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Chapter 1

Introduction

This document aims to give a small introduction to two important and rather
new features of the Cogq proof assistant [Coq Development Team)| [2012, Bertot
and Castéran), 2004] : type classes and user defined relations. We will mainly use
examples for introducing these concepts, and the reader should consult Cogq’s
reference manual for further information.

Type classes are presented in Chapter 18 “Type Classes” of Coq’s reference
manual, and user defined relations in Chapter 25.

The complete definitons and proof scripts are structured as follows:

Power mono.v Sadly monomorphic definitions of function x € Z, n € N —

2™ (naive and binary algorithm).
Matrices.v A data type for 2 x 2 matrices.

Monoid.v The Monoid type class; proof of equivalence of the naive and the
binary power functions in any monoid. The abelian (a.k.a. commutative)
monoid structure.

Monoid op classes.v Same contents as Monoid.v, but with operational
type classes.

Alternate defs.v Dicussion about various possible representations of the monoid
mathematical structure.

Lost _in NY.v An introduction to user defined relations, and rewriting.
EMonoid.v Monoids with respect to an equivalence relation.
Trace Monoid.v The trace monoid (a.k.a. partial commutation monoid).

A tar file of these scripts (for Coq V8.4) is available at the following address:
http://www.labri.fr/perso/casteran/CoqArt/TypeClassesTut /src-V8.4.tar.gz


http://www.labri.fr/perso/casteran/CoqArt/TypeClassesTut/src-V8.4.tar.gz

1.1 A little history

Type classes were first introduced in Haskell by Wadler and Blott| [1989] and the
Isabelle proof assistant [Nipkow and Snelting, [1991] at the begining of the 90’s,
to handle ad-hoc polymorphism elegantly. [Sozeau and Oury| [2008] adapted the
design to Cogq, making use of the powerful type system of Cog to integrate a
lightweight version of type classes which we’ll introduce here.

The purpose of type class systems is to allow a form of generic program-
ming for a class of types. Classes are presented as an interface comprised of
functions specific to a type, and in the case of Isabelle and Cogq, proofs about
those functions as well. One can write programs that are polymorphic over any
type which has an instance of the class, and later on, instantiate those to a
specific type and implementation (called instance) of the class. Polymorphism
is ad-hoc as opposed to the parametric polymorphism found in e.g. ML: while
parametrically polymorphic functions behave uniformly for any instantiation of
the type, ad-hoc polymorphic functions have type-specific behaviors.



Chapter 2

An Introductory Example:
Computing z"

2.1 A Monomorphic Introduction

Let us consider a simple arithmetic operation: raising some integer = to

the n-th power, where n is a natural number.

The following function definition is a direct translation of the mathematical
concept:

Require Import ZArith.
Open Scope Z_scope.

Fixpoint power (x:Z)(n:nat) :=
match n with O%nat => 1
| Sp=> x * power x p
end.

Compute power 2 40.
= 1099511627776
:Z

This definition can be considered as a very naive way of programming, since
computing =" requires n multiplications. Nevertheless, this definition is very
simple to read, and everyone can admit that it is correct with respect to the
mathematical definition of raising x to the n-th power. Thus, we can consider
it as a specification: when we write more efficient but less readable functions
for exponentiation, we should be able to prove their correctness by proving in
Coq their equivalenceﬂ with the naive power function.

For instance the following function allows one to compute =", with a number
of multiplications proportional to log,(n):

Li.e. extensional equality



Function binary_power_mult (acc x:Z) (n:nat)
{measure (fun i=>i) n} : Z
(* acc * (power x n) *) :=
match n with O%nat => acc
| _ => if Even.even_odd_dec n
then binary_power_mult
acc (x * x) (div2 n)
else binary_power_mult
(acc * x) (x * x) (div2 n)
end.
Proof.
intros;apply 1t_div2; auto with arith.
intros;apply 1t_div2; auto with arith.
Defined.

Definition binary_power (x:Z)(n:nat) :=
binary_power_mult 1 x n.

Compute binary_power 2 40.
1099511627776: Z

We want now to prove binary_power’s correctness, i.-e. that this function
and the naive power function are pointwise equivalent.

Proving this equivalence in Coq may require a lot of work. Thus it is not
worth at all writing a proof dedicated only to powers of integers. In fact, the
correctness of binary_power with respect to power holds in any structure com-
posed of an associative binary operation on some domain, that admits a neutral
element. For instance, we can compute powers of square matrices using the
most efficient of both algorithms.

Thus, let us throw away our previous definition, and try do define them in
a more generic framework.

Reset power.

2.2  On Monoids

Definition 2.1 A monoid s a mathematical structure composed of:
o A carrier A
e A binary, associative operation o on A
e A neutral element 1 € A for o

Such a mathematical structure can be defined in Coq as a type class |Sozeau
and Ouryl 2008| [Spitters and van der Weegen, |2011, ?]. In the following def-
inition, parameterized by a type A (implicit), a binary operation dot and a



neutral element unit, three fields describe the properties that dot and unit
must satisfy.

Class Monoid {A:Type}(dot : A -> A -> A)(one : A) : Prop := {
dot_assoc : forall x y z:A,
dot x (dot y z) = dot (dot x y) z;
unit_left : forall x, dot one x = Xx;
unit_right : forall x, dot x one = x }.

Note that other definitions could have been given for representing this math-
ematical structure. See Sect [3.9.1] for more details.

From an implementational point of view, such a type class is just a record
type, ¢.e. an inductive type with a single constructor Build_Monoid.

