
RAIRO-Theor. Inf. Appl. 43 (2009) 625–651 Available online at:

DOI: 10.1051/ita/2009010 www.rairo-ita.org

INDUCTIVE COMPUTATIONS ON GRAPHS DEFINED
BY CLIQUE-WIDTH EXPRESSIONS ∗

Frédérique Carrère
1

Abstract. Labelling problems for graphs consist in building
distributed data structures, making it possible to check a given graph
property or to compute a given function, the arguments of which are
vertices. For an inductively computable function D, if G is a graph
with n vertices and of clique-width at most k, where k is fixed, we can
associate with each vertex x of G a piece of information (bit sequence)
lab(x) of length O(log2(n)) such that we can compute D in constant
time, using only the labels of its arguments. The preprocessing can be
done in time O(h.n) where h is the height of the syntactic tree of G. We
perform an inductive computation, without using the tools of monadic
second order logic. This enables us to give an explicit labelling scheme
and to avoid constants of exponential size.

Mathematics Subject Classification. 68R10, 90C35.

1. Introduction

Many problems can be solved efficiently on the class of graphs that are struc-
tured in some way, by means of tree-decompositions of bounded width to take a
well-known example. Clique-width is a graph parameter based on the expression
of graphs by means of graph operations. Classes of graphs of bounded clique-
width have been investigated in [3,9,23]. These graphs can be defined from trees
by particular mappings (called monadic second order transductions).

The method of inductive computations on trees representing the structure
of a graph extends to the computation of numerical functions on graphs like

Keywords and phrases. Terms, graphs, clique-width, labeling schemes, inductive computation.

∗ This work has been supported by the ANR project GRAAL.

1 Laboratoire Bordelais de Recherche en Informatique, Université Bordeaux 1, CNRS, France.
carrere@labri.fr

Article published by EDP Sciences c© EDP Sciences 2009

http://dx.doi.org/10.1051/ita/2009010
http://www.rairo-ita.org
http://www.edpsciences.org

626 F. CARRÈRE

distance or chromatic number. MS logic, where MS stands for Monadic sec-
ond order, can be considered as a specification language for such problems and
functions [7,8,13,16,26]. The proofs are based on the translation of MS formula into
tree-automata. This fundamental tool is also useful for building labelling schemes.
Labelling schemes are useful for routing (via distance labelling), see [19] and [10],
but more generally for queries expressible in MS logic on graphs of bounded clique-
width, see [11]. The general theorem based on MS logic suffers a major drawback
which is the size of constants. MS logic and the corresponding automata can be
avoided by direct constructions, as done in [10] for a problem which is in the scope
of [11]. In this article, we follow the same idea of direct constructions avoiding MS
logic.

We are interested in labelling problems for graphs. These problems consist in
building a distributed data structure: some data (a label) is attached to each
vertex of the graph, but there are no centralised data. The aim is to attach an
information of size as small as possible to each vertex, such that one can compute
from the labels a given function on the vertices, like the distance. This is useful
to solve routing problems in networks, where the information must be distributed
because of the global size of the network. Note that by using the best algorithms
for general graphs, which compute the distance for all pairs of nodes in time
O(|V |+ |E|) (V the set of vertices, E the set of edges), we could label each vertex
with the distances to all others. Thus, with a preprocessing time O(|V |+ |E|), we
would obtain labels of size O(|V |. log(|V |)), from which we can get the distances
in constant time. The aim of the labelling problems is to get labels of size as small
as possible. Most labelling schemes use labels of logarithmic size.

The labelling problems originate from finding implicit representations of
graphs [27]. An overview of labelling problems on graphs can be found in [20].
For the graphs which can be represented by syntactic trees, labelling problems
also relate to a result of Harel and Tarjan [24] which provides, after some precom-
putation, a data structure such that any query for the nearest common ancestor
between vertices can be processed in constant time. Gavoille et al. in [21] show
that the minimal size of the labels to compute the distances for bounded tree-
width graphs is O(log2(n)), where n = |V |. Courcelle and Vanicat in [11] give
a fundamental result concerning labelling problems on graphs of clique-width at
most k: if G is a graph of clique-width at most k, if f(u1, ..., up) is a monadic
second-order optimisation function on vertices (like the distance, with p = 2), one
can associate with each vertex u of G a piece of information of size O(log2(n))
such that one can compute f(u1, ..., up) in time O(log2(n)). The preprocessing
time is O(n log2(n)).

This result shows the existence of relatively short labels from which the dis-
tance can be computed with a good time complexity. But it uses very powerful
logical tools, that are hard to implement because of huge constants in the size of

the automata (O(22
...2k

) in the case of clique-width at most k) which are inher-
ent to the logical method [17]. The height of the tower of exponentials depends
on the number of alternating quantifications in the formula. So it remains worth

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 627

of interest to find easily implementable algorithms which construct labellings for
graphs of bounded clique-width. Gavoille and Paul in [19] use the split decompo-
sition of graphs to find explicit labelling schemes for the distance. Their algorithm
applies to the class of distance-hereditary graphs (distance-hereditary graphs have
clique-width at most 3).

In this paper, we use inductive computation for graphs of clique-width at most k.
Let G be such a graph with n vertices and with syntactic tree t. We introduce a
notion of system of inductive functions, or SIF. A SIF is a set of three functions
{D0, D1, D2} of respective arities 0, 1 and 2 which satisfy some relations, that
are inductive with respect to the tree under consideration. Considering RAM
model with unit time cost (for reasonable arithmetic operations like + and ∗), we
prove that the functions of a SIF are computable in constant time from a labelling
scheme of G.

We give an effective algorithm which for any SIF first computes a labelling
scheme of G in time O(h.n) where h is the height of the syntactic tree t. Thus if t
is balanced, the preprocessing time of the algorithm is O(n. log(n)). It associates
with each vertex of the graph a label of size c.k2 log2(n), where the constant c
depends on the computed functions (c = 4 if D2 is the distance, c = 8 if D2 is
the number of distinct shortest paths, c = 4p2 if D2 is the number of constrained
shortest paths, when the deterministic automaton recognising the words labelling
the paths has p states). This algorithm is easy to implement. It works for directed
or undirected graphs, as well as for weighted graphs.

When the labelling scheme is built, we can then compute the functions of the
SIF in constant time using only the local information stored in the labels, as
follows. From the labels of two vertices x and y of G, we can find in constant time
a node s in t, called a separator-node for x and y, which enables us to cut the tree t
in three parts, with x and y in different parts. Then we can find in the labels of x
and y some relevant values of the functions of the SIF restricted to each of these
three parts of t. An important difference between the general algorithm using tree
automata and our algorithm is the following: knowing the values of the functions
restricted to the subtree rooted in s, the tree automaton must then compute the
functions bottom-up along the branch from s to the root of t. This means at
least O(log(n)) operations, assuming that the syntactic tree t is balanced. Our
algorithm uses the fact that some relevant values of the functions of the SIF are
precomputed in the upper part of the tree, called the context of s, and stored in
the labels of x and y. Then the inductive relations which the SIF satisfies permit
us to achieve the computation in constant time, without any assumption on the
height of t. The constants are of size c′.k2, where the constant c′ depends on the
computed functions (c′ = 20 for the distance or for the number of shortest paths,
c′ = 20p2 for the constrained shortest paths, when the deterministic automaton
has p states).

The paper is organised as follows. In the first section, we recall the notions
of term and context. In the second section, we present the suitable inductive
relations, which enable us to compute the functions on terms in constant time,
using a piece of information which will be attached to each leaf of the term. In the

628 F. CARRÈRE

third section, we present the operations for graphs of clique width k and the notion
of context graph, analogous to the notion of context for terms. In the fourth and
fifth section, we present four applications for particular functions on graphs: the
computation of the distance, the computation of the number of distinct shortest
paths, the computation of the length of the shortest paths avoiding a set of vertices,
the computation of the length of constrained shortest paths in the case of graphs
with labelled edges (constrained paths are paths the labels of which form words
belonging to a given language).

2. Terms and contexts

We shall deal with terms (or trees), as the graphs we are interested in can be
built from algebraic expressions and any algebraic expression can be represented
as a tree (see Sect. 4.1 for the construction of graphs of clique-width k from a
k-expression).

Let F be a set of binary operation symbols. Let C be the set {1, 2, . . . , k}.
T (F,C) is the set of well-formed terms over the sets F and C. There is a classical
bijection between the terms of T (F,C) and the “well-labelled” trees with labels in
F and C and we shall deal with terms or trees indifferently.

Let t be a tree, the height h(t) will denote the maximum length of a branch
of t and |t| will denote the size (number of nodes) of t. Let a be an integer. We
say that t is a-balanced iff h(t) ≤ a. log(n), where n is the number of nodes of t
(n ≥ 2). The node s′ is a left [resp. right] descendant of a node s if it is either the
left [resp. right] son of s or a descendant of the left [resp. right] son of s.

Let t be a tree in T (F,C). Let s be a node of t. The context of s in t is the
tree obtained by replacing s in t with a specific node u without successor (all the
descendants of s are deleted). If s is the root of t, the context of s is the trivial
context reduced to one node u. The contexts are trees of T (F,C ∪{u}), containing
a unique occurrence of the constant u, where u �∈ C and u is a label of a leaf. The
set of all the contexts will be denoted Ctxt(F,C).

