
Balancing Weighted Trees in linear time

Frédérique Carrère
LaBRI, Université Bordeaux 1

carrere@labri.fr

20 février 2012

Frédérique Carrère LaBRI, Université Bordeaux 1 Balancing Weighted Trees in linear time

Content

Introduction
Previous work

Hu�man trees, Minimax Trees

Optimal Alphabetic trees

Near Optimal Weighted Trees

De�nition of Balance for Weighted trees

Some Properties

Linear Algorithm to build Balanced Weighted Trees
Weight Sibling

Insertion Algorithm

Weight-Balance after insertion

Experimental Results

Conclusion
Frédérique Carrère LaBRI, Université Bordeaux 1 Balancing Weighted Trees in linear time

Introduction
Weighted Trees

A weighted tree is a �nite tree which stores weights in the
leaves. Weights can be positive integers or reals.

Let t be a weighted tree with n leaves.
Let w1,w2, . . .wn be the weights of the leaves,

the weight of t, denoted w(t), is the sum
∑n

i=1
wi .

The weight of a node v of t is the weight of the subtree
t↓v rooted in this node :

w(v) = w(t↓v).

Use of Weighted Trees

Well-known Data Structures :
AVL, B-trees, ...

Information theory, Data Compression :
Hu�man trees, Minimax Trees.

Analysis of Biological Structures :
phylogenetic trees, neighbor-joining algorithm.

Circuits Design :
fanout trees (which represent connections between
gates in a circuit).

Problem

Given a weighted tree, de�ne a notion of weight-balance.

Given an ordered sequence of n weights (integers or
reals) : w1,w2, . . .wn, build a balanced weighted binary
tree which leaves hold the weights w1,w2, . . . ,wn from
left to right,

intuitively, a tree such that the value of any leaf's weight
plus its depth is as small as possible.

A weight-balanced tree, which is not a balanced binary tree.

d 1

2de

abbaacba 8

 cbc 3 6

9

2

4

2

1

ca

a

17

9 8adcceaade ebabdced

17

34

Application : Terms

A term on signature (F ,C) is a word :
f (a, h(b, g(f (b, b), a))), with f , g , h ∈ F , a, b ∈ C .

It can be cut in factors (contexts or terms) :
f (a, | h(b, | g(f (b, b), | a)))
with weights 2, 2, 4, 1.

Build a balanced weighted tree which leaves are the above
factors with their respective weights.

Replace each leaf with a tree which represents the factor
(adding a rightmost leaf • for the contexts),
label each internal node with a new function σ
(substitution).

We get a balanced term on the signature
(F ∪ {σ}, C ∪ {•}).

Notations

Let t be a binary tree. Let x be a node of t.
The size |t| is the number of nodes of t.

The height h(x) is the length of the longest downward
path from x to a leaf. The height of a tree is the height
of its root.

The depth of x is the length of the path from x to the
root.

t↓x denotes the subtree rooted in x .

left(x) (resp. right(x)) denotes the left (resp. right) son
of x , sibling(x) denotes the sibling of x ,

parent(x) denotes the parent of x , gparent(x) the
grandparent of x and ggparent(x) the great grandparent
of x (if it exists).

Content

Introduction
Previous work

Hu�man trees, Minimax Trees

Optimal Alphabetic trees

Near Optimal Weighted Trees

De�nition of Balance for Weighted trees

Some Properties

Linear Algorithm to build Balanced Weighted Trees
Weight Sibling

Insertion Algorithm

Weight-Balance after insertion

Experimental Results

Conclusion
Frédérique Carrère LaBRI, Université Bordeaux 1 Balancing Weighted Trees in linear time

Binary Search Trees

The most widely used binary search trees are
self-balancing.

Balancing binary search trees statically : DSW Algorithm
Day [76], improved by Stout-Warren [86].

Build a "Vine" (list-like degenerated tree) from the
binary search tree,
then complete each level of a new binary tree from the
"Vine".

The algorithm is linear.

All the leaves have the same weight.

Example of Vine :

1

’a’ 1

1

2

3

4

8

7

6

5

1

1’c’

1

1

1’c’

’a’

’b’

b

’b’

’a’

Hu�man Trees

A well-known compression algorithm : Hu�man Coding.

