
Orthogonal Deomposition of GraphsMihel Bauderon and Fr�ed�erique Carr�ereLaboratoire Bordelais de Reherhe en InformatiqueUniversit�e Bordeaux I33405 Talene Cedex,Franeemail: f bauderon, arrere g�labri.u-bordeaux.frfax: (33 or 0) 5 56 84 66 691 IntrodutionIt is basi knowledge that using the internal struture of objets enables one todevise easier to write and/or more eÆient algorithms and that intratable prob-lems may beome easier when restrited to lasses of objets with appropriateproperties.Although at �rst sight, graphs may appear to be dramatially unstrutured,many authors have endeavoured, with some suess, to haraterize graphs withproperties whih greatly redue their apparent omplexity. Modular deomposi-tion [4℄ [5℄ [6℄, 2-strutures [10℄, systems of equations, bounded tree width arebut a few notions one should quote while trying to over that topi.We follow here a di�erent path, pioneered in [7℄ and more reently in [9℄,where one aims at desribing ertain lasses of graphs as algebras whose elementsmay be built from a set of basi building bloks alled prime fators.Our graphs will be undireted, edge-labelled graphs having a �nite number ofdistinguished verties alled soures and our basi operation will be the pullbakof arrows in the ategory of graphs ([1℄ [3℄).The main result of this paper is to show how some types of graphs maybe deomposed into \orthogonal" omponents, whose pullbak is preisely theoriginal graph. Iterating the proess, these graphs may be written as ompositionof some basi building bloks (or rather families of building bloks).2 Coloured graph with souresA oloured graph with soures , shortly a graph, is a four-tuple G = hV;E;C; Siwhere V is the set of nodes of G, E � V � V is the set of edges of G, withan edge [u; v℄ onsidered to be the same as an edge [v; u℄ for all edges [u; v℄ inE, C � P(E) is a partition of E de�ning an equivalene relation on E, whoseequivalene lasses are the olours of G, and S � V is the �nite set of souresof G. We shall work in the ategory of graphs, whose morphisms are simplyolour preserving usual morphisms. The pullbak of a pair of graph morphisms1 This work has been supported by the EC TMR Network GetGrats through theUniversity Bordeaux I



G1 g1�! G g2 � G2 is another pair G1 h1 � H h2�! G2 of morphisms where H isthe subgraph of the produt G1�G2 onsisting of those items (nodes and edges)on whih g1 Æ �1 and g2 Æ �2 oinide.In this paper, all graphs will be onneted.De�nition 1. Let G be a graph and  2 C. We say that a set of nodes X isuniform of olour  i� any edge linking two nodes of X has olour .De�nition 2. Let G be a graph. Let X and Y be two disjoint subsets of V . Yis an X-�bre of olour  i� any edge linking a node in X and a node in Y hasolour . Y is a total X-�bre (of olour ) i� Y is an X-�bre (of olour ) andeah node of Y is linked with at least one node of X .Example The set I of �gure 1 is uniform of olour 1. It is a J-�bre of olour 1.but not total beause the node s1, for example, is not linked with J . The set Kis a total J-�bre (of olour 2). On this �gure and the following, di�erent typesof lines indiate di�erent edge olours. Square nodes shall represent the souresof a graph. There are no olours on the nodes.
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Fig. 1. J-�bres and uniform setLemma3. Let G be a graph. Let X, Y be subsets of V . One has:1. if Y is an X-�bre then X is a Y -�bre,2. if Y is a [total℄ X-�bre, every subset of Y is a [total℄ X-�bre,3. if Y and Z are total X-�bres and Y \ Z 6= ;, then Y [ Z is a total X-�bre.ut2.1 s-width-�bresFor any soure s of a graph G, let B(s; 0) = fsg and for all r � 0 B(s; r + 1) =B(s; r) [ fy 2 V : 9x 2 B(s; r); [x; y℄ 2 E(G)g. Let D(s; 0) = fsg and for allr � 0 D(s; r + 1) = B(s; r + 1)�B(s; r).2



De�nition 4. Let G be a graph and s 2 S. For any x 2 V � fsg, the set ofoloured sequenes from s to x is the following set :SEQ(s; x) = f(1; : : : ; n): there exists a shortest path (s; x1; : : : ; xn) suh thatxn = x and [s; x1℄ 2 1, : : : , [xn�1; xn℄ 2 ng.SEQ(s; s) = f()g, () being the empty sequene.Lemma5. Let G be a graph and s 2 S. Let z 2 D(s; r), for some r � 1.SEQ(s; z) = Sx2D(s;r�1)f(u; ) : u 2 SEQ(s; x) and [x; z℄ 2 g. utDe�nition 6. Let G be a graph and s 2 S. We say that two nodes, x and y,are width-equivalent for s, denoted x �s y, i� SEQ(s; x) = SEQ(s; y).An s-width-�bre of G is an equivalene lass of �s.Example In �gure 2, the sets fsg, Y , P , Q, T , U , Z, W , M1, M2, M3 are thes-width-�bres of G.In partiular, one has for all u in U , SEQ(s; u) = f(1; 2; 3; 1); (1; 3; 2; 1)g.
