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1
AUDIO INPAINTING
General introduction



Inpainting problems in audio signal processing

Recovery of audio signals corrupted by:
I Impulsive noise / clicks,
I Clipping / magnitude saturation,
I Packet loss,
I CD/DVD scratches,
I Source separation and more.

Different approaches, depending on the context:
I AR modeling [JVV86],
I Bayesian estimation [GR95, MG14],
I Neural networks [Unc03, Czy97],
I Bandwidth replication [LA05],
I Sparse recovery [PBD+10, MG14].
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Impulsive noise

I A localized, impulsive degradation, at random
position in the signal.

I Duration of the degradation is between 20µs
and 4ms.

I Many interpolation approaches, such as
median filtering, ”splicing“ etc.

I The most effective is a model-based approach
based on AR-process.
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Packet loss

I Very difficult scenario - entire blocks of data
are completely lost.

I Duration of the ”gap“ depends on the packet
size and may be over 100ms.

I Packet Loss Concealment (PLC) techniques
[WSL00] based on insertion, waveform
substitution and model-based methods.

I Typically, speech signals can be recovered if
the gap is smaller than a phoneme duration
(less than 40ms).
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Clipping

I Another difficult scenario - magnitude
information above the threshold is completely
lost.

I Duration of the ”gap“ depends on the
threshold.

I Declipping techniques based on interpolation
and signal models.

I Recovery performance depends on the
clipping threshold and the audio content.
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Source separation

I Specific case where one source is desired and
the rest are considered as noise.

I Duration of the ”gap“ depends on the period
during which only the desired source is active.

I Standard separation methods based on ICA
[CJ10], for example.

I In the case of multichannel audio, pattern
matching techniques [SLOVB14] may be
effective.
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2
AUDIO DECLIPPING
The inverse problem



Mathematical formulation of audio clipping

Let x ∈ Rn be the single channel, discrete time audio signal and
Cτ (x) = x̄ ∈ Rn its clipped version.

Hard clipping:

x̄i =

{
xi if |xi | < τ,

sgn(xi )τ otherwise.
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Declipping hard-clipped signal

I x̄ = Cτ (x), a hard-clipped signal.
I Mr,M+

c ,M-
c extract ”reliable“,

clipped-positive and clipped-negative
samples.

I The goal is to find an estimate x̂ such
that:

Mr x̂ = Mr x̄
M+

c x̂ ≥ M+
c x̄

M-
c x̂ ≤ M-

c x̄

⌧

�⌧

x

x̄

r r rc+ c�

An ill-posed problem!
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Time-frequency visualization

Clipped: spectrum spreading due to
introduced discontinuities in the

waveform.

Original: in the time-frequency
plane, the energy of audio signals is

mostly concentrated!
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Time-frequency visualization

The idea: regularize the ill-posed
declipping problem by enforcing the
energy compactness in an estimate.
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3
SPARSE REGULARIZATION
Synthesis vs analysis approach



Sparse synthesis framework
The assumption: signal x ∈ Rn can be approximated by a linear combination of
atoms taken from a dictionary Ψ ∈ Rn×m, n ≤ m:

x = Ψα

The number of atoms (eq. non-zero weights in α ∈ Rm) k needed for the
approximation is relatively small compared to N:

#{α} = ‖α‖0 = k � n,m

x

=

Ψ

α
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Sparse analysis framework

The assumption [NDEG13]: signal x ∈ Rn can be sparsified by applying a
suitable analysis operator Ω ∈ Rp×n, p ≥ n:

z = Ωx

The number of zero-elements ` in the product z ∈ Rp is relatively large:

p − ‖Ωx‖0 = `

Ω

x

=

z
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Comparison of the two methodologies

Sparse synthesis

I Dictionary: Ψ ∈ Rn×m.
I Constructive model, atomic

composition.
I Support: column vectors of Ψ

corresponding to non-zeros in α.
I Non-unique representation.
I Number of subspaces:

( m
k
)
,

dimension: k.

Sparse analysis

I Operator: Ω ∈ Rp×n.
I Descriptive model, constrained

decomposition.
I Cosupport: row vectors of Ω

orthogonal to x .
I Unique representation.
I Number of subspaces:

( p
`

)
,

dimension n − `.

