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1 Introduction

It is basic knowledge that using the internal structure of objects enables one to
devise easier to write and/or more efficient algorithms and that intractable prob-
lems may become easier when restricted to classes of objects with appropriate
properties.

Although at first sight, graphs may appear to be dramatically unstructured,
many authors have endeavoured, with some success, to characterize graphs with
properties which greatly reduce their apparent complexity. Modular decomposi-
tion [4] [5] [6], 2-structures [10], systems of equations, bounded tree width are
but a few notions one should quote while trying to cover that topic.

We follow here a different path, pioneered in [7] and more recently in [9],
where one aims at describing certain classes of graphs as algebras whose elements
may be built from a set of basic building blocks called prime factors.

Our graphs will be undirected, edge-labelled graphs having a finite number of
distinguished vertices called sources and our basic operation will be the pullback
of arrows in the category of graphs ([1] [3]).

The main result of this paper is to show how some types of graphs may
be decomposed into “orthogonal” components, whose pullback is precisely the
original graph. Iterating the process, these graphs may be written as composition
of some basic building blocks (or rather families of building blocks).

2 Coloured graph with sources

A coloured graph with sources, shortly a graph, is a four-tuple G = (V, E, C, S)
where V' is the set of nodes of G, E C V x V is the set of edges of G, with
an edge [u,v] considered to be the same as an edge [v,u] for all edges [u,v] in
E, C C P(E) is a partition of E defining an equivalence relation on E, whose
equivalence classes are the colours of G, and S C V is the finite set of sources
of G. We shall work in the category of graphs, whose morphisms are simply
colour preserving usual morphisms. The pullback of a pair of graph morphisms
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G, 5 G & @, is another pair G P S SN G5 of morphisms where H is
the subgraph of the product G; x G2 consisting of those items (nodes and edges)
on which gy o m; and g» o w2 coincide.

In this paper, all graphs will be connected.

Definition 1. Let G be a graph and ¢ € C. We say that a set of nodes X is
uniform of colour c iff any edge linking two nodes of X has colour c.

Definition 2. Let G be a graph. Let X and Y be two disjoint subsets of V. Y
is an X-fibre of colour c iff any edge linking a node in X and a node in Y has
colour ¢. Y is a total X-fibre (of colour ¢) iff Y is an X-fibre (of colour ¢) and
each node of YV is linked with at least one node of X.

Example The set I of figure 1 is uniform of colour ¢;. It is a J-fibre of colour ¢; .
but not total because the node s, for example, is not linked with J. The set K
is a total J-fibre (of colour c¢z). On this figure and the following, different types
of lines indicate different edge colours. Square nodes shall represent the sources
of a graph. There are no colours on the nodes.

G3 o . |

Fig.1. J-fibres and uniform set

Lemma3. Let G be a graph. Let X, Y be subsets of V. One has:

1. if Y is an X -fibre then X is a Y -fibre,

2. if Y is a [total] X -fibre, every subset of Y is a [total] X -fibre,

3. if Y and Z are total X -fibres and Y N Z # 0, then Y U Z is a total X -fibre.
O

2.1 s-width-fibres

For any source s of a graph G, let B(s,0) = {s} and for all »r > 0 B(s,r + 1) =
B(s,r)U{y € V : 3z € B(s,r),[z,y] € E(G)}. Let D(s,0) = {s} and for all
r >0 D(s,r +1)=B(s,r +1) — B(s,r).



Definition4. Let G be a graph and s € S. For any x € V — {s}, the set of
coloured sequences from s to x is the following set, :

SEQ(s,x) = {(c1,...,cn): there exists a shortest path (s,z1,...,z,) such that
Tn =z and [s,z1] €1, - .., [Tn-1,Tn] € cn}.

SEQ(s,s) ={()}, () being the empty sequence.

Lemmalb. Let G be a graph and s € S. Let z € D(s,r), for some r > 1.
SEQ(s,z) = U,eps,r—1t(u,c) 1u € SEQ(s,z) and [z, 2] € c}. O

Definition 6. Let G be a graph and s € S. We say that two nodes,  and y,
are width-equivalent for s, denoted = ~ y, iff SEQ(s,z) = SEQ(s,y).
An s-width-fibre of G is an equivalence class of ~;.

Ezample In figure 2, the sets {s}, Y, P, Q, T, U, Z, W, My, Ms, Ms are the
s-width-fibres of G.
In particular, one has for all u in U, SEQ(s,u) = {(c1, ¢2,¢3,¢1), (¢1,¢3,¢2,¢1)}.

Fig. 2. The s-width-fibres

We say that a graph G is coherent from s € S iff for all edges [u,v] and
[z,y] in G with u ~5 x and v ~; y, [u,v] and [z, y] have the same color. Then

G = G/ ~; is well defined as a graph.
In the following we shall always deal with coherent graphs.

Proposition 7. Let G be a graph and s € S such that G is coherent from s. Let
M C D(s,r), for somer > 1. M is an s-width-fibre of G iff M is a mazimal
total X -fibre, for all s-width-fibres X of G such that X C D(s,r —1). O

2.2  s-depth-fibres

Definition 8. Let G' be a graph and s € S such that G is coherent from s.
Let G = G/ ~4 be the quotient graph for ~4. Let z,y € V and #,§ be the

equivalence classes of £ and y modulo ~,. Let G' be the partial subgraph of C~¥,



obtained by deleting the edges of D(§,r) x D(§,r), for all r > 0. We say that
z and y are depth-equivalent for s, denoted by x =, y, iff either £ = §, or the
following holds:

— Z and g belong to a uniform path P of G’ , such that each vertex of P is of
degree at most 2 in G'.