Let t be a tree in T (F,C). Any internal node s of t separates t in three parts:
its left subtree t1, its right subtree t2, and its context c. The triple (c, t1, t2) will
be called the s-3cut of t. If s has label f , t is the result of the substitution of u by
f(t1, t2) in c. This is denoted t = c[f(t1, t2)/u] or t = c[f(t1, t2)] for short. Let c
be a context in Ctxt(F,C). Let s be an ancestor of the unique node u of c. Let f
be the label of s. If u is a left (resp. right) descendant of s, then s separates c in
two contexts c1, c2 and a tree t such that c = c1[f(c2, t)] (resp. c = c1[f(t, c2)]).
The triple (c1, c2, t) is called the s-3cut of c. Note that if s is not an ancestor
of u then replacing s with an occurrence of u in c would not give a context (two
occurrences of u).

If x and y are two leaves of the tree t (resp. of the context c), s is a separator
of x and y in t (resp. in c) iff none of the elements of the s-3cut contains both x
and y.

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 629

The result of the substitution of the node u of a context by a tree is a tree.
The result of the substitution of the node u of a context by a context is a new
context. So one can define two binary operations on terms and contexts: for
any c ∈ Ctxt(F,C) and t ∈ T (F,C), c • t = c[t/u] belongs to T (F,C), for any
c, c′ ∈ Ctxt(F,C), c ◦ c′ = c[c′/u] belongs to Ctxt(F,C).

3. Inductive functions on terms

The inductive computation is used in [3] to solve problems on graphs such
as maximum cardinality independent set, minimum cardinality dominating set,
Hamiltonian path. We shall use this technique for systems of inductive functions
on terms.

We are interested in a set S of numerical functions of the form D(t, x1, . . . , xp),
where t ∈ T (F,C) and x1, . . . , xp are leaves of t. The values of these functions can
be vectors of different lengths. Our aim is to put some information on each leaf,
depending on t and on that leaf, such that one can compute D(t, x1, . . . , xp) just
from the information, hopefully of small size, put on x1, . . . , xp. An important
hypothesis is that the numerical functions that we deal with are also defined on
the set of contexts Ctxt(F,C).

Let f be an integer function. An f-labelling scheme of a term t denotes a
mapping lab from the set L(t) of leaves of t to {0, 1}∗ such that, for every leaf x, the
length of the word lab(x) is at most f(|t|). We say that a mapping D(t, x1, . . . , xp)
is computable from a labelling scheme lab of t if there exists a computable function
φ such that D(t, x1, . . . , xp) = φ(lab(x1), . . . , lab(xp)).

We prove that a labelling scheme exists for the functions in S if they satisfy some
relations, called inductive, on the trees t of the form f(t1, t2) or of the form c1 • t1,
as well as on the contexts c of the form c1 ◦ c2, where t1, t2 are terms and c1, c2 are
contexts. We consider unit cost RAM model. Then the inductive relations permit
us to compute in constant time a function D(t, x1, . . . , xp) or D(c, x1, . . . , xp) from
the values of some D′(ti, xj , . . . , xq) or D′(ci, xj , . . . , xq) with D′ in S, 1 ≤ i ≤ 2,
and 1 ≤ j ≤ q ≤ p.

We do not detail the most general case here. We restrict to p = 3 to simplify the
notations. The use of sets of size 3 is sufficient for the applications that we want to
treat, for example the distance between two vertices of a graph of clique-width k,
or the number of distinct shortest paths between two vertices. Note that one will
clearly obtain similar results with a system of p functions having as arguments a
term t and respectively 0, 1, . . . , p− 1 leaves of t.

Definition 3.1. Let {D0(t), D1(t, x), D2(t, x, y)} be a set of three functions, with
parameters t ∈ T (F,C) ∪ Ctxt(F,C) and x, y leaves of t, and with values in some
(possibly different) sets N

q. We call {D0, D1, D2} a system of inductive functions
on T(F,C), or SIF, iff one has:

1. for each f ∈ F , there exist functions φf , φ
′
f , φ

′′
f , ψf , ψ

′
f and ξf such that,

630 F. CARRÈRE

for any term t = f(t1, t2), t1, t2 ∈ T (F,C), the following holds:

D2(f(t1, t2), x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φf (D1(t1, x), D1(t2,y), D0(t1), D0(t2)),
for any x ∈ t1 and y ∈ t2,

φ′f (D2(t1, x, y), D1(t1, x), D1(t1, y), D0(t1), D0(t2)),
for any x, y ∈ t1, x �= y

φ′′f (D2(t2, x, y), D1(t2, x), D1(t2, y), D0(t1), D0(t2)),
for any x, y ∈ t2, x �= y

D1(f(t1, t2), x) =
{
ψf (D1(t1, x), D0(t1), D0(t2)), for any x ∈ t1,
ψ′

f (D1(t2, x), D0(t1), D0(t2)), for any x ∈ t2,

D0(f(t1, t2)) = ξf (D0(t1), D0(t2));

2. there exist functions φ•, φ′•, φ
′′
• , ψ•, ψ′

• and ξ• such that, for any term
t = c1 • t2, with c1 ∈ Ctxt(F,C), t2 ∈ T (F,C), the following holds:

D2(c1 • t2, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ• (D1(c1, x), D1(t2,y), D0(c1), D0(t2)),
for any x ∈ c1 and y ∈ t2,

φ′•(D2(c1, x, y), D1(c1, x), D1(c1, y), D0(c1), D0(t2)),
for any x, y ∈ c1, x �= y

φ′′• (D2(t2, x, y), D1(t2, x), D1(t2, y), D0(c1), D0(t2)),
for any x, y ∈ t2, x �= y

D1(c1 • t2, x) =
{
ψ•(D1(c1, x), D0(c1), D0(t2)), for any x ∈ c1,
ψ′
•(D1(t2, x), D0(c1), D0(t2)), for any x ∈ t2,

D0(c1 • t2) = ξ•(D0(c1), D0(t2));

3. there exist functions φ◦, φ′◦, φ′′◦ , ψ◦, ψ′◦ and ξ◦ such that, for any term t =
c1 ◦ c2, with c1, c2 ∈ Ctxt(F,C), the following holds:

D2(c1 ◦ c2, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ◦ (D1(c1, x), D1(c2,y), D0(c1), D0(c2)),
for any x ∈ c1 and y ∈ c2,

φ′◦(D2(c1, x, y), D1(c1, x), D1(c1, y), D0(c1), D0(c2)),
for any x, y ∈ c1, x �= y

φ′′◦(D2(c2, x, y), D1(c2, x), D1(c2, y), D0(c1), D0(c2)),
for any x, y ∈ c2, x �= y

D1(c1 ◦ c2, x) =
{
ψ◦(D1(c1, x), D0(c1), D0(c2)), for any x ∈ c1,
ψ′
◦(D1(c2, x), D0(c1), D0(c2)), for any x ∈ c2,

D0(c1 ◦ c2) = ξ◦(D0(c1), D0(c2)).

Note that the results that we obtain for SIF, as defined in Definition 3.1, remain
true for functions D0, D1, D2 taking values in some semiring.

We are interested in relations, like the ones detailed in Definition 3.1, involving
numerical functions (φf , φ

′
f , φ

′′
f , ψf , ψ

′
f and ξf) which are computable in constant

time using unit cost RAM model. Then the inductive relations which the SIF
satisfies enable us to compute bottom-up the values {D0(t), D1(t, x), D2(t, x, y)}

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 631

for all leaves of t. The complexity will be better than the one of general algorithms
if the tree is a-balanced, with a small integer a.

Proposition 3.2. Let {D0, D1, D2} be a system of inductive functions on
T (F,C), such that the numerical functions φf , φ

′
f , ψf and ξf can be computed

in constant time.
1. One can compute D0(t) in time O(n), for any term t of size n.
2. One can compute {D1(t, x), x ∈ t} in time O(h.n), for any term t ∈
T (F,C) of size n and of height h.

3. One can compute {D2(t, x, y), x, y ∈ t} in time O(h.n2), for any term
t ∈ T (F,C) of size n and of height h.

Proof. By hypothesis the computation time of the numerical functions φf , φ
′
f , ψf

and ξf is constant. Let t be a term of T (F,C) of size n. The computation time of
D0 or D1 is obvious. Then, for each couple of leaves of the tree, having computed
D0 and D1, the value of the function D2 will be recomputed at each common
ancestor of the two leaves, that is at most h times. So the computation time of
the function D2 is O(h.n2). �

3.1. Labelling scheme for inductive functions on terms

For any graph G of clique-width at most k, given as val(t) for some syntactic
tree t ∈ T (F,C), labellings of the leaves of the syntactic tree t yield labellings
of vertices of the graph G. Courcelle and Vanicat in [11] proved the following
fundamental theorem.

Theorem 3.3 (Courcelle and Vanicat). For every graph G of clique-width at
most k, given as val(t) for some t ∈ T (F,C), for any MS-optimisation function f
on graphs, one can compute in time O(n log2(n)) a log2(n)-labelling scheme of G
from which one can compute any value of f in time O(log2(n)).

The distance is precisely an MS-optimisation function on graphs (MS stands for
monadic second order logic). In the case of the distance, Courcelle and Vanicat
show that a time O(log(n)) is sufficient to compute it from the set of labels. Their
proof uses powerful logical tools. But these tools are not easy to implement and
they necessarily induce great constants of exponential size.

Rather than using the framework of monadic second order logic, which leads to

constants of size 22
...2k

, we give an algorithm that performs a direct computation
of the functions, from the inductive relations which they fulfil. This is a practical
algorithm, easy to implement, which also holds for weighted or directed graphs:
the computing time of the labels will be O(h.n), and the inductive functions can
be computed in constant time from the labelling scheme. In the case of graphs of
clique-width at most k, the constant will be of size c.k2 for a small c, as we will
see in Sections 5, 6,7 (c ≤ 10) and 8 (c ≤ 5p2).

