### Two models dedicated to image colorization. Second Workshop on Mathematical Analysis of Images in Bordeaux

PIERRE Fabien.

Tuesday, April 8, 2014.

*Joint work with* Jean-François Aujol, Aurélie Bugeau, Nicolas Papadakis, Vinh-Thong Ta.

## Plan

- Colorization problem.
- Starting point.
- Luminance-chrominance model.
- Primal-dual like algorithm.
- Collaborative colorization.
- A RGB model.
- Conclusion.

## Plan.

#### Colorization problem.

Starting point.

Luminance-chrominance model.

Primal-dual like algorithm.

Collaborative colorization.

A *RGB* model.

Conclusion.

### Luminance-chrominance space

Luminance :

$$Y = 0.299R + 0.587G + 0.114B$$

(U, V) are defined such that:

$$[0, 255]^3 \rightarrow [a1, a2] \times [b1, b2] \times [c1, c2]$$
  
 $(R, B, G) \mapsto (Y, U, V)$ 

is a bijection.

- The human eye is sensitive to Y;
- If Y is a gray-scale image to colorize, the computation of U and V gives the color image.



Color image.

Gray-scale version (Y).

# Manual colorization.

- State-of-the-art: Levin et al. 2004, Sapiro 2005, Horiuchi et al. 2004;
- Need some tedious work for the user;
- Regular results;
- Most of methods work in luminance-chrominance spaces.



Figure: Manual colorization of Levin et al.

# The problem of exemplar-based colorization.



Source.

Target.

Result.

- Correspondence between textures and colors;
- Regularization of the result for a realistic image;
- A new difficulty: find an appropriate source image.

# Add of a prior with textures.

- State-of-the-art: Welsh et al. 2002;
- No regularization;
- Problem of the choice of metric between patches;
- Method of Welsh *et al.* works in the  $I\alpha\beta$  color-space.



## Speed up the search.



- Sub-sampling of 200 pixels of the image on a grid.
- If the algorithm chooses 8 candidates over this set of 200 pixels it can take at least two same candidates with probability 13.22%.

## Add of a prior with textures.

- State-of-the-art: Charpiat et al. (Lab) 2008, Bugeau et al. 2013 (YUV), Gupta et al. 2013 (YUV).
- Two steps:
  - Search of information: candidates extraction from textures criteria;
  - Spatial regularization of colors.

Proposed metrics by Bugeau, Ta and Papadakis (YUV).

Used criteria:

- standard-deviation: ρ<sub>1</sub>(p, q, P) := |σ<sup>2</sup>(P<sub>p</sub>) − σ<sup>2</sup>(P<sub>q</sub>)|, where σ(P<sub>p</sub>) stands for the standard-deviation of the patch around the pixel p;
- ► the DFT:  $\rho_2(p, q, P) := \sum_{\xi} \left| ||\hat{P}_p(\xi)||_2 ||\hat{P}_q(\xi)||_2 \right|$ , where  $\hat{P}_p$  is the DFT of the patch around the pixel p;
- cumulative histogram:  $\rho_3(p, q, P) := \sum_i |H_{P_p}(i) H_{P_q}(i)|$ , where *H* is the cumulative histogram of the patch around the pixel *p*.

# Plan.

Colorization problem.

Starting point.

Luminance-chrominance model.

Primal-dual like algorithm.

Collaborative colorization.

A *RGB* model.

Conclusion.

Model of Bugeau, Ta and Papadakis (YUV).

Computing of a local minimum of the following functional:

$$F(u, W) := TV(u) + \frac{\lambda}{2} \int_{\Omega} \sum_{i=1}^{N} w_i ||u - c_i||^2$$
$$+ \alpha \int_{\Omega} \sum_{i=1}^{N} w_i (1 - w_i)$$

 $+\chi_{u\in[0,255]^2}+\chi_{W\in\Delta}.$ 

*u*: chrominance vector, to be computed. Weights  $w_i$  are such that  $0 \le w_i \le 1$ ,  $\forall i \in [1..N]$  et  $\sum_{i=1}^{N} w_i = 1$ .  $c_i$  are chrominance candidates.

### Images are drab.



Source.



Result of Bugeau et al.

- Contours are damaged due to the lack of coupling;
- Over regularization to avoid this problem ;
- Drab images: need a post-processing.

## Plan.

Colorization problem.

Starting point.

Luminance-chrominance model.

Primal-dual like algorithm.

Collaborative colorization.

A *RGB* model.

Conclusion.

Luminance-chrominance coupled model.

