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tionIt is basi
 knowledge that using the internal stru
ture of obje
ts enables one todevise easier to write and/or more eÆ
ient algorithms and that intra
table prob-lems may be
ome easier when restri
ted to 
lasses of obje
ts with appropriateproperties.Although at �rst sight, graphs may appear to be dramati
ally unstru
tured,many authors have endeavoured, with some su

ess, to 
hara
terize graphs withproperties whi
h greatly redu
e their apparent 
omplexity. Modular de
omposi-tion [4℄ [5℄ [6℄, 2-stru
tures [10℄, systems of equations, bounded tree width arebut a few notions one should quote while trying to 
over that topi
.We follow here a di�erent path, pioneered in [7℄ and more re
ently in [9℄,where one aims at des
ribing 
ertain 
lasses of graphs as algebras whose elementsmay be built from a set of basi
 building blo
ks 
alled prime fa
tors.Our graphs will be undire
ted, edge-labelled graphs having a �nite number ofdistinguished verti
es 
alled sour
es and our basi
 operation will be the pullba
kof arrows in the 
ategory of graphs ([1℄ [3℄).The main result of this paper is to show how some types of graphs maybe de
omposed into \orthogonal" 
omponents, whose pullba
k is pre
isely theoriginal graph. Iterating the pro
ess, these graphs may be written as 
ompositionof some basi
 building blo
ks (or rather families of building blo
ks).2 Coloured graph with sour
esA 
oloured graph with sour
es , shortly a graph, is a four-tuple G = hV;E;C; Siwhere V is the set of nodes of G, E � V � V is the set of edges of G, withan edge [u; v℄ 
onsidered to be the same as an edge [v; u℄ for all edges [u; v℄ inE, C � P(E) is a partition of E de�ning an equivalen
e relation on E, whoseequivalen
e 
lasses are the 
olours of G, and S � V is the �nite set of sour
esof G. We shall work in the 
ategory of graphs, whose morphisms are simply
olour preserving usual morphisms. The pullba
k of a pair of graph morphisms1 This work has been supported by the EC TMR Network GetGrats through theUniversity Bordeaux I



G1 g1�! G g2 � G2 is another pair G1 h1 � H h2�! G2 of morphisms where H isthe subgraph of the produ
t G1�G2 
onsisting of those items (nodes and edges)on whi
h g1 Æ �1 and g2 Æ �2 
oin
ide.In this paper, all graphs will be 
onne
ted.De�nition 1. Let G be a graph and 
 2 C. We say that a set of nodes X isuniform of 
olour 
 i� any edge linking two nodes of X has 
olour 
.De�nition 2. Let G be a graph. Let X and Y be two disjoint subsets of V . Yis an X-�bre of 
olour 
 i� any edge linking a node in X and a node in Y has
olour 
. Y is a total X-�bre (of 
olour 
) i� Y is an X-�bre (of 
olour 
) andea
h node of Y is linked with at least one node of X .Example The set I of �gure 1 is uniform of 
olour 
1. It is a J-�bre of 
olour 
1.but not total be
ause the node s1, for example, is not linked with J . The set Kis a total J-�bre (of 
olour 
2). On this �gure and the following, di�erent typesof lines indi
ate di�erent edge 
olours. Square nodes shall represent the sour
esof a graph. There are no 
olours on the nodes.
s2

G3 I

J

K

L

M

c2

c1
s1

Fig. 1. J-�bres and uniform setLemma3. Let G be a graph. Let X, Y be subsets of V . One has:1. if Y is an X-�bre then X is a Y -�bre,2. if Y is a [total℄ X-�bre, every subset of Y is a [total℄ X-�bre,3. if Y and Z are total X-�bres and Y \ Z 6= ;, then Y [ Z is a total X-�bre.ut2.1 s-width-�bresFor any sour
e s of a graph G, let B(s; 0) = fsg and for all r � 0 B(s; r + 1) =B(s; r) [ fy 2 V : 9x 2 B(s; r); [x; y℄ 2 E(G)g. Let D(s; 0) = fsg and for allr � 0 D(s; r + 1) = B(s; r + 1)�B(s; r).2