We assume that the graph G is given with its decomposition tree. For k ≤
3, such a decomposition tree can be found in time O(n2m), if G admits one

632 F. CARRÈRE

(see [5]). Graphs with clique-width at most 2 are exactly Cographs. Some well-
known families of graphs have clique-width at most 3: distance-hereditary graphs,
P4-sparse graphs. For k > 3, Hlinený and Oum recently give an O(n3) algorithm
(see [25]) which for any graph G either outputs a decomposition tree of width less
than 23k+2 or confirms that the clique-width of G is larger than k. We can use this
result to compute inductive functions on such graphs, although the decomposition
is not optimal. It has been proved that it is NP-hard to find graph clique-width
(see [16]).

Main Theorem. For any term t of T (F,C) of size n, for any system of inductive
functions {D0, D1, D2} on T (F,C), one can compute in time O(h.n) an O(log2(n))
labelling scheme of t, from which one can compute D2(t, x, y) for any vertices x
and y in constant time.

Corollary 3.4. For any a-balanced term t of T (F,C), for any system of induc-
tive functions {D0, D1, D2} on T (F,C), one can compute in time O(n log(n)) an
O(log2(n)) labelling scheme of t, from which one can compute D2(t, x, y) for any
vertices x and y in constant time.

Proof of Main Theorem. Let t be a term of T (F,C) of size n = 2p + 1. Let
{D0, D1, D2} be a SIF on T (F,C).

Inductive 3-partitioning of the tree

The notion of cut-nodes is introduced in [11] to transform a syntactic tree into
another balanced one. Here we use the cut-nodes to distribute information in the
labels. It is defined for trees and contexts. Let t be either a tree or a context.
If t is reduced to one node, this unique node is the cut-node of t. Otherwise a
cut-node of t is a node s such that at least two elements of the s-3cut of t are
of size less than |t|/2 + 1. Then each element of the s-3cut contains itself a new
cut-node and the process can go on until one obtains trees or contexts reduced to
one node.

As we inductively cut t and the resulting trees or contexts in 3 parts, we can
index the cut-nodes with words on the alphabet {0, 1, 2} as follows. Let sε be the
cut-node of t and {c0, t1, t2} be the sε-3cut of t, then s0 denotes the cut-node of
c0, s1 denotes the cut-node of t1, s2 denotes the cut-node of t2.

Then each ti, i = 1, 2, provided that it is not reduced to one node, is partitioned
into three parts, giving three new cut-nodes: si0, si1 and si2. The context c0,
provided that it is not reduced to one node, can be partitioned too. After this first
refinement, one obtains a global partition of t in at most nine blocks. Each block
contains a cut-node sij , 0 ≤ i, j ≤ 2 and one refines this partition again. The
ith refinement gives rise to a partition of t in at most 3i+1 blocks, each of them
containing a cut-node indexed with a word of length at most i + 1. The process
ends when one obtains blocks reduced to one node.

An example is shown in Figures 1 and 2. �

Fact 3.1. All the blocks obtained by partitioning t are terms or contexts.

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 633

a

b

g

bf

b b

g

a f

f

h

h

a

h

a

b

a

b

g

f

f

a

cut-node sε

Figure 1. A tree of T (F,C).

h

a

b

f
b

f

a

h

a

a

b

g

f

u

u

u

g

a f

b a

g

bb

h

f

s22

cut-node s02

cut-node s11

cut-node s12

s21

cut-node s10

cut-node s01

cut-node s00

Figure 2. Partitioning of the tree of Figure 1.

This is a consequence of the choice of the cut-node in the contexts: the cut-node
s of a context c is always an ancestor of u, thus it determines an s-3cut of c con-
taining two contexts and a tree. This is the reason why each block is partitioned
in three parts (for further details, see [11]). A dichotomous partitioning would not
work as shown in Figure 3.

Choice of the relevant cut-nodes for a leaf x

Let x be a leaf of t. One can inductively construct a sequence of cut-nodes
sep(x) = {sε, si, . . . , sm = x}, i ∈ {0, 1, 2}, m ∈ {0, 1, 2}∗, called the separator

634 F. CARRÈRE

a

b

g

a

h

g

f

f

f

h

u

a

b

a b

a context

a context

a tree

Figure 3. If the cut-node s with label h is not an ancestor of u.

a

b

g

bf

b b

g

a f

f

h

h

a

h

a

b

a

b

g

f

f

a

s0

y = s022

s02

sε

sep(y) = {sε, s0, s02, s022}

Figure 4. The separator sequence of the node y.

sequence of x, and a sequence of terms or contexts {ti, . . . , tm} such that for all
prefixes w and wi of m, i ∈ {0, 1, 2}, twi is the element of the sw-3cut of tw which
contains x. Then swi is the cut-node of twi. Note that the cut-nodes in sep(x) are
not necessarily ancestors of x: see Figure 4.

Fact 3.2. The length of m is at most 3 log(n).
The proof is given in [11].

Construction of the label of a leaf x
Let {c0, t1, t2} be the sε-3cut of t. Let us set Cε = c0, Aε = t1 and Bε = t2.
If w �= ε, each cut-node sw of sep(x) cuts a block of some refinement of the initial

partition of t. But it also cuts the whole tree t: let {Cw, Aw, Bw} be the sw-3cut
of t. We write in the label of x each sw of sep(x), followed by the values of the

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 635

functions D0, D1, on Cw, Aw and Bw. As t = Cw[f(Aw, Bw)], f labelling s, we will
then be able to compute D2 on t in two induction steps: one for t′ = f(Aw, Bw)
followed by one for Cw • t′. Let Tw(x) denotes the element of {Aw, Bw, Cw} which
contains x, then the label of x is:
Lab(x) = { sε, D1(Tε(x), x), D0(Aε), D0(Bε), D0(Cε), si,D1(Ti(x), x),D0(Ai),

D0(Bi), D0(Ci),. . .,sm, D1(Tm(x), x), D0(Am), D0(Bm), D0(Cm)},
with i ∈ {0, 1, 2} and m ∈ {0, 1, 2}∗.
Fact 3.3. The set of values {D1(Tw(x));x leaf of t, w such that sw ∈ sep(x)} can
be inductively computed in time O(h(t).n).

It follows from Proposition 3.2.

Fact 3.4. For any two leaves, x and y of t, there exists a unique cut-node in
Lab(x) ∩ Lab(y), which is a separator node for x and y in t.

Proof. Let m be the word such that the last element of the separator sequence of
x is sm. Let m′ be the word such that the last element of the separator sequence
of y is sm′ . Let w be the longest common prefix of m and m′. Then x and y
belong to tw. Let {tw0, tw1, tw2} be the sw-3cut of tw. Then x and y do not belong
to the same block, tw0, tw1 or tw2. Otherwise, if x and y both belong to twi, then
swi will be the next element of both sep(x) and sep(y) and w would not be the
longest common prefix of m and m′; so sw is a separator-node for x and y in tw.

Then it is also a separator-node of x and y in t: t = Cw[f(Aw, Bw)], with x and
y not in the same part Cw, Aw or Bw. �

Evaluating inductive functions in constant time

After the preprocessing of the tree to compute the labels, the value of the
function D2 for a couple (x, y) of leaves can be computed in constant time as
follows.

As shown in [18], we can code (in polynomial time) the labels of x and y on
O(log(n)) bits, if we are interested in finding the longest common prefix of sep(x)
and sep(y) in constant time. The last node sw of this prefix is the unique separator-
node of x and y in t, which belongs to Lab(x) ∩ Lab(y) (see Fact 3.4). Then the
next lemma gives the formula to compute D2(x, y) in constant time, using the
Definition 3.1 and the numerical values associated with sw in Lab(x) and Lab(y).

Lemma 3.5. Let t be a term of T (F,C) and {D0, D1, D2} be a SIF. For each
f in F , there exists a function Φf such that if x and y are leaves of t, if the
unique separator node sw of x and y belonging to Seq(x) ∩ Seq(y) is labelled by f ,
if {Cw, Aw, Bw)} is the sw-3cut of t, and we let Tw(x) (resp. Tw(y)) denotes the
element of {Aw, Bw, Cw} which contains x (resp. y), then one has:
D2(t, x, y) = Φf (D1(Tw(x), x), D1(Tw(y), y), D0(Cw), D0(Aw), D0(Bw)).

Proof. Since {Cw, Aw, Bw)} is the sw-3cut of t, one has:
t = Cw[f(Aw, Bw)] = Cw • f(Aw, Bw), with f labelling sw.

636 F. CARRÈRE

We will assume that the leaf x of t appears on the left of the leaf y. Then there
are three cases:

First case. Assume that x ∈ Aw and y ∈ Bw.
So Tw(x) = Aw and Tw(y) = Bw. By the definition of a SIF, one has:
D2(f(Aw, Bw), x, y) = φf (D1(Aw, x), D1(Bw, y), D0(Aw), D0(Bw)),
D1(f(Aw, Bw), x) = ψf (D1(Aw, x), D0(Aw), D0(Bw)),
D1(f(Aw, Bw), y) = ψ′

f (D1(Bw, y), D0(Aw), D0(Bw)),
D0(f(Aw, Bw)) = ξf (D0(Aw), D0(Bw)).
Since t = Cw • f(Aw, Bw), with Cw a context and f(Aw, Bw) a subtree, one has:
D2(t, x, y) = φ•(D2(f(Aw, Bw), x, y), D1(f(Aw, Bw), x), D1(f(Aw, Bw), y),
D0(Cw), D0(f(Aw, Bw))).
Let πi : N

5 −→ N, 1 ≤ i ≤ 5, be the ith projection. In this case Φf is:
φ•(φf (π1, π2, π4, π5), ψf (π1, π4, π5), ψ′

f (π2, π4, π5), π3, ξf (π4, π5))
So D2(t, x, y) can be computed in constant time from L(x) and L(y).