Build a Hu�man Tree, e.g. a tree which minimizes the
weighted average of the leaves' depths :∑n

i=1
wi . `i

where `i is the length of the path from the root to the
i -th leaf.

Hu�man [52] : an O(n log n)-time algorithm, improved in
O(n)-time if the weights are sorted.

Hu�man Algorithm

Construct a forest of singleton trees, each per weight.

Repeatedly choose the two trees of least weights and add
them as left and right sons of a new root node.

The weight of the any new node is the sum of the
weights of its two sons.

To improve the complexity, �rst build a sorted list of the
given weights.

Hu�man Tree : an exemple

Minimax Trees

a Minimax Tree is a tree which minimizes the maximum
of any leaf's weight plus its depth :

max1≤i≤n{ wi + `i }.
Golumbic [76] : introduced minimax trees and gave a
Hu�man-like, O(n log n)-time algorithm for building them
(with real weights).

Drmota-Szpankowski [02] : gave another O(n log n)-time
algorithm, which takes O(n)-time when the weights are
integers or are sorted by their fractional parts.

Gagie-Gawrychowski [09] : gave an O(n.d)-time
algorithm for building minimax trees for unsorted real
weights, where d is the number of distincts integer parts
of the weights.

Ordering of leaves

Hu�man trees, Minimax trees :
do not preserve the ordering of the leaves.

Optimal Alphabetic Trees :

- minimizes a cost function depending on the leaves
weights and their depth,

- preserve the ordering of the leaves.

Optimal Alphabetic Trees

Hu-Tucker [71] and Garsia-Wachs [77] : gave an
O(n log n)-time algorithm (using priority queues) for
building alphabetic Hu�man trees with real weights.

Hu-Larmore-Morgenthaler [05] : gave an O(n)-time
algorithm for building alphabetic Hu�man trees if the
weights are integers or can be sorted in linear time.

Kirkpatrick-Klawe [85], Coppersmith-Klawe-Pippenger
[86] : gave an O(n)-time algorithm for building alphabetic
minimax trees with integer weights.

Gagie [09] : gave an O(d .n log(log n))-time algorithm for
building alphabetic minimax trees where d is the number
of distincts integer parts of the weights.

Garsia-Wachs algorithm

Construct a forest of singleton trees, each per weight.

A locally minimal pair (lmp) in the forest is a pair (ti , ti+1)
which weight is less than the weight of the preceding pair
and strictly less than the weight of the following pair.

Find the leftmost lmp (i , i + 1), add the two nodes of the
pair as left and right sons of a new node x , replace
(ti , ti+1) by tx in the forest.

Move tx in the forest to be the predecessor of the nearest
right tree of larger or equal weight.

Exchange some leaves, wich weights are the same, in the
resulting forest to obtain an alphabetic mimimal tree.

Hu-Tucker : an exemple

Hu-Tucker : an exemple

Hu-Larmore-Morgenthaler

Use of new data structures which are associated with
certain parts of the sequence, which are called mountains
and valleys

valleys → local minima (cf. Garsia-Wachs)
montains → local maxima.

Nodes are sorted within the di�erent data structures,
nodes can be move from one data structure to another,.

Processing of data stuctures in constant amortized time
per node, then the next locally minimal pair can be found
in constant time per node
⇒ linear amortized time.

Weight-balanced Binary Search Trees

Di�erent de�nition of Weights :
the leaves do not hold weights, the weight of a subtree is
either its size or the number of its leaves.

Di�erent rebalancing algorithms, some of them have
linear amortized complexity.

Implemented (in haskell, scheme) for dictionaries.

Two well-known classes :
→ BB[α]-trees (Trees of Bounded Balance) :

Nievergelt-Reingold [73], Mehlhorn [84].

→ Scapegoat trees : Galperin-Rivest [93].

Rebalancing schemes

A rebalancing scheme = a de�nition of balance + a
rebalancing algorithm applied after each insertion.