Print Monoid.
Record Monoid (A : Type) (dot : A -> A -> A) (one : A) : Prop := Build_ Monoid

one_left : forall x : A, dot one v = x;
one_right : forall z : A, dot x one =z }

For Monoid: Argument A is implicit and mazximally inserted

For Build Monoid: Argument A is implicit

For Monoid: Argument scopes are [type scope |

For Build_Monoid: Argument scopes are [type_scope /

Nevertheless, the implementation of type classes by M. Sozeau provides several
specific tools —dedicated tactics for instance —, and we advise the reader not
to replace the Class keyword with Record or Inductive.

With the command About, we can see the polymorphic type of the fields of
the class Monoid:

About one_left.

one_left :
forall (A : Type) (dot : A -> A -> A) (one : A),
Monoid dot one -> forall x : A, dot one x = x

Arguments A, dot, one, Monoid are implicit and mazimally inserted
Argument scopes are [type scope |
one_left is transparent

2.2.1 Classes and Instances

Members of a given class are called instances of this class. Instances are defined
to the Cog system through the Instance keyword. Our first example is a
definition of the monoid structure on the set Z of integers, provided with integer
multiplication, with 1 as a neutral element. Thus we give these parameters to
the Monoid class (note that Z is implicitely given).



Instance ZMult : Monoid Zmult 1.

For this instance to be created, we need to prove that the binary operation
Zmult is associative and admits 1 as neutral element. Applying the constructor
Build_Monoid — for instance with the tactic split — generates three subgoals.

split.
3 subgoals

forallzyz:Z, 2 *(y*2) =2 %y *z
Y

subgoal 2 is:
forallz : Z, 1 ¥z = x
subgoal 3 is:
forallx : Z, x ¥ 1 = x

Each subgoal is easily solved by intros; ring.

When the proof is finished, we register our instance with a simple Qed.
Note that we used Qed because we consider a class of sort Prop. In some
cases where instances must store some informative constants, ending an instance
construction with Defined may be necessary.

Check Zmult.
ZMult : Monoid Zmult 1

We explained on the preceding page why it is better to use the Class keyword
than Record or Inductive. For the same reason, the definition of an instance of
some class should be written using Instance and not Lemma, Theorem, Example,
etc., nor Definition.

2.2.2 A generic definition of power

We are now able to give a definition of the function power that can be applied
with any instance of class Monoid:
A first definition could be:

Fixpoint power {A:Type}{dot:A->A->A}{one:A}{M: Monoid dot one}
(a:A) (n:nat) :=
match n with O%nat => one
| S p=>dot a (power a p)
end.

Compute power 2 10.
= 1024 : Z

Happily, we can make the declaration of the three first arguments implicit,
by using the Generalizable Variables command:



Reset power.
Generalizable Variables A dot one.

Fixpoint power ‘{M: Monoid A dot one}(a:A) (n:nat) :=
match n with O%nat => one
| S p=>dot a (power a p)
end.

Compute power 2 10.
= 1024 : Z

The variables A dot one appearing in the binder for M are implicitly bound
before the binder for M and their types are infered from the Monoid A dot one
type. This syntactic sugar helps abbreviate bindings for classes with parameters.
The resulting internal Cog term is exactly the same as the first definition above.

2.2.3 Instance Resolution

The attentive reader has certainly noticed that in the last computation, the
the binary operation Zmult and the neutral element 1 need not to be given
explicitelyﬂ The mechanism that allows Cog to infer all the arguments needed
by the power function to be applied is called instance resolution.

In order to understand how it operates, let’s have a look at power’s type:

About power.

power :

forall (A : Type) (dot : A -> A -> A) (one : A),
Monoid dot one -> A -> nat -> A

Arguments A, dot, one, M are implicit and mazimally inserted

Compute power 2 100.
= 1267650600228229401496703205376 : Z

Set Printing Implicit.

Check power 2 100.

@power Z Zmult 1 ZMult 2 100 : Z
Unset Printing Implicit.

We see that the instance ZMult has been inferred from the type of 2. We
are in the simple case where only one monoid of carrier Z has been declared as
an instance of the Monoid class.

The implementation of type classes in Cog can retrieve the instance ZMult
from the type Z, then filling the arguments Zmult and 1 from ZMult’s definition.

2This is quite different from the basic implicit arguments mechanism, already able to infer
the type Z from the type of 2.



2.2.4 More Monoids
2.2.4.1 Matrices over some ring

We all know that multiplication of square matrices is associative and admits
identity matrices as neutral elements. For simplicity’s sake let us restrict our
study to 2 x 2 matrices over some ring.

We first load the Ring library, the open a section with some useful declara-
tions and notations. The reader may consult Coq’s documentation about the
Ring library.

Require Import Ring.

Section matrices.

Variables (A:Type)
(zero one : A)
(plus mult minus : A -> A -> A)
(sym : A -> A).

Notation "O" := zero. Notation "1" := onme.
Notation "x + y" := (plus x y).
Notation "x * y " := (mult x y).

Variable rt : ring_theory zero one plus mult minus sym (QGeq A).
Add Ring Aring : rt.

We can now define a carrier type for 2 x 2-matrices, as well as matrix mul-
tiplication and the identity matrix:

Structure M2 : Type := {c00 : A; cO1 : A;
cl0 : A; cl11 : A}.

Definition Id2 : M2 :

Build_ M2 1 0 O 1.