Second case. Assume that x ∈ Cw and y ∈ Aw.
So Tw(x) = Cw and Tw(y) = Aw. By the definition of a SIF, one has:
D1(f(Aw, Bw), y) = ψf (D1(Aw, y), D0(Aw), D0(Bw)),
D0(f(Aw, Bw)) = ξf (D0(Aw), D0(Bw)).
Since t = Cw • f(Aw, Bw), with Cw a context and f(Aw, Bw) a subtree, one has:
D2(t, x, y) = φ•(D1(Cw, x), D1(f(Aw , Bw), y), D0(Cw), D0(f(Aw, Bw))).
In this case Φf is:
φ•(π1, ψf (π2, π4, π5), π3, ξf (π4, π5)).

Third case. Assume that x ∈ Cw and y ∈ Bw.
So Tw(x) = Cw and Tw(y) = Bw. By the definition of a SIF, one has:
D1(f(Aw, Bw), y) = ψ′

f (D1(Bw, y), D0(Aw), D0(Bw)),
D0(f(Aw, Bw)) = ξf (D0(Aw), D0(Bw)).
Since t = Cw • f(Aw, Bw), with Cw a context and f(Aw, Bw) a subtree, one has:
D2(t, x, y) = φ•(D1(Cw, x), D1(f(Aw , Bw), y), D0(Cw), D0(f(Aw, Bw))).
In this case Φf is:
φ•(π1, ψ

′
f (π2, π4, π5), π3, ξf (π4, π5))

So D2(t, x, y) can be computed in constant time from L(x) and L(y). �

4. Application to graphs

Let k be an integer. A k-graph is a graph whose vertices have labels in
{1, 2, . . . , k}.

Let G = 〈VG, EG, γG〉 be a simple, undirected (resp. directed) and connected
k-graph, where VG is the set of vertices, EG is the set of edges (resp. directed
edges), and γG is a labelling function which maps VG into {1, 2, . . . , k}. For each
i ∈ {1, 2, ..., k}, we denote by Si(G), or Si if there is no ambiguity, the set of
vertices with label i.

For each vertex x of G, the distance dG(x, Si) is the minimum length of a path
from x to a vertex of Si in G. If Si is empty or if no such path exists, dG(x, Si)

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 637

a

b

g

b

f

a

h

a

f

f

f

g

a f

h

h

a

b a

b

g

b

b

x

y

D2(h(A1, B1), x, y)
D1(h(A1, B1), x)
D1(h(A1, B1), y)

D0(h(A1, B1))

h(A1, B1)

t = C1 • h(A1, B1)

D2(C1 • h(A1, B1), x, y)
D1(C1 • h(A1, B1), x)
D1(C1 • h(A1, B1), y)

D0(C1 • h(A1, B1))

C1

D0(C1)

Figure 5. Computation of D2.

is infinite. We denote by dG(x) the vector of distances (dG(x, S1),dG(x, S2),. . .,
dG(x, Sk)). For all i, j ∈ {1, 2, ..., k}, the distance dG(Si, Sj) is the minimum length
of a path from a vertex of Si to a vertex of Sj in G.

In the directed case, we shall use the notation
−→
d G to pointed out that the paths

are directed. Note that there are two vectors for any vertex x of G:
−→
d G(x) will

denote the vector containing the lengths of the directed shortest paths from x to
the sets Si, and

−→
d′G(x) the vector containing the lengths of the directed shortest

paths from the sets Si to x.
We apply our main theorem to the particular case of distances and shortest

paths in graphs of clique-width at most k. The graphs of clique-width at most k
are particular k-graphs given by algebraic expressions.

4.1. Graphs of clique-width at most k

We recall here the usual definition of the set of graphs of clique-width at most k.
Let CWk be the set of graphs of clique-width at most k.

– A single vertex with label in {1, . . . , k} belongs to CWk,
– if G1 and G2 belong to CWk, G = G1 ⊕G2, the disjoint union of G1 and
G2, belongs to CWk;

– if G1 belongs to CWk, G = addα,β(G1), the graph obtained by adding
to G1 all edges between vertices labelled α and vertices labelled β (with
α �= β), belongs to CWk;

– if G1 belongs to CWk, G = renα,β(G1), the graph obtained by changing
the label α into β at each occurrence of α in G1, belongs to CWk.

638 F. CARRÈRE

In the directed case, the operation addα,β will add directed edges from Sα to Sβ.
Thus a graph of clique-width at most k is the evaluation of a term built with

the above operations. But to apply our main theorem, we need to deal with binary
operations. These binary operations are defined in the next paragraph.

4.2. Binary operations on graphs

We will use the following binary operations. For any R ⊂ {1, . . . , k}2, for
any relabelling f : L −→ L, let us denote by ⊗R,f(G1, G2) the binary operation
consisting of applying first to the graph G1 ⊕G2 all addα,β-operations, for (α, β)
in R, then applying all reni,f(i)-operations, for i in {1, . . . , k}.

It has been proved in [9] that, at the cost of multiplying the number of labels
by 2 (dealing thus with graphs of clique-width at most 2k), one can suppose that
the ⊕ operation only applies on two graphs having disjoint sets of labels. Then,
as in the operations used by Wanke in [22], each operation addα,β , for (α, β) in R,
will add edges between two disjoint graphs.

Let F be the set {⊗R,f ; R ⊂ {1, . . . , k}2, f : L −→ L} of binary operations.
There exists a mapping val which maps the set of terms T (F,C) to the set of
graphs CWk.

4.3. Operation of substitution

We first need to define a notion of “context graph”. A “context graph” is the
value of a context term in Ctxt(F,C) by a mapping val′.

The context graphs are special graphs of clique-width k, containing a unique
occurrence of specific vertices u1, . . . , uk. The elementary context graph Ik consists
of k vertices, u1, . . . , uk, such that Si(Ik) = {ui}, for any i, 1 ≤ i ≤ k.

The set CTk of all context graphs can be inductively constructed as follows:
– Ik belongs to CTk;
– if G belongs to CTk and H belongs to CWk, f(G,H) and f(H,G) belong

to CTk with f ∈ F .
We now define an operation of substitution of a graph of CWk in a context graph.
This operation is a generalisation of the usual substitution. A graph H of clique-
width k has a partition of the vertices in k subsets S1(H), S2(H), . . . , Sk(H). These
subsets will be respectively substituted for the special vertices u1, . . . , uk of the
context graph.

For each i, 1 ≤ i ≤ k, let NG(ui) be the set of neighbors of ui in G. The
idea is to replace each ui by Si(H), joining all vertices of NG(ui) to all vertices of
Si(H), but without deleting edges of H . We call this operation a k-substitution.
This operation takes as first argument a context graph, and as second argument
a graph of clique-width k. The resulting graph is a graph of clique-width k. The
k-substitution is formally defined below.

Definition 4.1. Let G be a context graph. Let u1, u2, . . . , uk be the special
vertices of G. For each i, 1 ≤ i ≤ k, let ÑG(ui) be the set of neighbors of ui

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 639

which do not belong to {u1, u2, . . . , uk}. Let H be a graph of clique-width k. The
vertices of H are partitioned into S1(H), S2(H), . . . , Sk(H).

We denote G[H/u1, u2, . . . , uk] the graph 〈VG′ , EG′ , γG′〉, where

– VG′ = VG − {u1, u2, . . . , uk} ∪ S1(H) ∪ S2(H) . . . ∪ Sk(H),

–
EG′ = EG − [∪i=k

i=1{ui} ×NG(ui)] ∪ EH ∪ [∪i=k
i=1Si(H) × ÑG(ui)]

∪ [∪(ui,uj)∈EG
Si(H) × Sj(H)],

– γG′(x) = γG(x), for any x ∈ VG − {u1, u2, . . . , uk}, γG′(x) = γG(ui), for
any x ∈ Si(H), 1 ≤ i ≤ k.

Note that this operation of substitution of graphs could be simulated with the
clique-width operations using labels in {1, . . . , k′} with k′ = O(k ∗ 2k). We intro-
duce this operation of k-substitution to avoid constants of exponential size, and
we will use it to prove that there exists some SIF to compute the functions which
we are interested in, like the distance or the number of distinct shortest paths.

Let us define the mapping val′ which maps the elements of Ctxt(F,C)∪T (F,C)
to elements of CTk ∪CWk.

For any t ∈ T (F,C), we set val′(t) = val(t). For the elementary context,
we set val′(u) = Ik (note that the context graph val′(u) is not connected, but
if G is a connected graph of clique-width k, substituting G for Ik using the k-
substitution gives a connected graph). For any operation ⊗R,f of F , for any
well-formed term t′ = ⊗R,f (t, c) (resp. t′ = ⊗R,f (c, t)) of Ctxt(F,C), we set
val′(t′) = ⊗R,f(val′(t), val′(c)) (resp. val′(t′) = ⊗R,f(val′(c), val′(t))).

