bounded open set of R
n, and let us consider a PDE

on Ω:

find u ∈ V such that a(u, w) = l(w),∀w ∈ V.

We also consider a cost function J(Ω, u) measuring a criterion on the solution

u of the PDE.

Perturbation: Insertion of a small crack σρ = x0 + ρσ(n)  perturbed do-

main Ωρ = Ω\σρ. Perturbed PDE:

find uρ ∈ Vρ such that aρ(uρ, w) = lρ(w),∀w ∈ Vρ.

The cost function can be written as a function of only ρ:

j : ρ 7→ Ωρ 7→ uρ solution of the perturbed PDE 7→ j(ρ) := J(Ωρ, uρ).
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Topological gradient

Topological gradient: given by the asymptotic analysis when ρ goes to 0:

j(ρ) − j(0) = f(ρ)G(x0) + o(f(ρ)),

where f(ρ) > 0, limρ→0 f(ρ) = 0, and G(x0) is called the topological gradient

at point x0 [Masmoudi, 2001].

The minimization of j can be done by inserting cracks at the most negative

values of the topological gradient.
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APPLICATION TO INPAINTING

JBAMI 2014 - April 8, 2014 8/40



Inpainting

Goal: identify the hidden part

of the image.
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Standard approaches: learning methods [Wen et al., 2006], minimization

of the total variation [Chan-Shen, 2000-2005], morphological analysis [Elad et

al., 2005-2006], . . .

Identification of hidden contours: edge detection technique based on ther-

mal diffusion [Perona-Malik, 1990; Morel et al., 1992; Weickert, 1994-2001].

Use of two measures on the boundary of the hidden part  Dirichlet and

Neumann problems [A. and Masmoudi, 2006].
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Crack localization

Let Ω be a bounded domain in R
2, we assume that there is a crack σ∗ inside

Ω. We impose a flux φ ∈ H−1/2(Γ) on the boundary Γ of Ω, and we try to

localize a crack σ ⊂ Ω such that the solution u ∈ H1(Ω\σ) of



















∆u = 0 in Ω\σ,

∂nu = φ on Γ,

∂nu = 0 on σ,

(1)

satisfies u|Γ = T , where T is a function of H1/2(Γ).

The compatibility condition (well-posed problem) is:
∫

Γ

φ ds = 0, (2)

and
∫

Ω\σ

u dx = 0. (3)
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Crack localization

Two boundary conditions  two problems, Dirichlet and Neumann:

Find uD ∈ H1(Ω\σ) s.t.



















∆uD = 0 in Ω\σ,

uD = T on Γ,

∂nuD = 0 on σ,

(4)

and

find uN ∈ H1(Ω\σ) s.t.



















∆uN = 0 in Ω\σ,

∂nuN = φ on Γ,

∂nuN = 0 on σ.

(5)
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Crack localization

For the actual crack, the two solutions uD and uN are equal. So we consider

the cost function:

J(σ) =
1

2
‖uD − uN‖2

L2(Ω), (6)

We introduce the two adjoint states, in H1(Ω):






−∆pD = −(uD − uN ) in Ω,

pD = 0 on Γ,
(7)

and






−∆pN = +(uD − uN ) in Ω,

∂npN = 0 on Γ.
(8)

The variation of the cost function j(ρ) := J(uσρ
) when a small crack (size ρ)

is inserted, is given by the topological gradient:

j(ρ) − j(0) = f(ρ) g(x, n) + o(f(ρ)), (9)

with

g(x, n) = − [(∇uD(x).n)(∇pD(x).n) + (∇uN (x).n)(∇pN (x).n)] . (10)
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Crack localization
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Crack localization
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Application to inpainting

Let Ω be the image, Γ its boundary, and let ω ⊂ Ω be the unknown subset

of the image, and γ its boundary. Let v be the original perturbed image,

to be restored. Both Dirichlet and Neumann conditions are available on the

boundary of ω.

For a given crack σ inserted in ω, let uD(σ) and uN (σ) ∈ H1(Ω\σ) be the

solutions of the following Dirichlet and Neumann problems:


























∆uD = 0 in ω\σ,

uD = v on γ,

∂nuD = 0 on σ,

uD = v in Ω\ω.



