Definition M2_mult (m m’:M2) : M2 :=

Build_M2 (cOO0O m * c00 m> + cO1 m * c10 m’)
(cO0m * cO1 m” + cO1l m * ci11 m’)
(c10m * cO0 m”> + c11l m * c10 m?)
(c10m * cO01 m”> + c1l m * cl11 m?).

As for multiplication of integers, we can now define an instance of Monoid
for the type M2.

Global Instance M2_Monoid : Monoid M2_mult Id2.

(* Proof skipped *)
Qed.

End matrices.



We want now to play with 2 x 2 matrices over Z. We declare an instance
M2Z for this purpose, and can use directly the function power.

Instance M2Z : Monoid _ := M2_Monoid Zth.

Compute power (Build_ M2 1 1 1 0) 40.
={/
c00 := 165580141;
c01 := 102334155;
cl0 := 102334155;
cll := 63245986 |}
s M2 Z

Definition fibonacci (n:nat) :=
c00 (power (Build_ M2 1 1 1 0) n).

Compute fibonacci 20.
= 10946
7

2.3 Reasoning within a Type Class

We are now able to consider again the equivalence between two functions for
computing powers. Let us define the binary algorithm for any monoid:

First, we define an auxiliary function. We use the Program extension to
define an efficient version of exponentiation using an accumulator. The function
is defined by well-founded recursion on the exponent n:

Function binary_power_mult (A:Type) (dot:A->A->A) (one:A) (M: @Monoid A dot omne)
(acc x:A) (n:nat){measure (fun i=>i) n} : A
(¥ acc * (x ** n) *) :=
match n with
| 0%nat => acc
| _ => if Even.even_odd_dec n
then binary_power_mult _ acc (dot x x) (div2 n)
else binary_power_mult _ (dot acc x) (dot x x) (div2 n)
end.
intros;apply 1lt_div2; auto with arith.
intros; apply lt_div2; auto with arith.
Defined.

Definition binary_power ‘{M:Monoid} x n := binary_power_mult M one x n.

Compute binary_power 2 100.
= 1267650600228229401496703205376



2.3.1 The Equivalence Proof

The proof of equivalence between power and binary_power is quite long, and
can be split in several lemmas. Thus, it is useful to open a section, in which
we fix some arbitrary monoid M. Such a declaration is made with the Context
command, which can be considered as a version of Variables for declaring
arbitrary instances of a given class.

Section About_power.

Require Import Arith.
Context ‘{M:Monoid A dot omel}.

It is a good practice to define locally some specialized notations and tactics.

Ltac monoid_rw :=
rewrite (@one_left A dot one M) ||
rewrite (Qone_right A dot one M)||
rewrite (@dot_assoc A dot one M).

Ltac monoid_simpl := repeat monoid_rw.
Local Infix "x" := dot.
Local Infix "#x" := power (at level 30, no associativity).

2.3.2 Some Useful Lemmas About power

We start by proving some well-known equalities about powers in a monoid.
Some of these equalities are integrated later in simplification tactics.

Lemma power_x_plus : forall x n p, x ** (n + p) = X ** n * X ** p.
Proof.

induction n as [| p IHp];simpl.

intros; monoid_simpl;trivial.

intro q;rewrite (IHp q); monoid_simpl;trivial.
Qed.

Ltac power_simpl := repeat (monoid_rw || rewrite <- power_x_plus).
Lemma power_commute : forall x n p,
x**n*x**p:x**p*x**n,

(* Proof skipped *)

Lemma power_commute_with_x : forall x n ,

10



X K X %k I = X Xk D * X.
(* Proof skipped *)

Lemma power_of_power : forall x n p, (x ** n) **x p = x ** (p * n).

(* Proof skipped *)

Lemma power_S : forall x n, X * X %k n = X %% S n.
(* Proof skipped *)

Lemma sqr : forall x, x **x 2 = X * X.
(* Proof skipped *)

Ltac factorize := repeat (
rewrite <- power_commute_with_x ||
rewrite <- power_x_plus ||
rewrite <- sqr ||
rewrite power_S ||
rewrite power_of_power) .

Lemma power_of_square : forall x n, (x * X) ** n = X **% n * X ** n.

(* Proof skipped *)

2.3.3 Final Steps

We are now able to prove that the auxiliary function binary_power_mult sati-
isfies its intuitive meaning. The proof — partly skipped — uses well-founded
induction and the lemmas proven in the previous section:

Lemma binary_power_mult_ok :

forall n a x, binary_power_mult M a x n = a * x ** n.
Proof.

intro n; pattern n; apply lt_wf_ind.

(* Proof skipped *)

Then the main theorem follows immediately:

Lemma binary_power_ok : forall (x:A) (n:nat), binary_power x n = X ** n.
Proof.
intros n x;unfold binary_power;rewrite binary_power_mult_ok;
monoid_simpl;auto.
Qed.

2.3.4 Discharging the Context

It is time to close the section we opened for writing our proof of equivalence.
The theorem binary_power_ok is now provided with an universal quantification
over all the parameters of any monoid.

11



End About_power.

About binary_power_ok.

binary power ok :

forall (A : Type) (dot : A -> A -> A) (one : A) (M : Monoid dot one)
(z : A) (n : nat), binary power x n = power & n

Arguments A, dot, one, M are implicit and mazimally inserted
Argument scopes are [type scope  nat_scope]
binary power ok is opaque

Expands to: Constant Top.binary _power ok

Check binary_power_ok 2 20.
binary power ok 2 20
s binary _power 2 20 = power 2 20

Let Mfib := Build_ M2 1 1 1 O.
Check binary_power_ok Mfib 56.

binary power ok Mfib 56
s binary_power Mfib 56 = power Mfib 56

2.3.5 Subclasses

We could prove many useful equalities in the section about_power. Nevertheless,
we couldn’t prove the equality (zy)™ = 2" y™, because it is false in general —
consider for instance the free monoid of strings, or simply matrix multiplication.
Nevertheless, this equality holds in every commutative (a.k.a. abelian) monoid.