Then the value of a term resulting from the substitution of a term t for a context
c is the graph obtained by the k-substitution of val(t) in the context graph val′(c).

Lemma 4.2. For any c, c′ in Ctxt(F,C) and t in T (F,C), one has:
val(c • t) = val′(c)[val(t)/u1, u2, . . . , uk],
val(c ◦ c′) = val′(c)[val′(c′)/u1, u2, . . . , uk].

This can easily be proved by induction on c.
For convenience we shall decompose the k-substitution in k elementary steps,

that we shall call “partial k-substitutions”: let H be a graph whose vertices are
partitioned in k sets. For any i < k, G[H/u1, u2, . . . , ui] denotes the graph obtained
by substituting Sj(H) to uj , only for the ith first indexes 1 ≤ j ≤ i. A partial
k-substitution is formally defined as follows:

Definition 4.3. Let G be a context graph. Let u1, u2, . . . , uk be the special
vertices of G. For each i, 1 ≤ i ≤ k, let ÑG(ui) be the set of neighbors of ui which
do not belong to {u1, u2, . . . , uk}. Let H be a graph of clique-width k. For any
i < k, we denote G[H/u1, u2, . . . , ui] the graph 〈VG′ , EG′ , γG′〉, where

– VG′ = VG − {u1, u2, . . . , ui} ∪ S1(H) ∪ S2(H) . . . ∪ Sk(H),

–
EG′ = EG − [∪j=i

j=1{uj} ×NG(uj)] ∪ EH ∪ [∪j=i
j=1Sj(H) × ÑG(uj)];

∪ [∪(uj ,uh)∈EG,1≤j,h≤iSj(H) × Sh(H)],
∪ [∪(uj ,uh)∈EG,1≤j≤i<hSj(H) × {uh}];

640 F. CARRÈRE

– γG′(x) = γG(x), for any x ∈ VG − {u1, u2, . . . , ui},
γG′(x) = γG(uj), for any x ∈ Si(H), 1 ≤ j ≤ i.

5. First application: length of the shortest paths

We will assume that each arithmetic operation can be evaluated in one unit of
time. We show that one can find a SIF {D0, D1, D2} such that D2(t, x, y) is the
length of the shortest paths between x and y in the graph val(t). Then we obtain
by our main theorem a labelling scheme for a graph G of bounded clique width,
such that one can compute D2 in constant time from labels of its arguments.

Let t be a term in T (F,C)∪Ctxt(F,C) and let G be the graph or context graph
given as val(t) or val′(t). We define the three following numerical functions:

– D2(t, x, y) = dG(x, y);

– D1(t, x) =
{
dG(x), if t ∈ T (F,C),
(dG(x), dG(x, u1), . . . , dG(x, uk)), if t ∈ Ctxt(F,C);

– D0(t)=

⎧⎨
⎩

(dG(S1, S1), dG(S1, S2), . . . , dG(Sk, Sk)), if t ∈ T (F,C),
(dG(S1, S1), dG(S1, S2), . . . , dG(Sk, Sk), dG (u1, S1), dG(u1, S2),

. . . , dG(uk, Sk)), if t ∈ Ctxt(F,C).

We want to show that the functions D0,D1,D2 form a SIF on T (F,C).
We first show that dG(x, y), dG(x, Si) and dG(Si, Sj) satisfy inductive relations

for any basic clique-width-k operation, ⊕, addα,β and renα,β. Each binary oper-
ation ⊗R,L of F , R,L ⊂ {1, . . . , k}2, is a composition of (at most 2k2 + 1) basic
clique-width-k operations. So any function which satisfies inductive relations for
⊕, addα,β and renα,β , will also satisfy inductive relations for any operation of F .

The functions of a SIF must also satisfy inductive relations on contexts. This
will be the case since the operations • and ◦ on trees and contexts correspond
to k-substitutions for graphs and context-graphs (see Lem. 4.2). We will that
the lengths of the shortest paths (between vertices or sets Si) satisfy inductive
relations for any partial-k-substitution.

1. Case G = G1 ⊕G2

Neither the length of the shortest paths between vertices of G1 (resp. G2), nor
the length of the shortest paths between the sets Sα in the same subgraph, G1 or
G2, will change. If x belongs to G1 then dG(x, Sγ) will be infinite for any Sγ ⊂ G2.
This holds for the directed case too.

2. Case G = addα,β(H)
We assume that α �= β. We can compute the length of the shortest paths

between two vertices as follows:

Lemma 5.1. If x, y ∈ VH , x �= y, then dG(x, y) = min(dH(x, y), dH(x, Sα) + 1 +
dH(y, Sβ), dH(x, Sβ)+1+ dH(y, Sα), dH(x, Sα)+2+ dH(y, Sα), dH(x, Sβ)+2+
dH(y, Sβ)).

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 641

Proof. We consider the shortest paths between x and y in G. There are three
cases.
First case. The shortest paths between x and y in G can be paths wholly
contained in H (containing eventually edges from Sα to Sα). Then dG(x, y) =
dH(x, y).

Second case. The shortest paths between x and y in G can contain one new
edge. Then they can be decomposed in a path between x and Sα in H , a new edge
between Sα and Sβ and a path between Sβ an y in H (exchanging α and β gives
a symmetric case). So dG(x, y) is the sum of the length of the shortest paths from
x to Sα in H and the length of the shortest paths from y to Sβ in H , plus one. It
remains true if x belongs itself to Sα, which implies that dH(x, Sα) = 0, and (or)
if y belongs to Sβ , which implies that dH(y, Sβ) = 0.

Third Case. If Card(Sα) ≥ 2, since the graph between Sα to Sβ is complete,
there can be no more than two new edges in a shortest path between x and y in
G (if not, the path could be shortened). Any shortest path between x and y in G,
which contains two new edges, can be decomposed in a path between x and Sα in
H , a new edge from Sα to Sβ followed by a new edge from Sβ to Sα and a path
between Sβ and y (exchanging α and β give a symmetric case). In this case, note
that the path from x to Sα and from y to Sα are necessarily disjoint, otherwise
the global path would not be a shortest path. Then dG(x, y) is the sum of the
length of the shortest paths from x to Sα and from y to Sα plus two.

If Sα is reduced to a singleton {z} (or symmetrically if Card(Sβ) = 1), there
are no shortest paths crossing Sα twice. But in this case one has dH(x, Sα) =
dH(x, z) and dH(y, Sα) = dH(y, z), so dH(x, y) ≤ dH(x, z)+dH(y, z)< dH(x, Sα)+
2 + dH(y, Sα). The equality remains true, the minimum is not dH(x, Sα) + 2 +
dH(y, Sα).

If x itself belongs to Sα (or symmetrically that y belongs to Sβ) then
dH(x, Sα) = 0. As one has dH(x, Sβ) + 1 + dH(y, Sα) ≥ 2 + dH(y, Sα)
(dH(x, Sβ) ≥ 1) and dH(x, Sβ) + 2 + dH(y, Sβ)) ≥ 1 + dH(y, Sβ), the equality
of Lemma 5.1 becomes dG(x, y) = min(dH(x, y), 1 + dH(y, Sβ), 2 + dH(y, Sα)) (1)
which is true. It remains true if x is the only element of Sα, because in this case
dH(y, Sα) is dH(x, y). If x belongs to Sα and y belongs to Sβ, then the equality
(1) gives dG(x, y) = min(dH(x, y), 1, 2 + dH(y, Sα)) = 1.

So the length of the shortest paths between two vertices of G can be computed
in constant time.

In the directed case, the result for the length of the shortest paths is obvious.
We need to compute also the length of a minimum cycle containing u: mclG(u)
(it will be useful for the operation of substitution). �
Lemma 5.2. Let x, y ∈ VH , x �= y.−→
d G(x, y) = min(

−→
d H(x, y) ,

−→
d H(x, Sα) + 1 +

−→
d H(y, Sβ)).

mclG(u) = min(mclH(u) ,
−→
d H(x, Sα) + 1 +

−→
d H(x, Sβ)).

So the length of the shortest paths between two vertices of G can be computed in
constant time in the directed or undirected case.

642 F. CARRÈRE

The length of the shortest paths between a vertex x of G and any set Sρ,
1 ≤ ρ ≤ k, can be obviously computed in constant time, by similar inductive
relations, in the directed and undirected case.

3. Case G = renα,β(H)
This operation does not modify the length of the shortest paths between ver-

tices, but it modifies the sets Sα and Sβ and the vectors dG(x). The new vector
dG(x) can be easily computed in constant time for each vertex x of G as follows:

Lemma 5.3. Let x ∈ VH , one has dG(x, S′
β) = min(dH(x, Sα), dH(x, Sβ)),

dG(x, S′
α) = ∞ and for any ρ �= α, β, dG(x, S′

ρ) = dH(x, Sρ).

This holds even if x is in Sα or in Sβ, because in this case either dH(x, Sα) or
dH(x, Sβ) is zero, and so is dG(x, S′

β).

The same result holds for the directed case.

4. Case G′ = G[H/u1, u2, . . . , uk]
We compute the length of the shortest paths in a graph obtained by a k-

substitution of a graph H in a context graph G.
We can compute dG(x, y) for two vertices x and y of G′ = G[H/u1, u2, . . . , uk]

in k steps: we computes the length of the shortest paths after substituting S1(H)
for u1, then after substituting S2(H) for u2, ... and finally after the k-substitution
of H for u1, . . . , uk.