BB[α]-trees, with 0 < α < 1/2 :
- for any node x , α ≤ w(right(x)) /w(x) ≤ 1− α ,
- rebalancing algorithm : bottom-up from inserted node x ,
processes every unbalanced node using rotations,
- O(n) amortized complexity.

Scapegoat trees (with parameter ω) :
- for any node x , w(left(x)) ≤ ω .w(right(x))

and w(right(x)) ≤ ω .w(left(x))
- rebalancing algorithm : bottom-up, searches the �rst
unbalanced node y , preforms a total rebuilding of the
subtree t↓y ,
- O(n log n) amortized complexity.

BB [α]-trees

BB[α]-trees t are c-height-balanced :

Theorem (Mehlhorn - 89)

There exists a constant c > 1 such that for every BB[α]-tree
t, h(t)≤ c .log(|t|).

For α = 1/3 , c = 1.70 .
For α = 1/4 , c = 2.40 .

Linear amortized complexity : adding up costs for several
operations ⇒ fast on average.

Theorem (Mehlhorn - 89)

For 1/4 ≤ α ≤ 1−√2/2, there exists a constant K such that
the number of rotations during a sequence of m insertions
from the empty tree is ≤ K .m.

For α = 3/11 , K = 19 .

Content

Introduction
Previous work

Hu�man trees, Minimax Trees

Optimal Alphabetic trees

Near Optimal Weighted Trees

De�nition of Balance for Weighted trees

Some Properties

Linear Algorithm to build Balanced Weighted Trees
Weight Sibling

Insertion Algorithm

Weight-Balance after insertion

Experimental Results

Conclusion
Frédérique Carrère LaBRI, Université Bordeaux 1 Balancing Weighted Trees in linear time

Another Balancing scheme

We de�ne the weight-balance of a node as the ratio of right to
left weights.

De�nition

Let t be a weighted tree. Let x be a node of t. The
weight-balance of x is the ratio w(right(x))/w(left(x)).

We de�ne the balance of a weighted tree comparing leaves
depth and ratio of weights.

De�nition

Let t be a weighted tree which leaves hold the weights
w1,w2, . . .wn. The tree t is (c , b)-balanced for some integers
c ≥ 1, b ≥ 0, if and only if for all i , 1 ≤ i ≤ n, the i -th leaf of
t has a depth at most c .log(w(t)/wi)+b.

(We omit b when it is zero)

Lemma (1)

Let t be a weighted tree with leaves , u1, u2 . . . , un. If t is
(c , b)-balanced, for some integers c ≥ 1, b ≥ 0, then
substituting any leaf ui of t with an arbitrary
(c , b′)-height-balanced binary tree ti of size w(ui) gives a
(c , b + b′)-height-balanced binary tree t ′.

The height of t is max{depth(ui), 1 ≤ i ≤ p}.
The height of t ′ is max{depth(ui) + h(ti), 1 ≤ i ≤ p}.
By hypothesis,

h(t ′) ≤ max{ c .log(w(s)/w(ui)) + b
+ c .log(w(ui)) + b′ , 1 ≤ i ≤ p}.

⇒ h(t ′) ≤ c .log(w(s)) + b + b′ ≤ c .log(|t ′|) + b + b′ .

t ′ is (c , b + b′)-height-balanced

r

t

t’

... ...

depth(ui)

ui

w(ui)

u1

w(u1)
≤ c.log(w(ui)) + b′

Lemma (2)

Let t be a weighted tree.
Let c and b be integers, c ≥ 1, b ≥ 0.
If on every branch of t of length at least c, there exists a node
y such that :

depth(y) ≤ c

the subtree t↓y is (c , b)-balanced

w(t↓y) ≤ w(t)/2

then t is (c , b)-balanced.

Proof.

Let us consider a branch of length greater than c .
Let ui be the leaf on this branch and wi = w(ui).
By hypothesis, there exists a node y at depth at most c such
that t↓y is (c , b)-balanced and w(t↓y) ≤ w(t)/2.