A new energy-based model:

$$F(u,W) := TV_c(u) + \frac{\lambda}{2} \int_{\Omega} \sum_{i=1}^8 w_i ||u - c_i||^2$$

$$+\chi_{u\in[0,255]^2} + \chi_{W\in\Delta}.$$

*u*: chrominance vector, to be computed.  $\Delta = \left\{ w \in \mathbb{R}^N \text{ s.t. } 0 \le w_i \le 1 \text{ , } \forall i \in [1..8] \text{ and } \sum_{i=1}^8 w_i = 1 \right\}.$  *c<sub>i</sub>* are chrominance candidates.

$$TV_{c}(u) = \int_{\Omega} \sqrt{\gamma \partial_{x} Y^{2} + \gamma \partial_{y} Y^{2} + \partial_{x} U^{2} + \partial_{y} U^{2} + \partial_{x} V^{2} + \partial_{y} V^{2}}$$

## Intuitions about coupling.

Consider the following model:

$$F(u,W) := TV_c(u) + \frac{\lambda}{2} \int_{\Omega} \|M(u-c)\|^2$$

With M a mask and c seeds of color put by the user.



Scribbles

Without coupling

With coupling

# Intuitions about coupling.

#### Different regularizations with different coupling:



Small  $\gamma$ : contours of low perimeter for chrominance channels.

## Plan.

Colorization problem.

Starting point.

Luminance-chrominance model.

Primal-dual like algorithm.

Collaborative colorization.

A *RGB* model.

Conclusion.

Primal problem:

$$\min_{x\in X}\left[F(\mathit{K}x)+\mathit{G}(x)
ight]$$
 ,

where  $G: X \to [0, +\infty]$ ;  $F^*: Y \to [0, +\infty]$  are convex, proper, lower semi-continuous; K is a continuous linear operator. Associated dual problem:

$$\min_{u\in X} \max_{p\in Y} \left[ \langle Ku|p \rangle_X + G(u) - F^*(p) \right].$$

### Minimization algorithm.

Convergence of the primal-dual algorithm to a saddle-point of the functional.

Algorithm 1 Primal-dual algorithm of Chambolle and Pock 2011.

- 1: Initialization au,  $\sigma > 0$ ,  $\theta \in [0,1]$ ,  $(x^0, y^0) \in X \times Y$  et  $\overline{x}^0 = x^0$ .
- 2: for  $n \ge 0$  do 3:  $y^{n+1} = \operatorname{prox}_{\sigma \partial F^*} (y^n + \sigma K \overline{x}^n)$ 4:  $x^{n+1} = \operatorname{prox}_{\tau \partial C} (x^n - \tau K^* v^{n+1})$

4: 
$$x^{n+1} = \operatorname{prox}_{\tau \partial G} (x^n - \tau K^* y^{n+1})$$
  
5:  $\overline{x}^n = x^{n+1} + \theta (x^{n+1} - x^n)$ .

6: end for

where 
$$\operatorname{prox}_f( ilde{u}) = \operatorname{argmin}_u rac{\| ilde{u} - u\|_2^2}{2} + f(u).$$

### New model.

Non-convex model:

$$\min_{x \in X} \min_{w \in W} \max_{y \in Y} \langle Kx | y \rangle - F^*(y) + G(x) + h(x, w) + H(w) , \quad (1)$$

where  $G: X \to [0, +\infty)$ ,  $F^*: Y \to [0, +\infty)$ ,  $H: W \to [0, +\infty)$ and  $h: (X \times W) \to [0, +\infty)$  are proper, lower semi-continuous,  $F^*$ , G, H are convex, h is convex with respect to each variable. Moreover  $\forall w \in \mathbb{R}^n$ ,

G + h(., w)

and  $\forall x \in \mathbb{R}^n$ ,

$$H + h(x, .)$$

are proper.

## Minimization algorithm.

Algorithm 2 Computing a solution.

1: for 
$$n \ge 0$$
 do  
2:  $y^{n+1} \leftarrow \operatorname{prox}_{\sigma F^*} (y^n + \sigma K \overline{x}^n)$   
3:  $w^{n+1} \leftarrow \operatorname{prox}_{\rho H + \rho h(\overline{x}^n, \cdot)} (w^n)$   
4:  $x^{n+1} \leftarrow \operatorname{prox}_{\tau G + \tau h(., w^{n+1})} (x^n - \tau K^* y^{n+1})$   
5:  $\overline{x}^{n+1} \leftarrow 2x^{n+1} - x^n$   
6: end for

#### Theorem (Pierre et al. 2014)

This algorithm converges to a fix-point.

## Minimization algorithm.

#### Algorithm 3 Applied to colorization.

1: 
$$W \leftarrow 1/N$$
  
2:  $u^0 \leftarrow \sum_i w_i c_i$   
3:  $Z^0 \leftarrow \nabla u^0$   
4: for  $n \ge 1$  do  
5:  $Z^{n+1} \leftarrow PB(Z^n + \sigma \nabla \overline{u}^n)$   
6:  $W^{n+1} \leftarrow P_{\Delta} \left( W^n - \tau_w \left( \left( \|\overline{u}^n - c_i\|^2 \right)_i \right) \right)$   
7:  $u^{n+1} \leftarrow PG \left( \frac{u^n + \tau \left( \operatorname{div}(Z^{n+1}) + \lambda \sum_i w_i^{n+1} c_i \right)}{1 - \delta \lambda} \right)$   
8:  $\overline{u}^{n+1} \leftarrow 2u^{n+1} - u^n$   
9: end for

- $P_{\Delta}$  projection onto the simplex (Chen et al. 2011.);
- ▶ *PG* is a projection onto a rectangle.