Lemma 5.4. Let G = val′(c) be a context graph. Let H be a (context-)graph.
Assume that the sets Si(H) , 1 ≤ i ≤ k, are non empty. Let G0 = G and for each
i, 1 ≤ i ≤ k, Gi = G[H/u1, u2, . . . , ui]. Then VGi = VGi−1 − {ui} and for any
x, y ∈ VGi , the following holds:
dGi(x, y) = min (dGi−1(x, y), dGi−1(x, ui) + dGi−1(y, Si(H)), dGi−1(y, ui)+

dGi−1(x, Si(H)), dGi−1(x, Si(H)) + 2 + dGi−1(y, Si(H))).

Proof.

1. We perform the first partial substitution to obtain the graph G1 =
G[H/u1]. For any vertices x and y in G1, we consider the new short-
est paths between x and y resulting from the substitution of u1 by S1(H).
Let NG(u1) be the set of neighbors of u1 in G. Recall that VG1 =
VG −{u1} ∪ VH and that the new edges of G1 belong to NG(u1)× S1(H).
First case. If x and y belong to VG, then the new shortest paths will con-
tain two necessarily consecutive new edges e1, e2 ∈ NG(u1) × S1(H), but
there existed a path of same length in G with two edges of NG(u1)×{u1}
instead of e1, e2. So the length of the shortest paths in G1 is the same as
in G.
Second case. If x and y belong to VH , then the new shortest paths will
contain two necessarily consecutive new edges e1, e2 ∈ NG(u1) × S1(H),
this gives the result.

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 643

Third case. If x belongs to VG and y belongs to VH , then the new short-
est paths will contain only one new edge of NG(u1)×{u1} (otherwise they
will not be shortest paths) this gives the result.

2. Assume that the result holds for any j, 1 ≤ j ≤ i−1. We now perform the
partial substitution Gi = G[H/u1, u2, . . . , ui]. Let NGi−1(ui) be the set of
neighbors of ui in Gi−1. The new edges of Gi belong to NGi−1(ui)×Si(H).
For any vertices x and y of Gi, we consider the shortest paths between x
and y resulting from the partial substitution of H for u1, u2, . . . , ui. Let P
be such a path. If P already exists in Gi−1, then dGi(x, y) = dGi−1(x, y).
Otherwise P contains new edges belonging to NGi−1(ui)×Si(H). It cannot
contain more than two new edges otherwise it will not be a shortest path.
If it contains two new edges e1, e2 ∈ NG(u1)×S1(H), they are necessarily
consecutive, for the same reason. If this 2-path {e1, e2} has its extremities
in NG(u1), then a 2-path {e′1, e′2} crossing ui existed in Gi−1. So it does
not change the length of the shortest paths. If the 2-path {e1, e2} has its
extremities in Si(H), it may gives a new value of the length of the shortest
paths, joined with a shortest path form x to Si(H), and a shortest path
from Si(H) to y. This gives the result. �

Note that if p sets Si(H) are empty, a (k − p)-substitution is sufficient.

In the directed case, we have the following result:

Lemma 5.5. Let G = val′(c) be a context graph. Let H be a [context-]graph.
Assume that the sets Si(H) , 1 ≤ i ≤ k, are non empty. Let G0 = G and for
each i, 1 ≤ i ≤ k, Gi = G[H/u1, u2, . . . , ui]. Let mclGi−1(ui) be the length of a
minimum cycle containing ui in Gi−1. For any x, y ∈ VGi , one has−→
d Gi(x, y) = min(

−→
d Gi−1(x, y),

−→
d Gi−1(x, ui) +

−→
d Gi−1(Si(H), y),

−→
d Gi−1(y, ui)

+
−→
d Gi−1(Si(H), x),

−→
d Gi−1(x, Si(H)) +mclGi−1(u1) +

−→
d Gi−1(Si(H), y)).

The result comes from the fact that every directed cycle containing ui in Gi−1

gives rise, after the partial substitution of H for u1, u2, . . . , ui, to a directed path
between any couple of vertices of Si(H). Such a path will give a new path between
the vertices x and y of H .

So the length of the shortest paths between two vertices after a partial k-
substitution can be computed in constant time. In the directed case, one need
to compute the length of the shortest (oriented) cycle containing the substituted
vertex in the context graph. This can obviously be done, with similar inductive
relations as above.

The length of the shortest paths between a vertex x of G and any set Sρ,
1 ≤ ρ ≤ k, can be obviously computed in constant time, by similar inductive
relations, in the directed and undirected case.

644 F. CARRÈRE

5.1. A system of inductive functions

Using the preceding lemmas, one can show that the system of functions
{D2, D1, D0}, defined at the beginning of the section, is a SIF.

We give the detailed formulas for the functions φf , φ
′
f , φ

′′
f , ψf , ψ

′
f and ξf for

any f in F in Appendix. These formulas are a straightforward consequence of
the results of the preceding paragraph, applied to a composition of 2 ∗ k2 + 1
basic clique-width-k operations. Thus, from the preceding results, the functions
involved in the definition of the SIF {D2, D1, D0}, can be computed in constant
time with constants of size 20k2 (some of the functions φf , φ

′
f , φ

′′
f , ψf , ψ

′
f and ξf

compute the minimum of five data and five additions).
We let to the reader the case of φ•, φ′•, φ

′′
• , ψ•, ψ′

• and ξ• (resp. φ◦, φ′◦, φ
′′
◦ ,

ψ◦, ψ′
◦ and ξ◦) which are very similar.

6. Second application: number of distinct shortest paths

We can easily apply a similar algorithm to compute the number of distinct
shortest paths between two vertices. Let t be a term in T (F,C) ∪ Ctxt(F,C)
and let G be the graph or context graph such that val′(t) = G. Let x and y be
vertices of G. The function ηG(x, y) will denote the number of distinct shortest
paths between x and y in G. In the same way, ηG(x, Sα) will denote the number of
distinct shortest paths between x and Sα, with the convention that if x ∈ Sα then
ηG(x, Sα) = 1 and if ηG(x, Sα) ≥ 2 then necessarily Sα has cardinality more than
two (the extremities of the paths in Sα must be distinct). The function ηG(Sα, Sβ)
will denote the number of distinct shortest paths between Sα and Sβ and simi-
larly if ηG(Sα, Sβ) ≥ 2 then necessarily Sα and Sβ have cardinality more than two.

Case 1. G = H ⊕ J
The number of distinct shortest paths between two vertices or between a vertex

and a set Sγ will not changed after this operation.

Case 2. G = addα,β(H)
Recall that we can assume that no edges from Sα to Sβ already exist in H .

Thus, every shortest path containing an edge between Sα and Sβ will be a new
path.
Let equal(a, b) be the function from N × N into {0, 1} which is 1 iff a = b.

Lemma 6.1. Let x, y ∈ VH . The number of shortest paths between x and y is

ηG(x, y) = equal(dG(x, y), dH(x, y)) . ηH(x, y)
+ equal(dG(x, y), dH(x, Sα) + 1 + dH(y, Sβ)) . ηH(x, Sα).ηH(y, Sβ)
+ equal(dG(x, y), dH(x, Sβ) + 1 + dH(y, Sα)) . ηH(x, Sβ).ηH(y, Sα)
+ equal(dG(x, y), dH(x, Sα) + 2 + dH(y, Sα)) . ηH(x, Sα).|Sβ |.ηH(y, Sα)
+ equal(dG(x, y), dH(x, Sβ) + 2 + dH(y, Sβ))) . ηH(x, Sβ).|Sβ |.ηH(y, Sβ).

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 645

Proof. In the case where dG(x, y) = dH(x, y), the distinct shortest paths between
x and y in H are still distinct shortest paths between x and y in G.

In the case where dG(x, y) = dH(x, Sα)+1+dH(y, Sβ), every couple of shortest
paths from x to Sα and from y to Sβ in H produces a new shortest path between
x and y in G.

In the case where dG(x, y) = dH(x, Sα)+2+dH(y, Sα), every couple of shortest
paths from x to Sα and from y to Sα in H produces as many distinct shortest
paths in G as there are vertices in Sβ . Note that the paths from x to Sα and from
y to Sα have necessarily disjoint extremities in Sα (otherwise there would exist a
shortest path in H).

If x belongs to Sα (resp. y belongs to Sβ), as by convention, in this case,
ηG(x, Sα) = 1 (resp. ηG(y, Sβ) = 1), the result remains true.
So the number of distinct shortest paths between two vertices of G can be com-
puted in constant time.

The number of shortest paths between a vertex x ofG and any set Sρ, 1 ≤ ρ ≤ k,
can be obviously computed in constant time, by similar inductive relations, in the
directed and undirected case. �

Case 3. G = renα,β(H)
This operation does not modify the number of shortest paths between two ver-

tices. Obviously it only modifies the number of shortest paths between a vertex x
and the set Sα and Sβ .

Case 4. G′ = G[H/u1, u2, . . . , uk]
We can compute the distance between two vertices of the new graph G′ as

follows:

Lemma 6.2. Let G = val′(c) be a context graph. Let H be a (context-)graph.
Assume that the sets Si(H), 1 ≤ i ≤ k, are non empty. Let G0 = G and for each
i, 1 ≤ i ≤ k, Gi = G[H/u1, u2, . . . , ui]. Then VGi = VGi−1 − {ui} and for any
x, y ∈ VGi , the following holds:

ηGi(x, y) = equal(dGi(x, y), dGi−1(x, y)) . ηGi−1(x, y)+
+ equal(dGi(x, y), dGi−1(x, ui) + dGi−1(y, Si(H))) . ηGi−1(x, ui).ηGi−1(y, Si(H))
+ equal(dGi(x, y), dGi−1(y, ui) + dGi−1(x, Si(H))) . ηGi−1(y, ui).ηGi−1(x, Si(H))
+ equal(dGi(x, y), dGi−1(x, Si(H)) + 2 + dGi−1(y, Si(H))) . ηGi−1(x, Si(H))

· |NGi−1(ui)| . ηGi−1(y, Si(H)).