Thus we say that abelian monoids form a subclass of the class of monoids, and
prove this equality in a context declaring an arbitrary instance of this subclass.

Structurally, we parameterize the new class Abelian_Monoid by an arbitrary
instance M of Monoid, and add a new field stating the commutativity of dot.
Please keep in mind that we declared A, dot and one as generalizable variables,
hence we can use the backquote symbol here:

Class Abelian_Monoid ¢ (M:Monoid A dot omne) := {
dot_comm : forall x y, dot x y = dot y x}.

A quick look at the representation of Abelian_ Monoid as a record type helps
us understand how this class is implemented.

Print Abelian_Monoid.
Record Abelian._ Monoid (A : Type) (dot : A -> A -> A)
(one : A) (M : Monoid dot one) : Prop := Build_Abelian_ Monoid

12



{ dot_comm : forall x y : A, dot x y = dot y z }

For Abelian_ Monoid: Arguments A, dot, one are implicit and mazimally inserted
For Build_Abelian_ Monoid: Arguments A, dot, one are implicit

For Abelian_ Monoid: Argument scopes are [type scope |

For Build_ Abelian._ Monoid: Argument scopes are [type _scope ]

For building an instance of Abelian_Monoid, we can start from ZMult, the
monoid on Z, adding a proof that integer multiplication is commutative.

Instance ZMult_Abelian : Abelian_Monoid ZMult.
Proof.

split.

exact Zmult_comm.
Defined.

We can now prove our equality by building an appropriate context. Note
that we can specify just the parameters of the monoid here in the binder of the
abelian monoid, an instance of monoid on those same parameters is automat-
ically generalized. Superclass parameters are automatically generalized inside
quoted binders. Again, this is simply syntactic sugar.

Section Power_of_dot.
Context ‘{AM:Abelian_Monoid A dot onel}.

Theorem power_of_mult : forall n x y,
power (dot x y) n = dot (power x n) (power y n).
Proof.
induction n;simpl.
rewrite one_left;auto.
intros; rewrite IHn; repeat rewrite dot_assoc.
rewrite <- (dot_assoc x y (power x n)); rewrite (dot_comm y (power x n)).
repeat rewrite dot_assoc;trivial.
Qed.

End Power_of_dot.
Check power_of_mult 3 4 5.

power_of mult 3 4 5
s power (4 *5) 8 = power 4 3 * power 5 3

13



Chapter 3

Relations and rewriting

3.1 Introduction: Lost in Manhattan

Assume you are lost in Manhattan, or in any city with the same geometry:
square blocks, square blocks, and so on.

You ask some by-passer how to go to some other place, and you probably
will get an answer like that:

“go two blocks northward, then one block eastward, then three blocks
southward, and finally two blocks westward”.

You thank this kind person, and you go one block southward, then one block
westward.

If we represent such routes by lists of directions, you will consider that the
two considered routes

e North::North::East::South::South::South::West::West::nil
e South::West::nil

are not equal — because the former route is much longer than the other one
—, but equivalent, which means that they both lead to the same point.

Then you notice that the route West: :North: :East: :South: :nil is equiv-
alent to nil (which means “don’t move!”).

From both previous equivalences you want to infer simply that the long route

(North: :North: :East::South: :South: :South: :West::West::nil)++
(West::North: :East::South::nil)

is equivalent to South: :West::nil.

Moreover, you can consider this equivalence as a congruence w.r.t. route
concatenation. For instance, one can easily show that the above routes are
equivalent using a lemma stating that if the route r is equivalent to r’, and
s is equivalent to s’ then r++s is equivalent to r’++s’. We will say that

14



list concatenation is a proper function with respect to the equivalence between
routes.

The Cog system provides now some useful tools for considering relations
and proper functions, allowing to use the rewrite tactics for relations that are
weaker than the Leibniz equality. Examples of such relations include route-
equivalence, non-canonical representation of finite sets, partial commutation
monoids, etc.

Let us now start with our example.

3.2 Data Types and Definitions

We first load some useful modules, for representing directions, routes, and the
discrete plane on which routers operate:

Require Import List ZArith Bool.
Open Scope Z_scope.

Inductive direction : Type := North | East | South | West.
Definition route := list direction.

Record Point : Type :=
{Point_x : Z; Point_y : Z}.

Definition Point_0 := Build_Point O O.

3.3 Route Semantics

A route is just a “program” for moving from some point to another one. The
function move associates to any route a function from Point to Point.

Definition translate (dx dy:Z) (P : Point) :=
Build_Point (Point_x P + dx) (Point_y P + dy).

Fixpoint move (r:route) (P:Point) : Point :=
match r with

| nil => P

| North :: r’> => move r’ (translate O 1 P)

| East :: r’> => move r’ (translate 1 O P)

| South :: r’ => move r’ (translate 0 (-1) P)
| West :: r’ => move r’ (translate (-1) 0 P)
end.

Definition Point_eqb (P P’:Point) :=
Zeq_bool (Point_x P) (Point_x P’) &&

15



Zeq_bool (Point_y P) (Point_y P’).

Lemma Point_eqb_correct : forall p p’, Point_egb p p’ = true <->
p=p.

Proof skipped.