Nominal equivalence: only if Ψ = Ω−1.
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Regularized declipping problem

Sparse synthesis

minimize α‖α‖0
subject to Mr Ψα = Mr x̄

M+
c Ψα ≥ M+

c x̄
M-

c Ψα ≤ M-
c x̄

Sparse analysis

minimize x‖Ωx‖0
subject to Mr x = Mr x̄

M+
c x ≥ M+

c x̄
M-

c x ≤ M-
c x̄

Ω and Ψ are some overcomplete transform matrices
known for compacting the energy of audio signals.
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Choice of the dictionary and the operator

I Modulated complex lapped transform (MCLT) [DD06]:

Ψ =
[
ψc
0 ψc

1 . . . ψc
m/2−1 ψs

0 ψs
1 . . . ψs

m/2−1
]
,

ψc
j (t) = cos

( π
m (t + 1/2)(j + 1/2)

)
, ψs

j (t) = sin
( π

m (t + 1/2)(j + 1/2)
)
,

where t = [0, n − 1] and j = [0,m − 1].

I Two-times redundant (m = 2n) DCT-DST dictionary.
I The atoms are chosen according to recommendations in [Gri01] to use

the transform as Gabor-like dictionary.
I The analysis operator is the transpose Ω = ΨT , (p = m), for consistency.
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Computational perspective

Minimizing either ‖α‖0 or ‖Ωx‖0 is NP-hard!

Sparse synthesis

I Convex relaxation: minimize
‖α‖1 or some other convex
objective, if applicable.

I Greedy: MP, OMP, IHT, HTP
etc.

Sparse analysis

I Convex relaxation: minimize
‖Ωx‖1 or some other convex
objective, if applicable.

I Greedy: GAP, analysis
IHT/HTP etc.

Important: model is rarely a perfect reflection of reality
(assume ”≈“ rather than ”=“)!
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4
DECLIPPING ALGORITHMS
based on sparse and cosparse prior



Constrained Matching Pursuit for Audio Declipping

I Two-stage algorithm [AEJ+12]:
1. Orthogonal Matching Pursuit for CS:

I Initialize the support Λ = {∅} and residual r (0) = Mr x̄ .
I Select atom: j = arg maxj〈r k−1, ψj〉,
I Update support: Λ← Λ ∪ j; ΨΛ =

[
ψi
]
, {ψi ∈ Ψ | i ∈ Λ },

I Compute the estimate: α(k) = arg minα‖Mr x̄ −Mr ΨΛα‖22,
I Compute new residual: r (k) = Mr x̄ −Mr ΨΛα

(k),
I Termination criterion: ‖r (k)‖2 ≤ ε.

2. Refinement by clipping constraints:

α̂ = arg minα‖Mr x̄ −Mr ΨΛα‖22
subject to M+

c ΨΛα ≥ M+
c x̄

M-
c ΨΛα ≤ M-

c x̄

I Final estimate: x̂ = ΨΛα̂.
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Consistent Iterative Hard Thresholding

I Algorithm [KJM+13] based on IHT by Blumensath et al. Objective:

minα‖Mr Ψα−Mr x̄‖22 + ‖
(
M+

c x̄ −M+
c Ψα

)
+
‖22 + ‖ (M-

c x̄ −M-
c Ψα)− ‖

2
2

subject to α being sparse and (ui )± = ±max (0,±ui ).
I Define:

B(ui ) =


ui ∀i ∈ Sr ,

(ui )+ ∀i ∈ Sp,

(ui )− ∀i ∈ Sn.

I Iterative update: α(k+1) = Hk+1

(
α(k) + µΨTB(x̄ −Ψα(k))

)
.

I HK (·) is the hard-thresholding operator.
I K ← k + 1: sparsity relaxed per iteration.
I Stepsize µ estimated through line-search.
I Termination criterion: ‖r (k)‖2 = ‖B(x̄ −Ψα(k))‖2 ≤ ε.
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Analysis Hard Thresholding for Audio Declipping

I Ideas from Consistent IHT cannot be readily applied, since:

minimizex‖y − x‖22 subject to ‖Ωx‖0 ≤ k is NP-hard [TGP14]!

I Instead, we enforce approximate cosparsity through ADMM approach
[KBG14].

I Reformulate the problem by splitting variables (z ∈ Rp):

minimize z,x‖Ωx − z‖22
subject to ‖z‖0 � p,

Mr x = Mrx̄
M+

c x ≥ M+
c x̄

M-
c x ≤ M-

c x̄ .
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Analysis Hard Thresholding for Audio Declipping

1. Initialize: x (0) = x̄ , u(0) = 0.
2. z (k) = arg minz‖z − Ωx (k−1) − u(k−1)‖22 s. t. ‖z‖0 ≤ k =

Hk

(
Ωx (k−1) + u(k−1)

)
.