Either y ancestor of wi or y = wi .

if y is an ancestor of ui :
⇒ deptht↓y (ui) ≤ c .log(w(t↓y)/wi)+ b

⇒ depth(ui) ≤ depth(y)+ c .log(w(t↓y)/wi) + b
≤ c + c .log(1/2× w(t)/wi) + b
≤ c .log(w(t)/wi)+b.

if y = ui with w(t↓y) = wi ≤w(t)/2
⇒ log(w(t)/wi) ≥ 1
⇒ depth(ui) = depth(y) ≤ c ≤ c .log(w(t)/wi)

So t is (c , b)-weight-balanced.

Inductive algorithm

Corollary (3)

For every sequence of weights w1,w2, . . . ,wn, one can build in
time O(n.log(n)) a (2, 2)-balanced weighted tree with leaves
w1,w2, . . . ,wn.

The Algorithm : Let w =
∑n

k=1
wk .

�nd the least index i such that
∑i

k=1
wk > w/2,

run the algorithm to build (2, 2)-balanced trees
- for w1, . . . ,wi−1 : we get tleft ,
- for wi+1, . . . ,wn : we get tright ,

build a new node x with left son wi and right son tright ,

build a new root r with left son tleft and right son x .

x

r

w(ui)

w(u1 . . . ui−1)

w(ui+1 . . . up)

tleft

tright

ui

Content

Introduction
Previous work

Hu�man trees, Minimax Trees

Optimal Alphabetic trees

Near Optimal Weighted Trees

De�nition of Balance for Weighted trees

Some Properties

Linear Algorithm to build Balanced Weighted Trees
Weight Sibling

Insertion Algorithm

Weight-Balance after insertion

Experimental Results

Conclusion
Frédérique Carrère LaBRI, Université Bordeaux 1 Balancing Weighted Trees in linear time

Theorem

For every sequence of weights w1,w2, . . . ,wn, one can build in
time O(n) a (3, 2)-balanced weighted tree with leaves
w1,w2, . . . ,wn.

The Algorithm :

create a leaf tree node t1 holding the weight w1.

assume that we have built a balanced tree ti−1 for the
weights w1 . . .wi−1, climb up from the rightmost leaf to
the root, searching a point of insertion for a new node ui
holding the weight wi .

the point of insertion is the �rst node satisfying some
conditions on its weight and the weights of its parent and
great-parent. This node is called the weight-sibling of ui .

Insertion of a new node

ui−1

r

x

looking for insertion of

ui

wi
parent(x)

The insertion : If x is the weight-sibling of ui , insert ui
between x and its parent.

Insertion of a new node
r

ui−1

x

parent(x)

ui

w(ui)

After the insertion:

The insertion : If x is the weight-sibling of ui , insert ui
between x and its parent.

Weight-Sibling of a node

Let t be a weighted tree. Let u be a weighted node not in t.

Recall that the weight-balance of a node y is the ratio
w(right(y))/w(left(y)).

De�nition

The node x is a weight-sibling of the node u (u not in t) if
and only if x belongs to the right branch of t, deptht(x) ≥ 1
and inserting u as sibling of x in t, gives a tree t ′ such that :

if deptht′(x) = 2 then gparentt′(x) has weight-balance
less than 1.

if deptht′(x) ≥ 3 then gparentt′(x) and ggparentt′(x)
have weight-balance less than 1.

Insertion of ui as sibling of a node x of ti−1

Case depthtti (x) = 2 :

x

w(x)

uj . . . ui−1

u1 . . . uj−1

c

ui w(ui)

wleft(r)

r = parent(x)

x weight-sibling of ui
if and only if

after insertion, w(right(r))/w(left(r)) ≤ 1

Insertion of ui as sibling of a node x of ti−1
Case depthtti (x) ≥ 3 :

x

w(x)

uj . . . ui−1

r

ui w(ui)

c

y = parent(x)

z = gparent(x)

wleft(y)

wleft(z)

x weight-sibling of ui
if and only if

after insertion,
w(right(y))/w(left(y)) ≤ 1
w(right(z))/w(left(z)) ≤ 1

Insertion : an exemple

d 1

8

2

4

2

1

4

ca

a

abba de 2baca 4

12 14

 6

2 + 4 ≤ 8 ?

Insertion : an exemple

d 1

8

2

4

2

1

4

ca

a

abba

baca 4 2de

2cb

 4
6

14

8

16

2 + 2 ≤ 4 ?