∆uN = 0 in ω\σ,

∂nuN = ∂nv on γ,

∂nuN = 0 on σ,

uN = v in Ω\ω.
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Asymptotic expansion

Goal: find the cracks σ that minimize the difference between the two solutions:

J(σ) =
1

2
‖uD − uN‖2

L2(Ω).

If σρ = x + ρσ(n), and j(ρ) := J(σρ), then

j(ρ) − j(0) = f(ρ)g(x, n) + o(f(ρ)),

where the topological gradient g is ([Amstutz et al., 2001]):

g(x, n) = − [(∇uD(x).n)(∇pD(x).n) + (∇uN (x).n)(∇pN (x).n)].

pN and pD are the two adjoint states, corresponding to the two direct solutions

uN and uD of the unperturbed problems:














−∆pD = −(uD − uN ) in ω,

pD = 0 on γ,

pD = 0 in Ω\ω,















−∆pN = +(uD − uN ) in ω,

∂npN = 0 on γ,

pN = 0 in Ω\ω.

JBAMI 2014 - April 8, 2014 16/40



Asymptotic expansion

Topological gradient:

g(x, n) = − [(∇uD(x).n)(∇pD(x).n) + (∇uN (x).n)(∇pN (x).n)] = nT M(x)n,

where M(x) is a 2 × 2 symmetric matrix (or 3 × 3 in 3D problems or movies),

defined by

M(x) = −sym(∇uD(x) ⊗∇pD(x) + ∇uN (x) ⊗∇pN (x)).

Then the minimal value of g(x, n) is reached when n is the eigenvector associ-

ated to the most negative eigenvalue λmin(M(x)) of M(x).
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Inpainting

Algorithm:

• Compute the solutions of the two direct problems (unperturbed: σ = ∅).

• Compute the solutions of the two adjoint problems (σ = ∅).

• Compute the matrix M(x) for each x ∈ ω.

• Define the set of identified edges:

σ = {x ∈ ω; λmin(M(x)) < δ < 0},

where δ is a negative threshold.

• Compute the solution of the direct Neumann (or Dirichlet) problem, per-

turbed by the insertion of σ.
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Numerical results

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Original image; Inpainted image by lin-

ear diffusion; Inpainted image by the

topological gradient.
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Numerical results
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Numerical results
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Figure 3: Original image (a); Hidden edges identified by the topological gradi-

ent (b).
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Numerical results
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Figure 4: Original image (a); Inpainted image (b).
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ALGORITHM COMPLEXITY
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c constant: DCT

All algorithms consist in solving the following equation:






−div(c∇u) + u = v in Ω,

∂nu = 0 on ∂Ω,

with various values of c. In the first computations, the conductivity c is

constant.

Discrete cosine transform (DCT):

∑

m,n

(

1 + c(mπ)2 + c(nπ)2
)

um,nφm,n =
∑

m,n

vm,nφm,n,

where φm,n = δm,n cos(mπx) cos(nπy) is a cosine basis, and (vm,n) are the

DCT coefficients of the original image v.
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DCT algorithm

The computations of the unperturbed problems are made as follows:

• compute the DCT coefficients vm,n of the original image v.

• compute the DCT coefficients um,n:

um,n =
vm,n

1 + c(mπ)2 + c(nπ)2
.

• compute the image u from its coefficients um,n (inverse DCT).

The complexity of a DCT is O(n. log(n)) operations, where n is the number of

pixels of the image.
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Preconditioned conjugate gradient

The perturbed problem can be written as follows:

A(c)u = B,

where u is the unknown (note that the equations are linear!!). As c is close to a

constant (sparse edge set), we use a preconditioned conjugate gradient method:

[

A(c0)
−1A(c)

]

u =
[

A(c0)
−1B

]

.

 the matrix A(c0)
−1A(c) is now close to the identity matrix.