3. x-update:

x (k) = arg minx‖Ωx − z (k) + u(k−1)‖22
subject to Mr x = Mr x̄

M+
c x ≥ M+

c x̄
M-

c x ≤ M-
c x̄

4. Lagrangian variable update: u(k) = u(k−1) + Ωx (k) − z (k).
5. Termination criterion: ‖r (k)‖∞ = ‖Ωx (k) − z (k) + u(k)‖∞ ≤ ε.
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Analysis Hard Thresholding for Audio Declipping

I Computing the exact x -update is expensive!
I Instead we first solve for the equality constraints only:

Let: x̂ (k) = (I−Mr
†Mr)xnull + Mr

†Mr x̄ = Πxnull + Mr
†Mr x̄ .

Solve: xnull = arg minx‖Ω(Πx + Mr
†Mr x̄)− z (k) + u(k−1)‖22.

= arg minx‖Ω̃r̄ x − q‖22.

I Then we project the solution to clipping (box) constraints:

x (k) = x̂ (k) + B(x̄ − x̂ (k))

.
I Suboptimal, but sufficient for the convergence.
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Linear prediction declipping

I Adaptation of the interpolation method proposed by Janssen [JVV86].
I The signals are modeled as autoregressive (AR) processes of finite order

r = 3c + 2, where c is number of clipped samples.
I The objective is "whitening" the signal (a ∈ Rr are the filter coefficients,

a0 = −1):

Q(a, x) =
n−1∑
i=r

( r∑
j=0

ajxi−j

)2

=
n−1∑
i=r

e2i

I Vectors a and x are estimated by alternating minimization of Q(a, x) and
projecting the estimate x to clipping constraints.

I Potential downfalls: sensitive to initialization, computational time
proportional to filter order.
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Conceptual analysis

I Constrained MP: support is chosen without clipped observations in x̄ !
I Constrained MP and Consistent IHT: sensitive trade-off between good fit

and overfitting.
I Analysis HT and Constrained MP: potentially slow due to intermediate

constrained minimization steps.
I AR declipping will be slow for severely clipped signals.
I Efficant computation of Ψ(·), ΨT (·), Ω(·) and ΩT (·) is highly

recommended!
I All algorithms are non-convex heuristics and only locally optimal.
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5
AUDIO BENCHMARKS
Declipping wideband audio data



Frame-based processing

I Constant Overlap-Add (COLA)
scheme.

I Overlap stepsize: 75%.
I Weighting function: Hamming

(square rooted for the analysis
and synthesis window).

I Frame duration: ∼20ms.
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Benchmark

I Two wideband audio tracks (sampling: 16kHz, encoding: 16bit).
I DCT and Gabor for the dictionary/operator.
I Performance criterion: SNR difference between the input and

post-processed data:

SNRx̄ = 20 log10
‖x‖2
‖x − x̄‖2

SNRx̂ = 20 log10
‖x‖2
‖x − x̂‖2

I Clipping range: from SNRx̄ = 1dB to SNRx̄ = 10dB.
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Results - recovery performance
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Results - audio preview

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time[s]

A
m

p
lit

u
d

e

Instrumental − original & clipped

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Instrumental − recovered

Time[s]

A
m

p
lit

u
d

e

Srđan Kitić - Audio inpainting by sparse regularization methods April 8, 2014- 33



Results - audio preview
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Blind decompression
I More realistic scenario [MGS03]: data is not ”perfectly“ clipped; instead,

high magnitudes are gradually compressed.
I The threshold τ and compression coefficient γ are unknown.

x̄i =

{
xi if |xi | < τ,

sgn(xi )τ(1− γ) + γxi otherwise.
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Blind decompression

More systematic approach:
1. Initialization: τ̂ = ‖x̄‖∞.
2. Backtracking: τ̂ ← 1

b τ̂ , b > 1.
3. Define the measurement matrices Mr(τ̂),M+

c (τ̂),M-
c(τ̂), assuming that

samples |x̄i | < τ̂ are reliable.
4. Compute the estimate x̂ (k) by analysis HT declipping.
5. Evaluate approximate cosparsity of the estimate: ˆ̀(k) = p − ‖ẑ (k)‖0.
6. Stopping criterion based on the cosparsity decrease: ˆ̀(k+1) ≤ ˆ̀(k).
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Blind decompression - results
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I Exhibits a ”phase
transition” behavior.

I Crude scheme - works,
but computationally
expensive.

I Impact of τ and γ on
the performance?

I Performance on the
real audio data?
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Conclusions

I Analysis Hard Thresholding outperforms all the others for most of the
given clipping range.

I Consistent IHT and AR declipping offer good trade-off between
processing time and quality of reconstruction.

I Constrained OMP fails to recover severely clipped signals due to
inaccurate support estimation.

I Blind decompression / declipping seems possible.
I Envisioned improvements: enforcing structure in sparse and cosparse

estimation (some existing approaches - check [SKD14]).
I Coupling AR model with sparse/cosparse regularization?
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