2 + 2 + 4 ≤ 8 ?

Insertion : an exemple

d 1

2ad

8

4

2

4

2

1

2 2

4

ca

a

abba

de cb

 b 1

 2

1a

3

4

baca 4

8

16

19
20

1 + 1 ≤ 2 ?
1 + 1 + 2 ≤ 16 ?

Insertion : an exemple

d 1

8

4

6

2

4

2

1

2 2

2

4

2

1 1

4

ca

a

abba

de cb

ad

a b

2ed

16

baca 4

8

20
22

2 + 4 ≤ 16 ?

Insertion : an exemple

d 1

8

2

4

2

1

2

4

ca

a

abba

de cb

6

2ed

4

2ed

2 2

1 1

ad

a b

4

8

2

 4

baca 4

8

16

22
24

2 + 2 ≤ 4 ?
2 + 2 + 4 ≤ 16 ?

buildBalancedTree(u1, u2, . . . , un)

Input : A l i s t o f we ighted nodes u1, u2, . . . un .
Output : A (3, 2)−ba l anced we ighted t r e e t .

1 t = u1
2 p = u1
3 for i = 2 to n do

4 p = �ndWeightSibling(t, p, ui)
5 /∗ the i n s e r t i o n p roc edu r e moves p on ui ∗/
6 i f (parent(p) <> null) then

7 t = insert(ui , parent(p))
8 e l se

9 t = insert(ui , root(t))
10 end for

Frédérique Carrère LaBRI, Université Bordeaux 1 Balancing Weighted Trees in linear time

FindWeightSibling(ti−1, p, ui)

Input : A we ighted t r e e ti−1 , a p o i n t e r p on
i t s r i g h t l e a f ui−1 , a we ighted node ui .

Output : A po i n t e r on an an c e s t o r o f ui−1 ,
which i s a weight − sibling o f ui .

1 weight = wi−1
2 height = 0
3 while (parent(p) <> n u l l) do

4 height = height + 1
5 parentWeight = weight + w(sibling(p))
6 i f (isWeithSibling(p, ui)) then

7 return p
8 p = parent(p)
9 weight = parentWeight
10 end while

Frédérique Carrère LaBRI, Université Bordeaux 1 Balancing Weighted Trees in linear time

isWeightSibling(p, ui)

Input : A po i n t e r p on the r i g h t branch o f
ti−1 , a we ighted node ui .

Output : True i f f p p o i n t s on a
weight − sibling o f ui .

1 q = parent(p)
2 qBalance = (w(p) + w(ui)) / w(left(q))
3 i f (parent(q) = = n u l l) then

4 return (qBalance ≤ 1)
5 e l se

6 r = parent(q)
7 rBalance = (w(left(q) + w(p) + w(ui) / w(left(r))
8 return (qBalance ≤ 1)
9 && (rBalance ≤ 1)

Frédérique Carrère LaBRI, Université Bordeaux 1 Balancing Weighted Trees in linear time

Complexity of buildBalancedTree(w1 . . .wn)

Claim 1.

The amortized complexity of buildBalancedTree(u1 . . . un)
is O(n).

Amortized complexity = average complexity on a sequence
of operations in the worst case.

To compute the amortized complexity :

charge a �x amount of credits for each elementary
operation,

if an operation is cheap and if we have charge more than
necessary, we save up credits for later use,

if an operation is expensive, which appends only
occasionally, we use the credits saved to pay for it.

Amortized Complexity

Let i , 1 ≤ i ≤ n − 1. Assume that :

we have built a balanced tree ti−1 for the weights
w1 . . .wi−1,

we have charged 5i − 5 credits to construct ti−1,

we work on the righmost branch of ti−1, with a pointeur p
on its leaf ui−1,

we have at least k credits saved, where k is the depth of
ui−1,

we charge 5 credits to construct ti from ti−1.

Let ui be a leaf node holding the weight wi . We climb up from
ui−1 to the root, until we �nd a weight-sibling of ui .