De�nition 4. Let G be a graph and s 2 S. For any x 2 V � fsg, the set of
oloured sequen
es from s to x is the following set :SEQ(s; x) = f(
1; : : : ; 
n): there exists a shortest path (s; x1; : : : ; xn) su
h thatxn = x and [s; x1℄ 2 
1, : : : , [xn�1; xn℄ 2 
ng.SEQ(s; s) = f()g, () being the empty sequen
e.Lemma5. Let G be a graph and s 2 S. Let z 2 D(s; r), for some r � 1.SEQ(s; z) = Sx2D(s;r�1)f(u; 
) : u 2 SEQ(s; x) and [x; z℄ 2 
g. utDe�nition 6. Let G be a graph and s 2 S. We say that two nodes, x and y,are width-equivalent for s, denoted x �s y, i� SEQ(s; x) = SEQ(s; y).An s-width-�bre of G is an equivalen
e 
lass of �s.Example In �gure 2, the sets fsg, Y , P , Q, T , U , Z, W , M1, M2, M3 are thes-width-�bres of G.In parti
ular, one has for all u in U , SEQ(s; u) = f(
1; 
2; 
3; 
1); (
1; 
3; 
2; 
1)g.
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Fig. 2. The s-width-�bresWe say that a graph G is 
oherent from s 2 S i� for all edges [u; v℄ and[x; y℄ in G with u �s x and v �s y, [u; v℄ and [x; y℄ have the same 
olor. TheneG = G= �s is well de�ned as a graph.In the following we shall always deal with 
oherent graphs.Proposition 7. Let G be a graph and s 2 S su
h that G is 
oherent from s. LetM � D(s; r), for some r � 1. M is an s-width-�bre of G i� M is a maximaltotal X-�bre, for all s-width-�bres X of G su
h that X � D(s; r � 1). ut2.2 s-depth-�bresDe�nition 8. Let G be a graph and s 2 S su
h that G is 
oherent from s.Let eG = G= �s be the quotient graph for �s. Let x; y 2 V and ~x; ~y be theequivalen
e 
lasses of x and y modulo �s. Let eG0 be the partial subgraph of eG,3



obtained by deleting the edges of D(~s; r) � D(~s; r), for all r � 0. We say thatx and y are depth-equivalent for s, denoted by x �s y, i� either ~x = ~y, or thefollowing holds:{ ~x and ~y belong to a uniform path P of eG0, su
h that ea
h vertex of P is ofdegree at most 2 in eG0.{ if ~x [resp. ~y℄ is an extremity of the uniform path P , then ~x [resp. ~y ℄ is ofdegre 1 in eG0.Let G = eG= �s be the quotient graph for �s. V is the set of s-depth-�bres ofG.Example In �gure 2, the set M = M1 [M2 [M3 is an s-depth-�bre of G. Theset M1 [M2 [M3 [ Z is not an s-depth-�bre of G, be
ause z 6�s x: in eG0, ~z isan extremity of a uniform path P (of 
olour 
1), whose verti
es are of degree atmost 2, but ~z is not of degree 1 in eG0.3 Produ
t and de
ompositionDe�nition 9. Let G be a graph. For i = 1; 2, let si be an element of S su
hthat G is 
oherent from si. Let us denote the depth-equivalen
e for s1 by �1,and the width-equivalen
e for s2 by �2. We say that �1 and �2 are orthogonali� the following holds: if x �1 y, then x 6�2 y, and if x �2 y then x 6�1 y.We say that �1 and �2 are balan
ed i� the following holds:{ if x �1 y, then for all x0 �2 x there exists y0 �2 y su
h that x0 �1 y0,{ if x and y are not equivalent for �1 and �2, if [x; y℄ 2 
, then for all u, vsu
h that u �1 x, u �2 y and v �2 x, v �1 y, one has [u; v℄ 2 
.We say that G is regular with respe
t to the two sour
es s1 and s2 i� �1 and�2 are orthogonal and balan
ed.For two graphs H , F , 
ontaining sour
es s1, s2 respe
tively, we shall denoteby H 1 F the pullba
k of the two morphisms (H �! H= �s1), (F �! F= �s2),if H= �s1= F= �s2 .Theorem10. Let G be a graph. For i = 1; 2, let si be an element of S su
h thatG is 
oherent from si. Let us denote the depth-equivalen
e for s1 by �1, and thewidth-equivalen
e for s2 by �2.G is regular with respe
t to the two sour
es s1 and s2 i� G = (G= �2) 1 (G= �1).ut4 Example: GridsLet us say that a pair of edges of a graph G is admissible if they are notloops, they have the same 
olour and exa
tly one extremity in 
ommon. Let4