Proof. In the case dGi(x, y) = dGi−1(x, y), the distinct shortest paths between x
and y in Gi−1 are still distinct shortest paths between x and y in Gi.

In the case where dGi(x, y) = dGi−1(x, ui) + dGi−1(y, Si(H)), every couple of
shortest paths from x to ui and from y to Si(H) in Gi−1 produces a new shortest
path in G (replacing the edge between ui and one of his neighbor by an edge
between this neighbor and Si(H)).

646 F. CARRÈRE

In the case where dGi(x, y) = dGi−1(x, Si(H)) + 2 + dGi−1(y, Si(H)), every
couple of shortest paths from x to Si(H) and from y to Si(H) in Gi−1 produces as
many distinct shortest paths in Gi as there are vertices in NGi−1(ui) (the number
of vertices in NG(ui) can easily be inductively computed from the decomposition
tree of G and one can deduce from it the value of NGi−1(ui)). Note that the
shortest paths from x to Si(H) and from y to Si(H) have necessarily disjoint
extremities in Si(H) (otherwise there would exist a shortest path in Gi−1).

If x belongs to Si(H) (resp. y belongs to Si(H)), as by convention, in this
case, ηG(x, Si(H)) = 1 (resp. ηG(y, Sβ) = 1), the result remains true. So the
number of distinct shortest paths between two vertices after a k-substitution can
be computed in constant time. �

6.1. A system of inductive functions

Using the preceding lemmas, a system of inductive functions can then be given
for the computation of the number of distinct shortest paths between two vertices,
in the same way as for the computation of the length of the shortest paths between
two vertices in the preceding paragraph.

As the operations of F (occurring in the term representing the graph) are com-
positions of at most 2k2 + 1 basic clique-width-k operations, a step of induction
can be done in constant time, with constants of size 20k2.

7. Third application: length of shortest paths

avoiding a set of vertices

Let t be a term in T (F,C) and let G be the graph val(t). Let X be a fixed set
of vertices of G. We say that a path avoids X if it contains no vertices of X .

If we replace in the set of inductive functions of Section 5 the length of the
shortest paths, by the length of the shortest paths avoiding X , we obtain a sys-
tem of inductive functions {D0, D1, D2} such that D2(t, x, y) is the length of the
shortest paths avoiding X , between x and y in G. Then, by our main theorem,
there exists a labelling scheme for a graph G of bounded clique width, such that
for any fixed set X of vertices, one can compute the length of the shortest paths
avoiding X , between any two vertices in constant time.

8. Fourth application: formal language

constrained shortest paths

In this section, we deal with graphs with labelled edges. Let A be the finite set of
letters labelling the edges of the graphs. We replace operations on graphs, addα,β

with α, β ∈ {1, . . . , k} (α �= β), by operations addα,β,a with α, β ∈ {1, . . . , k}
and a ∈ A. The operation addα,β,a add edges labelled with a. Since the graphs
constructed with these operations have labelled edges, we will say that a word w

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 647

of A∗ labels a path P if w is the concatenation of the letters labelling the edges
of P .

Given a language L over A, the problem of formal language constrained shortest
paths consists of finding a shortest path P in a graph G, with the additional
constraint that the label of P (i.e. the word of letters that label its edges) belongs
to L.

Our result applies in the case of a regular language L. If L is regular, there
exists a deterministic automaton recognising L. Let Q be the set of states of this
automaton and p be the cardinality of Q. For any (i, j) with 1 ≤ i, j ≤ p, let
L(i,j) be the language accepted by the automaton from the state qi to the state qj .
Replace in the set of inductive functions used to compute the length of the shortest
paths, any distance between x (resp Sα) and y (resp Sβ) by a p × p vector such
that the (i, j) component is the length of the shortest paths labelled with a word of
L(i,j). We obtain a set of inductive functions. Then, by our main theorem, there
exists a labelling scheme for a graph G of bounded clique-width, such that one
can compute the constrained shortest paths between any two vertices in constant
time, for any regular language of constraints.

9. Conclusion

The paper presents an efficient algorithm which, for a given system of inductive
functions, builds a labelling scheme for graphs of clique-width at most k. It is
then possible to compute the functions of the system in constant time from the
labelling scheme.

It can be used to compute the length of the shortest paths, the number of
distinct shortest paths, the length of the shortest paths avoiding a fixed set X
of vertices, the length of constrained shortest paths, as well as other inductive
functions on graphs. It avoids logical tools and thus huge constants, that appear
in the use of automata and MS formula. The constants here are of size c.k2

where the constant c depends on the computed functions (c = 20 for the length of
the shortest paths or for the number of distinct shortest paths, c = 20p2 for the
constrained shortest paths, when the automaton has p states).

The values of the functions in the SIF are either numbers or vectors of numbers.
Once the precomputation has been done, any numerical value or component of the
vectors of the SIF can be computed in constant time. The algorithm applies as well
to directed or weighted graphs, which were not treated in the paper by Courcelle
and Vanicat (see [11]).

The set of functions belonging to some SIF is not contained in the set of MS de-
finable optimisation functions. We give a system of inductive functions to compute
the number of distinct shortest paths, which is not an MS definable optimisation
function. On the other hand, we conjecture that the set of MS definable optimisa-
tion functions is not contained in the set of functions belonging to some SIF. The
existence of p disjoint paths, p ≥ 2 (not necessarily shortest paths) between two
vertices is an MS definable Boolean query, but no system of inductive functions

648 F. CARRÈRE

is known to compute this query (for example if G is the graph addα,β(H), we can
not know how many new paths in G intersect the previous paths in H).

The case of functions with alternating computations of min and max remains
an open problem. Neither the logical approach of Courcelle and Vanicat nor the
inductive approach generally apply to such functions.

Acknowledgements. I thank B. Courcelle and the referees for their critical reading and
their numerous useful comments.

Appendix. Inductive relations to compute the length

of the shortest paths

Inductive relations for the term f(t1, t2) with f in F and t1, t2 in T (F,C).
Let f = ⊗R,L be an operation of F , with L = {(α1, β1)(α2, β2), . . . , (αp, βp)}. We
assume that αi is a label occurring in the left argument of f and βi is a label
occurring in the right argument of f , for any 1 ≤ i ≤ p. We must show that there
exist functions φf , φ

′
f , φ

′′
f (resp. ψf , ψ

′
f , resp. ξf) such that D2 (resp. D1, resp.

D0) fulfill the conditions of Definition 3.1.
Recall that D1(t1, x), D1(t2, y) are vectors of length k. Let π′

α denote the
projection on the αth component of a vector of length k. Recall that D0(t1),
D0(t2) are vectors of length k2. We will index these vectors by couples (i, j),
1 ≤ i, j ≤ k. Let π′′

α,β denote the projection on the (α, β) component of a vector
of length k2.

To compute the functions φf , φ
′
f , φ

′′
f (resp. ψf , ψ

′
f , resp. ξf) we will proceed

step by step, computing new functions φi, φ
′
i, φ

′′
i (resp. ψi, ψ

′
i, resp. ξi) after

adding the edges Sαi × Sβi . The case i = 1 needs a special treatment because the
edges are added between two disjoint graphs.
Case i = 1.
φ1 will have four arguments, D1(t1, x), D1(t2, y), D0(t1), D0(t2). So we will need
the projections π(4)

j : N
4 −→ N, 1 ≤ j ≤ 4.

φ′1 and φ′′1 will have five arguments, D2(t2, x, y), D1(t2, x), D1(t2, y), D0(t1),
D0(t2). So we will need the projections π(5)

j : N
5 −→ N, 1 ≤ j ≤ 5.

– If x ∈ t1, y ∈ t2, one defines φ1 = π′
α1

(π(4)
1) + 1 + π′

β1
(π(4)

2).

– If x, y ∈ t1 , one defines φ′1 = min(π(5)
1 , π′

α1
(π(5)

2) + 2 + π′
α1

(π(5)
3)).

– If x, y ∈ t2 , one defines φ′′1 = min(π(5)
1 , π′

β1
(π(5)

2) + 2 + π′
β1

(π(5)
3)).

ψ1 (resp. ψ′
1) will have three arguments, D1(t1, x), D0(t1), D0(t2) (resp. D1(t2, y),

D0(t1), D0(t2)). So we will need the projections π(3)
j : N

3 −→ N, 1 ≤ j ≤ 3.

– If x ∈ t1, let ψ1 be the vector function with jth component: (ψ1)j ={
min(π′

j(π
(3)
1), π′

α1
(π(3)

1) + 2 + π′′
α1,j(π

(3)
2)), if j labels t1,

π′
α1

(π(3)
1) + 1 + πβ1,j(π

(3)
3), if j labels t2.

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 649

– If x ∈ t2, let ψ′
1 be the vector function with jth component:

(ψ′
1)j =

{
min(π′

j(π
(3)
1), π′

α1
(π(3)

1) + 2 + π′′
α1,j(π

(3)
3)), if j labels t1,

π′
α1

(π(3)
1) + 1 + πβ1,j(π

(3)
2), if j labels t2.