There are three cases :

If ui−1 is a weight-sibling of ui , we insert ui between ui−1
and parent(ui−1) and move the pointer p to ui . Cost of
test and insertion 3 credits (we look at gparent(ui−1)),
and excess 2 credits saved into account.

If the weight-sibling of ui is a proper ancestor x of ui−1,
such that depth(x) = k ′ < k , we move from ui−1 to
parent(x) and insert ui as son of parent(x). Cost of
move, test, and insertion k − k ′ + 3 credits (we look at
w(gparent(x))).

Suppose we move from ui−1 to the root and insert ui as
sibling of the root. Cost of move and insertion k + 1
credits.

In each case we have at least k ′ + 2 credits saved, where
k ′ + 2 is the depth of ui on the righmost branch of ti .

Balance

Claim 2.

Let t = buidBalancedTree(u1 . . . un), every subtree t↓x of t is
(3, 2)-balanced.

Proof. Induction on the size of the subtree t↓x .
Basis : If |t↓x | ≤ 5 then h(t↓x) ≤ 2 and the result holds.

Let x be such that |t↓x | = m, with m > 5.
Induction hypothesis : every subtree of t of size strictly less
than m is (3, 2)-balanced.

By Lemma 2, it is su�cient to prove that on every branch of
t↓x of length at least 3, there exists a node y at depth at
most 3, such that : w(y) ≤ w(x)/2,
(by ind. hyp. t↓y is (3, 2)-balanced).

We prove that wleft(x1), w(x2), wleft(y2)), w(y3) and w(z1)
are not greater than w(x)/2.

z t
x

y1
x1

w(x2)

wleft(x1)

x2

y2

y3

left(x1)
z1

w(y3)

wleft(z)

w(z1)

wleft(y2)

Lemma (3)

Let t = buildBalancedTree(u1 . . . up).
Let x be a node of t such that x is the right son of a node z
and the distance between x and a leaf of t is at least 2.
Let x1 = right(x), x2 = right(x1), y1 = left(x) and
y2 = right(y1).
Then one has :

1 wleft(x1) ≤ wleft(x),

2 wleft(x2) ≤ wleft(x)/2,

3 w(x2) ≤ wleft(x) + wleft(x1).

Corollary (3)

Let x be a node of t with left(x) = y1.

If the length of the right branch of t↓x is at least 2,
let x1 = right(x), x2 = right(x1). One has :

wleft(x1), w(x2) ≤ w(x)/2,

If the length of the right branch of t↓y1 is at least 2,
let y2 = right(y1) and y3 = right(y2). One has :

wleft(y2), w(y3) ≤ w(x)/2.

Let A and B be the left and right members of inequalities (1)
and (2) of Lemma 1.
Note that A,B are positive numbers such that

A + B ≤ w(x) and A ≤ B
then one has A ≤ w(x)/2.

Proof of Lemma 3.

Recall that x1 = right(x), x2 = right(x1).
The tree t is built by successive insertion of leaves.

Let u` be the leftmost leaf of t↓x2, u` is inserted as right
leaf in t`−1.
When u` is inserted as right leaf in t`−1,

gparentt`(u`) = x has a weight-balance less than 1.

Let uj be the leftmost leaf of t↓right(x2).
When uj is inserted as right leaf in tj−1,

gparenttj (uj) = x1 has weight-balance less than 1,
ggparenttj (uj) = x has weight-balance less than 1.

In t` we have wright(x) = w`+wleft(x1) ≤ wleft(x).

y1
x1

wleft(x1)y2

y3

left(x1)
z1

w(y3)

w(z1)

wleft(y2)

uℓ

wℓ

x = gparent(uℓ)

s

wleft(s)

In tj we have wj + wleft(x2) ≤ wleft(x1)
and wj + wleft(x2) ≤ wleft(x)/2,

y1

wleft(x1)y2

y3

left(x1)
z1

w(y3)

w(z1)

wleft(y2)

x2

uj

wleft(x2)

x1 = gparent(uj)

x = ggparent(uj)

s

wleft(s)

For any i , 2 ≤ i ≤ m − 1, wleft(xi) ≤ wleft(xi−2)/2,

y1

wleft(x1)y2

y3

left(x1)
z1

w(y3)

w(z1)

wleft(y2)

x2

x1 = gparent(uj)

x = ggparent(uj)

x3

x4

wleft(x4)
wleft(x3)

wleft(x2) . . .

s

wleft(s)

Proof of Lemma 3.3

On the right branch of t↓x , we have :
w(x2)= wleft(x2) + wleft(x3) + . . .wleft(xm) + w(a).