Qed.

We consider that two routes are "equivalent" if they define the same moves.
For instance, the routes East: :North: :West: :South: :East: :nil and East: :nil
are equivalent.

Definition route_equiv : relation route :=
fun r r’> => forall P, move r P = move r’ P.
Infix "=r=" := route_equiv (at level 70):type_scope.

Example Ex1 : East::North::West::South::East::nil =r= East::nil.
Proof.

intro P;destruct P;simpl.

unfold route_equiv,translate;simpl;f_equal;ring.
Qed.

3.4 On Route Equivalence

It is easy to study some abstract properties of the relation route_equiv. First,
we prove that this relation is reflexive, symmetric and transitive:

Lemma route_equiv_refl : Reflexive route_equiv.
Proof.

intros r p;reflexivity.

Qed.

Lemma route_equiv_sym : Symmetric route_equiv.
Proof.

intros r r’ H p; symmetry;apply H.

Qed.

Lemma route_equiv_trans : Transitive route_equiv.
Proof.

intros r r’ r’’ H H’ p; rewrite H; apply H’.
Qed.

Note that, despite these properties, the tactics reflexivity, symmetry, and
transitivity are not directly usable on the type route.

Goal forall r, route_equiv r r.
intro; reflexivity.

16



Toplevel input, characters 40-51:

Error: Tactic failure: The relation route_ equiv is not a
declared reflexive relation.
Maybe you need to require the Setoid library.

The last error message comes from the fact that the tactic reflexivity
consults a base of registered instance of a class named Reflexive. There exists
also classes named Symmetric, Transitive, and Equivalence. This last class
gathers the properties of reflexivity, symmetry and transitivity. Thus, we can
register an instance of the Equivalence class (and not as a lemma as above).

Instance route_equiv_Equiv : Equivalence route_equiv.
Proof. split;

[apply route_equiv_refl |

apply route_equiv_sym |

apply route_equiv_trans].
Qed.

The tactics reflexivity, etc. can now be applied to the relation route_equiv.

Goal forall r, r =r= r.
Proof. intro; reflexivity. Qed.

Note that it is possible to consider relations that are not equivalence rela-
tions, but are only transitive, or reflexive and transitive, etc. by using the right
type classes.

3.5 Proper Functions

Since routes are represented as lists of directions, we wish to prove some route
equivalences by composition of already proven equivalences, using some lemmas
on consing and appending routes.

For instance, we can prove that if we add the same direction in front of two
equivalent routes, the routes we obtain are still equivalent:

Lemma route_cons : forall r r’> d, r =r=1r’ -> d::r =r= d::r’.
Proof.

intros r r’ d H P;destruct d;simpl;rewrite H;reflexivity.
Qed.

This lemma can be applied to re-use our previous example Ex1.

Goal (South::East::North::West::South::East::nil) =r= (South::East::nil).
Proof. apply route_cons;apply Exl. Qed.

Note that the proof of route_cons contains a case analysis on d. Let us try
to have a more direct proof:

17



Lemma route_cons’ : forall r r> d, r =r=1r’ -> d::r =r=d::r’.
Proof.
intros r r’ d H;rewrite H.

Toplevel input, characters 80-89:
Error: Found no subterm matching "move v 217869" in the current goal.
Abort.

What we really need is to tell to the rewrite tactic how to use route_cons
for using an equivalence r =r= r’ for replacing r with 7’ in a term of the form
cons d r for proving directly the equivalence cons d r =r= cons d r’. In
other words, we say that cons d is proper w.-r.-t. the relation route_equiv.

In Cog this fact can be declared as an instance of:

Proper (route_equiv ==> route_equiv) (cons d)

This notation, which requires the library Morphisms to be loaded, expresses
that if two routes r and r’ are related through route_equiv, then the routes
d::r and d::r’ are also related by route_equiv.

In the notation used by Proper the first occurrence of route_equiv refers
to the arguments of cons d, and the second one to the result of this consing.
The user must require and import the Morphisms module to use this notation.

Require Import Morphisms.

Instance cons_route_Proper (d:direction)
Proper (route_equiv ==> route_equiv) (cons d).
Proof.
intros r r’ H ;apply route_cons;assumption.
Qed.

We can now use rewrite to replace some term by an equivalent one, provided
the context is made by applications of one or several functions of the form cons
d:

Goal forall r r’, r =r= r’ -> South::West::r =r= South::West::r’.
Proof.
intros r r’ H.

1 subgoal
r : route
r’ : route

H:r=r=1r

South :: West :: v =r= South :: West :: 1’

18



Since the context of the variable r is composed of applications of proper
function calls, the tactic rewrite H can be used to replace the occurrence of r
by r’:

rewrite H;reflexivity.
Qed.

3.6 Some Other instances of Proper

We prove also that the function move is proper with respect to route equivalence
and Leibniz equality on points:

Instance move_Proper : Proper (route_equiv ==> eq ==> eq) move.
Proof.

intros r r’ Hr_r’ p q Hpq. rewrite Hpq; apply Hr_r’.
Qed.

Let us prove now that list concatenation is proper w.r.t. route_equiv.
First, a technical lemma, that relates move and list concatenation:

Lemma route_compose : forall r r’ P, move (r++r’) P = move r’ (move r P).
Proof.
induction r as [|d s IHs]; simpl;
[auto | destruct d; intros;rewrite IHs;auto].
Qed.

Then the proof itself:

Instance app_route_Proper :

Proper (route_equiv ==> route_equiv ==> route_equiv) (@app direction).
Proof.

intros r r> H r’’ r’’’ H’> P.

repeat rewrite route_compose.