— if Z [resp. §] is an extremity of the uniform path P, then Z [resp. § | is of
degre 1in G'.

Let G = G/ =, be the quotient graph for =,. V is the set of s-depth-fibres of
G.

Ezample In figure 2, the set M = M; U Ms U M3 is an s-depth-fibre of G. The
set M1 U My U M3 U Z is not an s-depth-fibre of G, because z Z; z: in G', % is
an extremity of a uniform path P (of colour ¢;), whose vertices are of degree at
most 2, but Z is not of degree 1 in G'.

3 Product and decomposition

Definition 9. Let G be a graph. For i = 1,2, let s; be an element of S such
that G is coherent from s;. Let us denote the depth-equivalence for s; by =1,
and the width-equivalence for ss by ~». We say that =; and ~, are orthogonal
iff the following holds: if  =; y, then z 5 y, and if £ ~5 y then z #; y.

We say that =; and ~q are balanced iff the following holds:

— if x = y, then for all ' ~5 = there exists y’' ~» y such that 2’ =1 ¢/,
— if  and y are not equivalent for =1 and ~o, if [z,y] € ¢, then for all u, v
such that u =1 z, u ~3 y and v ~3 z, v =; y, one has [u,v] € c.

We say that G is regular with respect to the two sources s; and sy iff =; and
~y are orthogonal and balanced.

For two graphs H, F', containing sources s;, sx respectively, we shall denote
by H X F the pullback of the two morphisms (H — H/ =s,), (F — F/ ~s,),
if H =;,= F/ ~,.

Theorem 10. Let G be a graph. For i = 1,2, let s; be an element of S such that

G is coherent from s;. Let us denote the depth-equivalence for s; by =1, and the

width-equivalence for sy by ~s.

G is regular with respect to the two sources s1 and so iff G = (G| ~2) X (G/ =1).
O

4 Example: Grids

Let us say that a pair of edges of a graph G is admissible if they are not
loops, they have the same colour and exactly one extremity in common. Let



(e1,€}),(e2,€h), ..., (en,€l,) be asequence of admissible pairs , the graph G/[e; =
el,ex =€y, ...,en, = el ], obtained by identifying e; with €/, e; with e}, ..., e,
with el,, will be called the result of a folding of G (see [11] for a definition in the
non coloured case).

Let G5 be the graph of figure 1. The sets I, J, K, L and M are the depth-fibers
of G5 for sy (i.e. the equivalence classes for the relation =4, ). Let Y3 = G5/ =5,
be the quotient graph. Let D be the set of vertices {ss,z,y,2}. G3 is such that
the edges which are symmetrical relatively to D, are coloured with the same
colour. Thus two vertices which are symmetrical relatively to D, will belong to
the same width-fibers of G5 for ss, and they will be identified in G3/ ~s,.

The width-fibers of G5 for s (i.e. the equivalence classes for the relation ~y,),

and the quotient graph évg = (3/ ~s, are shown in figure 3. G3 is the result of
three consecutive foldings of G3 (starting from the nodes s, z, y and z).

Figure 4 shows that E}vg X Y3 = (3. One easily obtains the decomposition of the

Fig. 3. The width-fibers of G5 for s

graph G- of figure 5. G is the result of two consecutive foldings of G>. On the
other hand, the only difference between G3 and G2 is the coloring of edges. In
fact, G5 is obtained from G5 by translating the colours “downward” using the
following translation ¢.

As for all r, 1 < r < 3, each z € D(s1,r) is a D(sy,r — 1)-fiber, we can de-
fine t(G) as follows : for r = 2 and r = 1, translate the colour of any edge

[z,y] € D(s1,r —1) x D(s1,r), on the edges [y, z] € D(s1,r) x D(s1,r + 1) and
colour all the edges of D(s1,0) x D(s1,1) with the colour ¢;.

G5 is obtained by applying t to G (figure 6), so Gz = t(G3 X V3).

The decomposition of the graph G is shown in figure 7. Let us call A the
quotient graph G/ ~s,. A is a folding of G; and A X Y; = G;. On the other
hand, G» is obtained by applying the translation of colours ¢, to the graph G.
Consequently, Go = t(A X Y7).
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Fig. 4. The pullback of G5 and V3

Finally one obtains the following factorization of G:
G3=G3XY; = t(t(A X Yl) X )/2)) X Ys.

This sequence of folding can be done in a similar way, starting from a grid
G, of size n. One would obtain G,, as the result of n pullbacks of very simple
graphs as shown in figure 8.

5 Conclusion

This paper describes some ongoing research on the structure of several types of
graphs which we call regular just because we feel they look that way, although
they are not in any language theoretic sense (even worse, grids are commonly
presented as the basic obstruction to context-freeness). Using the pullback as a
basic operation, we show how they may be decomposed into some basic building
blocks. Further work is currently done in several directions :

— try to characterize more clearly what classes of graphs are adequate for such
an approach,

— make precise the nature of the building blocks, the “prime factors”: how
many do we need to build a regular graph of a given size (in some family),
do they have a predictable shape when size grows (or not, as usual prime
numbers),
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Fig. 8. The factorization of G,

— given a set of prime factors (coming from the decomposition of grids for

instance), decide whether we can use them to build something different (i.e.
are there any closure properties),

— extend this decomposition to classes of graphs whose intrinsic regularity has

to be understood in a different way (like equational graphs, automatic graphs
or covering of graphs)
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