We prove that w(x2) ≤ wleft(x1) + wleft(x).
We know that
for any i , 2 ≤ i ≤ m − 1, wleft(xi) ≤ wleft(xi−2)/2,

Assume that m ≥ 3 and 2 ≤ i ≤ m − 1.

If i is even, i = 2k , we get :

wleft(xi) ≤ 1

2
wleft(xi−2) . . . ≤ 1

2 j wleft(xi−2j) . . . ≤ 1

2 k wleft(x0)

If i is odd, i = 2k + 1, we get :

wleft(xi) ≤ 1

2
wleft(xi−2) . . . ≤ 1

2 j wleft(xi−2j) . . . ≤ 1

2 k wleft(x1)

Since gparent(xm) and ggparent(xm) have left balance 1, we
get :

wleft(xm) + w(a) ≤ wleft(xm−2)/2

Assume that m ≥ 3.

If m is even, m = 2p, one has :
wleft(xm) + w(a) ≤ 1

2 pwleft(x0)

If m is odd, m = 2p + 1, one has :
wleft(xm) + w(a) ≤ 1

2 pwleft(x1)

Consequently we have :

w(x2) = wleft(x2) + wleft(x3) + . . .wleft(xm) + w(a)

=
∑i=m−1

i=2
wleft(xi) + (wleft(xm) + w(a))

≤ (wleft(x0) + wleft(x1)) (1
2

+ 1

4
. . .+ 1

2p
)

≤ wleft(x0) + wleft(x1)

Let t = buildBalanceTree(u1 . . . un).

Lemma (4)

Let x be a node of t such that the length of the left branch of
t↓x is at least 2,

Let y1 = left(x) and z1 = left(y1).

One has w(z1) ≤ w(x)/2.

We have wi + (w(y2) + wleft(y1)) ≤ wleft(s).

y1
wi

ui

x

s = gparent(ui)

wleft(s)

y2

y3

z1

w(y3)

w(z1)

wleft(y2)

Proof of Lemma 4.

First case : if parent(x) is not null, let s = parent(x).
Let ui be the left leaf of t↓x1,
In ti−1, s = gparentti (ui) has a weight-balance less than 1

⇔ wi + (w(y2) + wleft(y1)) ≤ wleft(s).

Suppose that wi + w(y2) ≤ wleft(y1)
then y2 is weight-sibling of ui and ui should not have
been inserted as sibling of y1.

Suppose that wleft(y1) ≤ wi + w(y2),
since we have wleft(y1) + wi + w(y2) ≤ w(x),
adding these two inequalities, we get :

w(z1) = wleft(y1) ≤ w(x)/2.

Proof of Lemma 4.

Second case : if parent(x) = null ,

then gparentti−1(y2) = null

Since ui is inserted as sibling of y1,
we deduce that y2 is not weight-sibling of ui :
⇒ wright(y1) = wi + w(y2) > wleft(y1)

Recall that we have wi + w(y2) + wleft(y1) ≤ w(x).
Adding the two inequalities, we get :

w(z1) = wleft(y1) ≤ w(x)/2.

Experimental results

size of term unbalanced height balanced height

127 15 10
363 31 12
549 98 13
769 384 11
835 46 15
1407 115 15
2183 131 16
2595 121 16

Conclusion

We de�ne a notion of balance for weighted trees,
comparing the depths of the leaves with the ratio of their
weights to the total weight.

By a simple inductive algorithm, we easily get a
(2, 2)-balanced alphabetic weighted trees in time
O(n log n).

We give an online linear algorithm to balance alphabetic
weighted trees. The result is a (3, 2)-balanced weighted
tree. There is no need of extra data structures. There is
no need of sorting the weights.

Future work : use the algorithm to balance binary terms
in linear time.