1 subgoal
T route
r’ : route
H:r=r=1r’
r’’ : route
r’’7 : route
H :r”7 =r=7r"7"
P : Point

move 1’ (move r P) = move v’ (move 1’ P)

now rewrite H, H’.
Qed.
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We are now able to compose proofs of route equivalence:

Example Ex2 : forall r, North::East::South::West::r =r=r.
Proof. intros r P;destruct P;simpl.

unfold route_equiv, translate;simpl;do 2 f_equal;ring.
Qed.

Example Ex3 : forall r r’, r =r= r’ ->
North::East::South::West::r =r= r’.
Proof. intros r r’ H. now rewrite Ex2. Qed.

Example Ex4 : forall r r’, r++ North::East::South::West::r’ =r= r++r’.
Proof. intros r r’. now rewrite Ex2. Qed.

This generalized rewriting principle applies to equivalence relations, but also
to e.g. order relations and can be used to rewrite under binders, where the usual
rewrite tactic fails. It is presented in more detail in the reference manual and
the article by [Sozeau| [2009)].

A non proper function

It is easy to give an example of a non-proper function. Two routes may be
equivalent, but have different lengths.

Example length_not_Proper : “Proper (route_equiv ==> Qeq nat) (Q@length _).

Proof. intro H.

generalize (H (North::South::nil) nil);simpl;intro HO.

discriminate HO.

intro P;destruct P; simpl;unfold translate; simpl;f_equal;simpl;ring.
Qed

3.7 Deciding Route Equivalence

Proofs of examples like Ex2 may seem too complex for proving that some routes
are equivalent. It is better to define a simple boolean function for deciding
equivalence, and use reflection in case we have closed terms of type route.

We first define a boolean function :

Definition route_egb r r’ : bool :=
Point_eqb (move r Point_0) (move r’ Point_0).

Some technical lemmas proved in Lost_in_NY lead us to prove the following
equivalence, that allows us to prove some path equivalences through a simple
computation:

Lemma route_equiv_equivb : forall r r’, route_equiv r r’ <->
route_eqb r r’ = true.
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Ltac route_eq_tac := rewrite route_equiv_equivb;reflexivity.

Example Ex1’ : route_equiv (East::North::West::South::East::nil) (East::nil).
Proof. route_eq_tac. Qed.

3.8 Monoids and Setoids

We would like to prove that route concatenation is associative, and admits the
empty route nil as a neutral element, making the type route the carrier of
some monoid.

The Monoid class type defined in Sect. [3.9.2] cannot be used for this purpose,
since the properties of associativity and being a neutral element are defined in
terms of Leibniz equality.

We give below a definition of a new class EMonoid parameterized by an
equivalence relation:

Class EMonoid A:Type(E_eq :relation A) (dot : A->A->A)(one : A):={
E_rel :> Equivalence E_eq;
dot_proper :> Proper (E_eq ==> E_eq ==> E_eq) dot;
E_dot_assoc : forall x y z : A, E_eq (dot x (dot y 2)) (dot (dot x y) 2);
E_one_left : forall x, E_eq (dot one x) x;
E_one_right : forall x, E_eq (dot x one) x }.

Fixpoint Epower ‘{M: EMonoid A E_eq dot one}(a:A) (n:nat) :=
match n with
| O%nat => omne
| 8 p=>dot a (Epower a p)
end.

We register an instance of EMonoid:

Instance Route : EMonoid route_equiv (@app _) nil .
Proof. split.
apply route_equiv_Equiv.
apply app_route_Proper.
intros x y z P;repeat rewrite route_compose; trivial.
intros x P;repeat rewrite route_compose; trivial.
intros x P;repeat rewrite route_compose; trivial.
Qed.

We can readily compute exponentiation of routes using this monoid:

Goal forall n, Epower (South::North::nil) n =r= nil.
Proof. induction n; simpl.
reflexivity.
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rewrite IHn.
route_eq_tac.
Qed.

Exercise It seems that route concatenation is commutative as far as route
equivalence is concerned. Is this true? In this case, define a subclass of EMonoid
that handles commutativity, and build an instance of this class for route con-
catenation and equivalence.

3.9 Advanced Features of Type Classes

3.9.1 Alternate definitions of the class Monoid

Note that A, dot and one are parameters of this definition, whilst they could
have been defined as fields of a structure.
The following variant is correct too:

Class Monoid’ : Type := {
carrier: Type;
dot : carrier -> carrier -> carrier;
one : carrier;
dot_assoc : forall x y z:carrier, dot x (dot y z)= dot (dot x y)
one_left : forall x, dot one x = Xx;
one_right : forall x, dot x one = x}.

However, there is a flaw in the definition of Monoid’: if for some reason one
needs to consider two monoid structures M and M’ on the same carrier, the
sharing of the considered carrier would be very clumsy to express and to reason
about.

Section TwoMonoids.

Variables M M’ : Monoid’.

Hypothesis same_carrier : Qcarrier M = Qcarrier M’.
Hypothesis same_one : @one M = Qone M’.

Toplevel input, characters 52-59:

Error:

In environment

M : Monoid’

M’ : Monoid’

same__carrier : carrier = carrier

The term "one" has type "carrier" while it is expected to have type
"carrier”.

A possible solution would be using JM equality, but we don’t get the sim-
plicity of the approach of Sect

Require Import JMeq.
Hypothesis same_one : JMeq (Qone M) (@one M’).
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Any definition using both monoids in the same expression will be filled with
coercions between the propositionally equal but not definitionally equal carriers
and operations, so this is an unworkable solution.