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Fig. 2. The s-width-�bresWe say that a graph G is oherent from s 2 S i� for all edges [u; v℄ and[x; y℄ in G with u �s x and v �s y, [u; v℄ and [x; y℄ have the same olor. TheneG = G= �s is well de�ned as a graph.In the following we shall always deal with oherent graphs.Proposition 7. Let G be a graph and s 2 S suh that G is oherent from s. LetM � D(s; r), for some r � 1. M is an s-width-�bre of G i� M is a maximaltotal X-�bre, for all s-width-�bres X of G suh that X � D(s; r � 1). ut2.2 s-depth-�bresDe�nition 8. Let G be a graph and s 2 S suh that G is oherent from s.Let eG = G= �s be the quotient graph for �s. Let x; y 2 V and ~x; ~y be theequivalene lasses of x and y modulo �s. Let eG0 be the partial subgraph of eG,3



obtained by deleting the edges of D(~s; r) � D(~s; r), for all r � 0. We say thatx and y are depth-equivalent for s, denoted by x �s y, i� either ~x = ~y, or thefollowing holds:{ ~x and ~y belong to a uniform path P of eG0, suh that eah vertex of P is ofdegree at most 2 in eG0.{ if ~x [resp. ~y℄ is an extremity of the uniform path P , then ~x [resp. ~y ℄ is ofdegre 1 in eG0.Let G = eG= �s be the quotient graph for �s. V is the set of s-depth-�bres ofG.Example In �gure 2, the set M = M1 [M2 [M3 is an s-depth-�bre of G. Theset M1 [M2 [M3 [ Z is not an s-depth-�bre of G, beause z 6�s x: in eG0, ~z isan extremity of a uniform path P (of olour 1), whose verties are of degree atmost 2, but ~z is not of degree 1 in eG0.3 Produt and deompositionDe�nition 9. Let G be a graph. For i = 1; 2, let si be an element of S suhthat G is oherent from si. Let us denote the depth-equivalene for s1 by �1,and the width-equivalene for s2 by �2. We say that �1 and �2 are orthogonali� the following holds: if x �1 y, then x 6�2 y, and if x �2 y then x 6�1 y.We say that �1 and �2 are balaned i� the following holds:{ if x �1 y, then for all x0 �2 x there exists y0 �2 y suh that x0 �1 y0,{ if x and y are not equivalent for �1 and �2, if [x; y℄ 2 , then for all u, vsuh that u �1 x, u �2 y and v �2 x, v �1 y, one has [u; v℄ 2 .We say that G is regular with respet to the two soures s1 and s2 i� �1 and�2 are orthogonal and balaned.For two graphs H , F , ontaining soures s1, s2 respetively, we shall denoteby H 1 F the pullbak of the two morphisms (H �! H= �s1), (F �! F= �s2),if H= �s1= F= �s2 .Theorem10. Let G be a graph. For i = 1; 2, let si be an element of S suh thatG is oherent from si. Let us denote the depth-equivalene for s1 by �1, and thewidth-equivalene for s2 by �2.G is regular with respet to the two soures s1 and s2 i� G = (G= �2) 1 (G= �1).ut4 Example: GridsLet us say that a pair of edges of a graph G is admissible if they are notloops, they have the same olour and exatly one extremity in ommon. Let4



(e1; e01); (e2; e02); : : : ; (en; e0n) be a sequene of admissible pairs , the graphG=[e1 =e01; e2 = e02; : : : ; en = e0n℄, obtained by identifying e1 with e01, e2 with e02, : : : , enwith e0n, will be alled the result of a folding of G (see [11℄ for a de�nition in thenon oloured ase).LetG3 be the graph of �gure 1. The sets I , J ,K, L andM are the depth-�bersof G3 for s1 (i.e. the equivalene lasses for the relation �s1). Let Y3 = G3= �s1be the quotient graph. Let D be the set of verties fs2; x; y; zg. G3 is suh thatthe edges whih are symmetrial relatively to D, are oloured with the sameolour. Thus two verties whih are symmetrial relatively to D, will belong tothe same width-�bers of G3 for s2, and they will be identi�ed in G3= �s2 .The width-�bers of G3 for s2 (i.e. the equivalene lasses for the relation �s2),and the quotient graph fG3 = G3= �s2 are shown in �gure 3. fG3 is the result ofthree onseutive foldings of G3 (starting from the nodes s2, x, y and z).Figure 4 shows that fG3 1 Y3 = G3. One easily obtains the deomposition of the