### Results in exemplar-based case.



### Numerical convergence.



The value of the functional decreases during the convergence of the algorithm.

Ideas about the non-convexity.



- With the non-convex term, weights are forced to be close to 1 and 0.
- Without, weights go to 1 or 0 just by taking account of the regularization of the image.

## Ideas about the non-convexity.



The histogram shows that the non-convex term is unused. Notice that about 14% of weights do not go to 0 and 1.

## Plan.

Colorization problem.

Starting point.

Luminance-chrominance model.

Primal-dual like algorithm.

Collaborative colorization.

A *RGB* model.

Conclusion.

Issues of the collaborative colorization.

No current method is effective:

- The selection of an image for the exemplar-based method is complex.
- The manual colorization is long and tedious.
- The exemplar-based method often provides good result, but small defects are very common.

### Use of the non-convexity.



Gradient descent algorithm:

$$x_{n+1} \leftarrow x_n - \gamma \nabla f(x_n).$$

The result depends of the initialization.

## Choice of the initialization.

 ${\cal W}$  is initialized as the inverse of the geodesic distance for the candidate corresponding to the scribble.



Initial scribble Geodesic distance. Diffusion. Example of diffusion of color with geodesic distance.

## Choice of the initialization.

W does the initialization of u.



Source.

Exemplar-based. With one scribble.



3 scribbles.

Final result.

## Choice of the initialization.



Source. Target. With example.



Scribbles.

Scribbles.

Scribbles.











Results.



Target

Source

Scribbles

Manual

Exemplar

Results.



Target

Source

Scribbles

Manual

Exemplar

Both

# Victoire !



## Plan.

Colorization problem.

Starting point.

Luminance-chrominance model.

Primal-dual like algorithm.

Collaborative colorization.

A RGB model.

Conclusion.

Cylindrical coordinates for a perceptual representation of colors.



- Easy description of colors;
- Coordinates linked to human perception;
- RGB cube strictly included in cylinder (gamut).

### RGB model.

A new energy-based model:

$$F(u,W) := TV(u) + \frac{\lambda}{2} \int_{\Omega} \sum_{i=1}^{8} w_i ||u - c_i||^2$$

$$+\chi_{u\in[0,255]^3} + \chi_{u \text{ s.t. } Y(u)=g} + \chi_{W\in\Delta}.$$

 $\begin{array}{l} u: \ RGB \ \text{vector, to be computed.} \\ \Delta = \Big\{ w \in \mathbb{R}^N \ \text{s.t.} \ 0 \leq w_i \leq 1 \ \text{, } \forall i \in [1..8] \ \text{and} \ \sum_{i=1}^8 w_i = 1 \Big\}. \\ c_i \ \text{are} \ RGB \ \text{candidates.} \end{array}$ 

$$TV(u) = \int_{\Omega} \sqrt{\partial_x R^2 + \partial_y R^2 + \partial_x G^2 + \partial_y G^2 + \partial_x B^2 + \partial_y B^2}$$

# Algorithm

#### Algorithm 4 Applied to colorization.

1: 
$$Z^{0} \leftarrow 0$$
  
2: for  $n \ge 1$  do  
3:  $Z^{n+1} \leftarrow PB(Z^{n} + \sigma \nabla \overline{u}^{n})$   
4:  $W^{n+1} \leftarrow P_{\Delta} \left( W^{n} - \tau_{w} \left( \left( \|\overline{u}^{n} - c_{i}\|^{2} \right)_{i} \right) \right)$   
5:  $u^{n+1} \leftarrow P\widetilde{G} \left( \frac{u^{n} + \tau \left( \operatorname{div}(Z^{n+1}) + \lambda \sum_{i} w_{i}^{n+1} c_{i} \right)}{1 - \delta \lambda} \right)$   
6:  $\overline{u}^{n+1} \leftarrow 2u^{n+1} - u^{n}$   
7: end for

- $P_{\Delta}$  projection onto the simplex (Chen et al. 2011.);
- $\tilde{PG}$  is a projection onto the intersection

$$[0, 255]^2 + \{u \text{ s.t. } Y(u) = g\}.$$
 (2)

## Oblique projection



- The orthogonal projection is not able to preserve the hue;
- An oblique projection, in the direction of constant hue is used.

# Oblique projection



The oblique projection is computed in two steps:

- Projection onto D in the direction of  $\overrightarrow{wb}$ .
- ▶ Projection onto the yellow plan, in the direction of *D*.

## Oblique projection vs orthogonal projection.



Source image.



Target image.



### Numerical results



Source

Result

## Plan.

Colorization problem.

Starting point.

Luminance-chrominance model.

Primal-dual like algorithm.

Collaborative colorization.

A *RGB* model.

Conclusion.

- Variational model efficient for colorization;
- New concept mixing both manual colorization and exemplar-based;
- Convergence of an algorithm for a non-convex model.

Study of interest:

- Adaptation to video;
- Colorization with Y channel damaged;
- Acceleration with discrete algorithms.



For listening !