ξ1 will have two arguments, D0(t1), D0(t2). So we will need the projections
π

(2)
j : N

2 −→ N, 1 ≤ j ≤ 2. Let ξ1 be the vector function having k2 compo-
nents, the (r, s)-component being:

(ξ1)r,s =

⎧⎪⎨
⎪⎩
π′′

r,α1
(π(2)

1) + 1 + π′′
β1,s(π

(2)
2), if r labels t1, s labels t2,

min(π′′
r,s(π

(2)
1), π′′

r,α1
(π(2)

1) + 2 + π′′
α1,s(π

(2)
1)), if r and s label t1,

min(π′′
r,s(π

(2)
2), π′′

r,β1
(π(2)

2) + 2 + π′′
β1,s(π

(2)
2)), if r and s label t2.

Case i > 1.

– After adding the edges Sαi × Sβi , for any i, 2 ≤ i ≤ p, the function φi, φ
′
i

and φ′′i are obtained by applying the next function gi to the relevant tuple:
(φi−1, ψi−1, ψ

′
i−1), if x ∈ t1, y ∈ t2,

(φ′i−1, ψi−1, ψi−1), if x, y ∈ t1,
(φ′′i−1, ψ

′
i−1, ψ

′
i−1), if x, y ∈ t2.

For any i, 2 ≤ i ≤ p, let gi = min(π(3)
1 , π′

αi
(π(3)

2)+1+π′
βi

(π(3)
3), π′

βi
(π(3)

2)+

1 + π′
αi

(π(3)
3), π′

αi
(π(3)

2) + 2 + π′
αi

(π(3)
3), π′

βi
(π(3)

2) + 2 + π′
βi

(π(3)
3)).

– For any i, 2 ≤ i ≤ p, the functions ψi and ψ′
i are obtained by applying the

next function hi to the relevant tuple:
(ψi−1, ξi−1, ξ

′
i−1), if x ∈ t1,

(ψ′
i−1, ξi−1, ξ

′
i−1), if x ∈ t2.

For any i, 2 ≤ i ≤ p, let hi be the vector function with jth component:
(hi)j = min(π′

j(π
(3)
1), π′

αi
(π(3)

1)+1+π′′
βi,j

(π(3)
2), π′

βi
(π(3)

1)+1+π′′
αi,j

(π(3)
2),

π′
αi

(π(3)
1) + 2 + π′′

αi,j
(π(3)

2), π′
βi

(π(3)
1) + 2 + π′′

βi,j
(π(3)

3)).

– For any i, 2 ≤ i ≤ p, the function ξi is obtained by applying the next
function mi to ξi−1. Let mi be the vector function having k2 components,
the (r, s)-component being:
(mi)r,s = min(π′′

r,s, π
′′
r,αi

+ 1 + π′′
βi,s

, π′′
r,βi

+ 1 + π′′
αi,s, π

′′
r,αi

+ 2 + π′′
αi,s,

π′′
r,βi

+ 2 + π′′
βi,s

).

Then the functions φf , φ
′
f , φ

′′
f are respectively equal to φp, φ

′
p, φ

′′
p , because the

renamings occurring in f have no effect on these functions.
The renamings affect the functions ψf and ψ′

f and ξf .
Let R = {(γ1, ρ1)(γ2, ρ2), . . . , (γp, ρq)}.

For any i, 2 ≤ i ≤ q, let h′i be the vector function with ρith component: (h′i)ρi =
min(π′

γi
, π′

ρi
), γith component: (h′i)γi = ∞, the other components being the iden-

tity. Then one has:

ψf = h′q(. . . (h
′
2(h

′
1(ψp)) . . .) and ψ′

f = h′q(. . . (h
′
2(h

′
1(ψ

′
p)) . . .).

650 F. CARRÈRE

For any i, 2 ≤ i ≤ q, let (m′
i) be the vector function having k2 components, the

(α, ρi)- and the (ρi, α)-components being: (m′
i)α,ρi = (m′

i)ρi,α = min(π′′
γi,α, π

′
ρi,α),

the (α, γi)- and the (γi, α)-components being: (m′
i)α,γi = (m′

i)γi,α = ∞, the other
components being the identity.

Then one has ξ′f = m′
q(. . . (m

′
2(m

′
1(ξ

′
p)) . . .).

References

[1] S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree-decomposable graphs. J. Algor.
12 (1991) 308–340.

[2] H. Bodlaender, Treewidth: Algorithmic techniques and results, in Proceedings 22nd Interna-
tional Symposium on Mathematical Foundations of Computer Science. Lect. Notes Comput.
Sci. 1295 (1997) 19–36.

[3] R.B. Borie, R.G. Parker, C.A. Tovey, Algorithms on Recursively Constructed Graphs. CRC
Handbook of Graph Theory (2003) 1046–1066.

[4] S. Chaudhuri, C.D. Zaroliagis, Optimal parallel shortest paths in small treewidth digraphs,
in: Proceedings 3rd Annual European Symposium on Algorithms. Lect. Notes Comput. Sci.
979 (1995) 31–45.

[5] D.G. Corneil, M. Habib, J.M. Lanlignel, B.A. Reed, U. Rotics, Polynomial time recognition
algorithm of clique-width ≤ 3 graphs, LATIN’00. Lect. Notes Comput. Sci. 1776 (2000)
126–134.

[6] B. Courcelle, Clique-width of countable graphs: a compactness property. Discrete Math.
276 (2003) 127–148.

[7] B. Courcelle, J.A. Makowsky, U. Rotics, On the fixed parameter complexity of graph enu-
meration problems definable in monadic second-order logic. Discrete Appl. Math. 108 (2001)
23–52.

[8] B. Courcelle, M. Mosbah, Monadic second-order evaluations of tree-decomposable graphs.
Theoret. Comput. Sci. 109 (1993) 49–82.

[9] B. Courcelle, S. Olariu, Upper bounds to clique-width of graphs. Discrete Appl. Math. 101
(2000) 77–114.

[10] B. Courcelle, A. Twigg, Compact forbidden-set routing, in: STACS’07 . Lect. Notes Comput.

Sci. 4393 (2007) 37–48.
[11] B. Courcelle, R. Vanicat, Query efficient implementations of graphs of bounded clique-width.

Discrete Appl. Math. 131 (2003) 129–150.
[12] C. Demetrescu, G.F. Italiano, a new approach to dynamic all pairs shortest paths, in Proceed-

ings of. the 35. th. Annual ACM Symposium on the Theory of Computing (2003) 159–166.
[13] R.G. Downey, M.R. Fellows, Parametrized Complexity. Springer Verlag (1999).
[14] J. Engelfriet, G. Rozenberg, Node replacement graph grammars, in Handbook of Graph

Grammars and Computing by Graph Transformation, Foundations, Vol. 1, edited by G.
Rozenberg. World Scientific (1997) 1–94.

[15] M.R. Fellows, F.A. Rosamond, U. Rotics, S. Szeider, Clique-width minimization is NP-hard.
Proceedings of. the 38. th. Annual ACM Symposium on the Theory of Computing (2006)
354–362.

[16] J. Flum, M. Grohe, Theory of parametrized complexity. Springer Verlag (2006).
[17] M. Frick, M. Grohe, The complexity of first-order and monadic second-order logic revisited.

Ann. Pure Appl. Logic 130 (2004) 3–31.
[18] C. Gavoille, M. Katz, Nir A. Katz, C. Paul, D. Peleg, Approximate distance labeling schemes,

ESA’01. Lect. Notes Comput. Sci. 2161 (2001) 476–488.
[19] C. Gavoille, C. Paul, Distance labeling scheme and split decomposition. Discrete Math. 273

(2003) 115–130.

INDUCTIVE COMPUTATIONS ON CLIQUE-WIDTH-K GRAPHS 651

[20] C. Gavoille, D. Peleg, Compact and localized distributed data structures. J. Distrib. Com-
put. 16 (2003) 111–120.

[21] C. Gavoille, D. Peleg, S. Pérennes, R. Raz, Distance labeling in graphs. J. Algor. 53 (2004)
85–112.

[22] E. Wanke, k-NLC graphs and polynomial algorithms. Disc. Appl. Math. 54 (1994) 251–266.
[23] F. Gurski, E. Wanke, Vertex disjoint paths on clique-width bounded graphs, LATIN’04.

Lect. Notes Comput. Sci. 2978 (2004) 119–128.
[24] D. Harel, R. Tarjan, Fast algorithms for finding nearest common ancestors. SIAM J. Com-

put. 13 (1984) 338–355.
[25] P. Hlinený, S. Oum, Finding Branch-Decompositions and Rank-Decompositions. SIAM J.

Comput. 38 (2008) 1012–1032.
[26] D. Seese, Interpretability and tree automata: A simple way to solve algorithmic problems

on graphs closely related to trees, in Tree Automata and Languages, edited by M. Nivat, A.
Podelski. North-Holland (1992) 83–114.

[27] J.P. Spinrad, Efficient Graph Representations. American Mathematical Society (2003).

Communicated by C. Choffrut.
Received June 25, 2007. Accepted February 21st, 2009.

	Introduction
	Terms and contexts
	Inductive functions on terms
	Labelling scheme for inductive functions on terms

	Application to graphs
	Graphs of clique-width at most k
	Binary operations on graphs
	Operation of substitution

	First application: length of the shortest paths
	A system of inductive functions

	Second application: number of distinct shortest paths
	A system of inductive functions

	 Third application: length of shortest paths avoiding a set of vertices
	 Fourth application: formal language constrained shortest paths
	Conclusion
	Appendix. Inductive relations to compute the length of the shortest paths
	References