A second variant could be to consider the carrier A as the only parameter
of the definition and to leave the binary operation and neutral element as fields
of the class:

Class Monoid’ (A:Type) := {

dot : A -> A -> A;

one : A;

dot_assoc : forall x y z:A, dot x (dot y z)= dot (dot x y) z;
one_left : forall x, dot one x = Xx;

one_right : forall x, dot x one = x}.

It is possible to define the subclass of abelian monoids with this representa-
tion:

Class AbelianMonoid’ (A:Type) := {
underlying_monoid :> Monoid’ A;
dot_comm : forall x y, dot x y = dot y x }.

Section Foo.
Variable A : Type.
Context (AM : AbelianMonoid’ A).

Goal forall x y z, dot x (dot y z) = dot y (dot x 2z).
Proof. intros x y z.
repeat rewrite dot_assoc.
now rewrite (dot_comm x y).
Qed.
End Foo.

Require Import Arith.

Instance Mnat : Monoid’ nat.
Proof. split with plus Oj;auto with arith. Defined.

Instance AMnat : AbelianMonoid’ nat.
Proof. split with Mnat. unfold dot;auto with arith. Defined.

Goal dot 3 4 = 7.
Proof. reflexivity. Qed.

Nevertheless, the reader will find in a paper by [Spitters and van der Weegen
[2011] arguments for disregarding this variant: In short, some clumsiness would
appear if we want to make Monoid’ a member of new classes like Group, Ring,
etc.

23



3.9.2 Operational Type Classes

Let us come back to the definitions of section Sect. Let us assume we wish to
write functions and mathematical statements with a syntax as close as possible
to the standard mathematical notation. For instance, nested applications of the
dot operation should be written with the help of an infix operator.

The Infix command cannot be used directly, since dot is not declared as a
global constant.

Infix "*" := dot (at level 50, left associativity):M_scope.
Error: The reference dot was not found in the current environment.

A solution from ibid. consists in declaring a singleton type class for representing
binary operators:

Class monoid_binop (A:Type) := monoid_op : A -> A -> A.

Nota: Unlike multi-field class types, monoid_op is not a constructor, but a
transparent constant such that monoid_op f can be §5-reduced into f.
It is now possible to declare an infix notation:

Delimit Scope M_scope with M.
Infix "*" := monoid_op: M_scope.
Open Scope M_scope.

We can now give a new definition of Monoid, using the type monoid_binop
A instead of A—+A—A, and the infix notation x * y instead of monoid_op x

y:

Class Monoid (A:Type)(dot : monoid_binop A)(one : A) : Type :=
dot_assoc : forall x y z : A, x * (y * 2)= X * y * z;
one_left : forall x, one * X = X;

one_right : forall x, x * one = x.

For building monoids like ZMult or M2_Monoid, we first declare instances of
monoid_binop.

Instance Zmult_op : monoid_binop Z := Zmult.

Instance ZMult : Monoid Zmult_op 1.
Proof. split;intros; unfold Zmult_op, monoid_op; ring. Defined.

Section matrices.
Variables (A:Type)
(zero one : A)
(plus mult minus : A -> A -> A)
(sym : A -> A).
(* Definitions skipped, see section *)
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Global Instance M2_mult_op : monoid_binop M2 := M2_mult.

Global Instance M2_Monoid : Monoid M2_mult_op Id2.
Proof. (x Proof skipped *) Defined.
End matrices.

For dealing with matrices on Z, we may instantiate the parameters A, zero,
etc.

Instance M2_Z_op : monoid_binop (M2 Z) := M2_mult Zplus Zmult
Instance M2_mono_Z : Monoid (M2_mult_op _ _) (Id2 _ _):= M2_Monoid Zth.

Compute ((Build_M2 1 1 1 0) * (Build_M2 1 1 1 0))%M.
= {] 00 := 2 c01 := 1; ¢10 := 1; c11 = 1 [}
: M2 Z
Compute ((Id2 0 1) * (Id2 0 1))%M.
= {00 :=1; c01 := 0; c10 := 0; c11 := 1 ]}
: M2 Z

It is now easy to use the infix notation * in the definition of functions like
power:

Generalizable Variables A dot ome.

Fixpoint power ‘{M : Monoid A dot onel}(a:A)(n:nat) :=
match n with
| O%nat => omne
| S p=> (a * power a p)¥M
end.

Infix "**" := power (at level 30, no associativity):M_scope.

Compute (2 ** 5) ** 2.
= 1024 :Z
Compute (Build_M2 1 1 1 0) #*x 40.
={/
c00 := 165580141;
c01 := 102334155;

c10 ;= 102334155;
c11 := 63245986 |}
s M2 Z

All the techniques we used in Sect. can be applied with operational
type classes. The main section of this proof is as follows:

Section About_power.
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Context ¢(M:Monoid A).
Open Scope M_scope.

Ltac monoid_rw :=
rewrite one_left || rewrite one_right || rewrite dot_assoc.
Ltac monoid_simpl := repeat monoid_rw.

Lemma power_x_plus : forall x n p, x ** (n + p) = X **x n * X ** p.
Proof. (x Proof skipped *) Qed.
End About_power.

Notice that, when the section is closed, theorem statements keep the nota-
tions of M_scope:

Open Scope M_scope.
About power_of_power.

power_of power :
forall (A : Type) (dot : monoid_binop A) (one : A)
(M : Monoid dot one) (x : A) (n p : nat),
(x **n) **p =g ** (p *p)

If we want to consider monoids w.r.t. some equivalence relation, it is possible
to associate an operational type class to the considered relation:

Require Import Setoid Morphisms.