(e1; e01); (e2; e02); : : : ; (en; e0n) be a sequen
e of admissible pairs , the graphG=[e1 =e01; e2 = e02; : : : ; en = e0n℄, obtained by identifying e1 with e01, e2 with e02, : : : , enwith e0n, will be 
alled the result of a folding of G (see [11℄ for a de�nition in thenon 
oloured 
ase).LetG3 be the graph of �gure 1. The sets I , J ,K, L andM are the depth-�bersof G3 for s1 (i.e. the equivalen
e 
lasses for the relation �s1). Let Y3 = G3= �s1be the quotient graph. Let D be the set of verti
es fs2; x; y; zg. G3 is su
h thatthe edges whi
h are symmetri
al relatively to D, are 
oloured with the same
olour. Thus two verti
es whi
h are symmetri
al relatively to D, will belong tothe same width-�bers of G3 for s2, and they will be identi�ed in G3= �s2 .The width-�bers of G3 for s2 (i.e. the equivalen
e 
lasses for the relation �s2),and the quotient graph fG3 = G3= �s2 are shown in �gure 3. fG3 is the result ofthree 
onse
utive foldings of G3 (starting from the nodes s2, x, y and z).Figure 4 shows that fG3 1 Y3 = G3. One easily obtains the de
omposition of the
G3
~

x zys2
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s1

Fig. 3. The width-�bers of G3 for s2graph G2 of �gure 5. fG2 is the result of two 
onse
utive foldings of G2. On theother hand, the only di�eren
e between fG3 and G2 is the 
oloring of edges. Infa
t, fG3 is obtained from G2 by translating the 
olours \downward" using thefollowing translation t.As for all r, 1 � r � 3, ea
h z 2 D(s1; r) is a D(s1; r � 1)-�ber, we 
an de-�ne t(G) as follows : for r = 2 and r = 1, translate the 
olour of any edge[x; y℄ 2 D(s1; r � 1)�D(s1; r), on the edges [y; z℄ 2 D(s1; r)�D(s1; r + 1) and
olour all the edges of D(s1; 0)�D(s1; 1) with the 
olour 
1.fG3 is obtained by applying t to G2 (�gure 6), so fG3 = t(fG2 1 Y2).The de
omposition of the graph G1 is shown in �gure 7. Let us 
all A thequotient graph G1= �s2 . A is a folding of G1 and A 1 Y1 = G1. On the otherhand, fG2 is obtained by applying the translation of 
olours t, to the graph G1.Consequently, fG2 = t(A 1 Y1). 5
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Fig. 4. The pullba
k of fG3 and Y3Finally one obtains the following fa
torization of G3:G3 = fG3 1 Y3 = t(t(A 1 Y1) 1 Y2)) 1 Y3:This sequen
e of folding 
an be done in a similar way, starting from a gridGn of size n. One would obtain Gn as the result of n pullba
ks of very simplegraphs as shown in �gure 8.5 Con
lusionThis paper des
ribes some ongoing resear
h on the stru
ture of several types ofgraphs whi
h we 
all regular just be
ause we feel they look that way, althoughthey are not in any language theoreti
 sense (even worse, grids are 
ommonlypresented as the basi
 obstru
tion to 
ontext-freeness). Using the pullba
k as abasi
 operation, we show how they may be de
omposed into some basi
 buildingblo
ks. Further work is 
urrently done in several dire
tions :{ try to 
hara
terize more 
learly what 
lasses of graphs are adequate for su
han approa
h,{ make pre
ise the nature of the building blo
ks, the \prime fa
tors": howmany do we need to build a regular graph of a given size (in some family),do they have a predi
table shape when size grows (or not, as usual primenumbers), 6
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)Gn  =  t (...t(t ( .. ....
) . . .Fig. 8. The fa
torization of Gn{ given a set of prime fa
tors (
oming from the de
omposition of grids forinstan
e), de
ide whether we 
an use them to build something di�erent (i.e.are there any 
losure properties),{ extend this de
omposition to 
lasses of graphs whose intrinsi
 regularity hasto be understood in a di�erent way (like equational graphs, automati
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