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Fig. 3. The width-�bers of G3 for s2graph G2 of �gure 5. fG2 is the result of two onseutive foldings of G2. On theother hand, the only di�erene between fG3 and G2 is the oloring of edges. Infat, fG3 is obtained from G2 by translating the olours \downward" using thefollowing translation t.As for all r, 1 � r � 3, eah z 2 D(s1; r) is a D(s1; r � 1)-�ber, we an de-�ne t(G) as follows : for r = 2 and r = 1, translate the olour of any edge[x; y℄ 2 D(s1; r � 1)�D(s1; r), on the edges [y; z℄ 2 D(s1; r)�D(s1; r + 1) andolour all the edges of D(s1; 0)�D(s1; 1) with the olour 1.fG3 is obtained by applying t to G2 (�gure 6), so fG3 = t(fG2 1 Y2).The deomposition of the graph G1 is shown in �gure 7. Let us all A thequotient graph G1= �s2 . A is a folding of G1 and A 1 Y1 = G1. On the otherhand, fG2 is obtained by applying the translation of olours t, to the graph G1.Consequently, fG2 = t(A 1 Y1). 5
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Fig. 4. The pullbak of fG3 and Y3Finally one obtains the following fatorization of G3:G3 = fG3 1 Y3 = t(t(A 1 Y1) 1 Y2)) 1 Y3:This sequene of folding an be done in a similar way, starting from a gridGn of size n. One would obtain Gn as the result of n pullbaks of very simplegraphs as shown in �gure 8.5 ConlusionThis paper desribes some ongoing researh on the struture of several types ofgraphs whih we all regular just beause we feel they look that way, althoughthey are not in any language theoreti sense (even worse, grids are ommonlypresented as the basi obstrution to ontext-freeness). Using the pullbak as abasi operation, we show how they may be deomposed into some basi buildingbloks. Further work is urrently done in several diretions :{ try to haraterize more learly what lasses of graphs are adequate for suhan approah,{ make preise the nature of the building bloks, the \prime fators": howmany do we need to build a regular graph of a given size (in some family),do they have a preditable shape when size grows (or not, as usual primenumbers), 6
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)Gn  =  t (...t(t ( .. ....
) . . .Fig. 8. The fatorization of Gn{ given a set of prime fators (oming from the deomposition of grids forinstane), deide whether we an use them to build something di�erent (i.e.are there any losure properties),{ extend this deomposition to lasses of graphs whose intrinsi regularity hasto be understood in a di�erent way (like equational graphs, automati graphsor overing of graphs)Referenes1. M. Bauderon, A uniform approah to graph rewriting : the pullbak approah, inProeedings WG'95, Let. Notes in Comp. Si 1017., 101-1152. M. Bauderon, F. Carrere, Orthogonal deomposition of graphs, Tehnial ReportLaBRI in preparation,3. M. Bauderon, H. Jaquet, Node rewriting in hypergraphs, in Proeedings WG'96 ,Let. Notes in Comp. Si 1197, 31-434. P. Bonizzoni, G. Della Vedova, Modular deomposition of hypergraphs, Let. Notesin Comp. Si. 1017, 1995, 303-3175. A. Cournier, M. Habib, A new linear algorithm for modular deomposition, Let.Notes in Comp. Si. 787, 1994, 68-846. E. Dahlhaus, EÆient parallel modular deomposition, Let. Notes in Comp. Si.1017, 1995, 290-3027. S. Even, A. Litman, Layered ross produt - A tehnique to onstrut interonne-tion networks, 4th ACM Symp. on parallel algorithms and arhitetures, 1992, pp60-69,8. J. Kratohvil, A. Proskurowski, J. A. Telle, Complexity of olored graph overs I.Colored direted multigraphs, Let. Notes in Comp. Si. 1335, 1997, 242-2579. A. Paz, A theory of deomposition into prime fators of layered interonnetion net-works, Dagstuhl Seminar on Graph Transformations in Computer Siene Septem-bre 1996,10. G. Rozenberg, A. Ehrenfeuht, T. Harju, 2-strutures { A framework for deom-position and transformation of graphs, in: Handbook of Graph Grammars andComputing by Graph Transformation, Volume 1: Foundations (G. Rozenberg, ed.),World Sienti�, 401-478, 199711. J. R. Stallings, Topology of �nite graphs, Invent. math. 71, 1983, 551-565This artile was proessed using the LaTEX maro pakage with LLNCS style8