Complexity of the algorithms: O(n. log(n)) operations  real time pro-

cessing [A. and Masmoudi, 2009].
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Numerical experiments
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Figure 5: Computing time versus the image size (old computations, on a very

old and tired laptop, with Matlab. . . imagine a C code for CUDA on a brand

new GPU!).
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TOPOLOGICAL GRADIENT AND

MINIMAL PATHS

JBAMI 2014 - April 8, 2014 28/40



Improvement of the topological gradient

Main issue: for several applications (segmentation, inpainting), it is crucial

to have connected edges.
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Figure 6: Inpainting with discontinuous edges.

Idea: instead of thresholding the topological gradient, we will look for the

negative valley lines of the topological gradient  minimal paths and fast

marching methods [Cohen et al., 1997-2005; Tian et al., 2003; Telea et al.,

2002].
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Minimal paths

Let g be the topological gradient, the idea is to define a potential function,

measuring for any point of the image the cost for a path to contain this point.

And then we will find the minimal path between two edge points, in order to

connect them. For positivity reasons:

P (x) = g(x) − min
y∈Ω

{g(y)}.

Let C(s) be a path in Ω, where s represents the arclength. The global cost of

C is:

J(C) =

∫

C

(P (C(s)) + α) ds,

where α > 0 is a regularization coefficient, measuring the real length of the

path.

Goal: find the minimal path between two points  we define a distance func-

tion:

D(x; x0) = inf
C∈A(x,x0)

J(C),

where A(x, x0) is the set of all paths connecting x and x0.
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Fast marching

Front propagation:

∂C(s, t)

∂t
=

1

P (C(s, t)) + α
nC(s, t),

where nC(s, t) is the outward unit normal to the front C. We initialize the

propagation with C(s, 0), an infinitely small circle centered at point x0.

Fast marching: the distance function satisfies the following Eikonal equation:

‖∇xD(x; x0)‖ = P (x) + α,

with the initialization D(x0, x0) = 0.

 D(x; x0) is exactly the time t at which the front C initialized at point x0

reaches x [Tian et al., 2003; Dicker, 2006].
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Front propagation
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Front propagation
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Front propagation
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Front propagation
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Front propagation
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Front propagation
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Hybrid scheme

Fast marching algorithm applied to the toplogical gradient:

• Compute the topological gradient of the image (for edge detection or in-

painting).

• Set N the number of keypoints, and choose the N keypoints: the main one

is the global minimum of the topological gradient, the other ones being the

most negative local minima of the topological gradient.

• Compute the distance function with all these keypoints, and the corre-

sponding Voronöı diagram.

• Compute the set of saddle-points: on each edge of the Voronöı diagram,

determine the point of minimal distance.

• Sort all these points of minimal distance, from smaller to larger distance.

• Perform the back-propagation from these points: use the saddle-point as

an initialization for a descent type algorithm in order to connect the two

corresponding keypoints. [A., Cohen and Masmoudi; 2011]

JBAMI 2014 - April 8, 2014 33/40



Inpainting test
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Inpainting test

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200
20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200
20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Original image; Inpainted

image by the topological

gradient; Minimal path on

the topological gradient; In-

painted image by the hybrid

scheme; Inpainted image us-

ing a TV method.

JBAMI 2014 - April 8, 2014 36/40



Inpainting test
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CONCLUSIONS AND PERSPECTIVES
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Conclusions

• Hybrid scheme, combining an efficient edge detection by topological

asymptotic expansion, and minimal paths for contour completion.

• Extraction/identification of connected edges in 2D.

• Same complexity: O(n. log(n)) operations  real time processing of

images and movies.

• Improvement for both segmentation and inpainting applications.

• Extension to 3D problems: almost straightforward.

JBAMI 2014 - April 8, 2014 39/40



THANK YOU !

JBAMI 2014 - April 8, 2014 40/40



JBAMI 2014 - April 8, 2014 41/40



Numerical results
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Figure 7: Original image.
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Numerical results
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Figure 8: Standard gradient (a); Topological gradient (b).
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Numerical results
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Figure 9: Edges identified by thresholding the topological gradient.
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Numerical results
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Figure 10: Keypoints (a); Distance function (b).
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Numerical results
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Figure 11: Voronöı diagram (a); Identified minimal path (b).
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Numerical results
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Figure 12: Minimal paths on the original image.
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Numerical results
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