Class Equiv A := equiv : relation A.
Infix "==" := equiv (at level 70):type_scope.

Open Scope M_scope.
Class EMonoid (A:Type) (E_eq :Equiv A)
(E_dot : monoid_binop A)(E_one : A):= {
E_rel :> Equivalence equiv;
dot_proper :> Proper (equiv ==> equiv ==> equiv) E_dot;
E_dot_assoc : forall x y z:A,

X * (y *x z) == * y x Z;
E_one_left : forall x, E_one * x == Xx;
E_one_right : forall x, x * E_one == x}.

The overloaded == notation will refer to the appropriate equivalence relation
on the type of the arguments. One can develop in this fashion a hierarchy of
structures. In the following we define the structure of semirings starting from a
refinement of EMonoid.

(* Overloaded notations *)
Class RingOne A := ring_one : A.
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Class RingZero A := ring_zero : A.
Class RingPlus A := ring_plus :> monoid_binop A.

Class RingMult A := ring_mult :> monoid_binop A.
Infix "+" := ring_ plus.

Infix "*" := ring mult.

Notation "O" := ring_zero.

Notation "1" := ring_one.

Typeclasses Transparent RingPlus RingMult RingOne RingZero.

Class Distribute ‘{Equiv A} (f g: A -> A -> A): Prop :=
{ distribute_.l abc: fa (gbc)==g (fab) (fac)
; distribute_r abc: f (gab) c==g (fac) (fbc)l.

Class Commutative {A B} ‘{Equiv B} (m: A -> A -> B): Prop :
commutativity x y : mx y == m y X.

Class Absorb A ‘{Equiv A} (m: A -> A -> A) (x : A) : Prop :
{ absorb_l ¢c : mx c == x ;
absorb_r ¢ : m ¢ x == x }.

Class ECommutativeMonoid ¢ (Equiv A) (E_dot : monoid_binop A) (E_one :

{ e_commmonoid_monoid :> EMonoid equiv E_dot E_one;
e_commmonoid_commutative :> Commutative E_dot }.

Class ESemiRing (A:Type) (E_eq :Equiv A)
(E_plus : RingPlus A) (E_zero : RingZero A)
(E_mult : RingMult A) (E_one : RingOne A):=
{ add_monoid :> ECommutativeMonoid equiv ring_plus ring_zero ;
mul_monoid :> EMonoid equiv ring_mult ring_one ;
ering _dist :> Distribute ring mult ring_plus ;
ering_O_mul :> Absorb ring mult O }.

Note that we use a kind of multiple inheritance here, as a semiring con-
tains two monoids, one for addition and one for multiplication, that are related
by distributivity and absorbtion laws. To distinguish between the correspond-
ing monoid operations, we introduce the new operational type classes Ring*.
These classes are declared Transparent for typeclass resolution, so that their
expansion to monoid_binop can be used freely during conversion: they are just
abbreviations used for overloading notations.

We also introduce classes for the standard properties of operations like com-
mutativity, distributivity etc... to be able to refer to them generically.

We can now develop some generic theory on semirings using the overloaded
lemmas about distributivity or the constituent monoids. Resolution automati-
cally goes through the ESemiRing structure to find proofs regarding the under-
lying monoids.
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Section SemiRingTheory.
Context ‘{ESemiRing A}.

Definition ringtwo := 1 + 1.
Lemma ringtwomult : forall x : A, ringtwo * x == x + x.
Proof.

intros. unfold ringtwo.

rewrite distribute_r.

now rewrite (E_one_left x).
Qed.

End SemiRingTheory.

3.9.3 Instance Resolution

Let us consider again the term written “binary_power 2 55”. This term —
with all its arguments explicited — is “ @binary_power Z Zmult_op 12 55"
The implicit arguments Z, Zmult_op and 1 have been inferred from the type Z of
2, looking at the instances of Monoid that were compatible with the instanciation
A:=Z.

If we consider another instance of Monoid with the same domain, the instance
resolution mechanism, which relies on auto, may not respect the user’s intuition.

For instance, let us temporarily consider another monoid on Z.

Section Z_additive.
Instance Z_plus_op : monoid_binop Z := Zplus.

Instance ZAdd : Monoid Z_plus_op O.
Proof. split;intros;unfold Z_plus_op, mon_op;ring. Defined.

Unfortunately, two instances of monoid_binop are linked to the type Z. Thus,
a notation like 2 * 5 looks ambiguous:

In the interaction below, the instance Z_plus_op is preferred over Z_mult_op,
as it was declared the latest.

Compute 2 * 5.
=7
:Z

To force an unambiguous interpretation regardless of the order of decla-
rations, one solution is to add to the instance declaration a cost, which is a
natural number: the lowest the cost, the higher is the priority. Let us consider
the following two instance declarations:

= Zmult.
Zplus.

Instance Zmult_op : monoid_binop Z | 1
Instance Zplus_op : monoid_binop Z | 2 :
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Compute (2 * 5)%M.
= 10 : nat

Now the highest priority (lowest cost) instance is selected.
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Conclusion

This concludes our tour of type classes and generalized rewriting. For more
information on classes, one can consult the lecture notes by [Sozeau| [2012] which
develops other examples of use. [Spitters and van der Weegen| [2011] develop a
large hierarchy of structures using classes, including pervasive use of generalized
rewriting. The current version of their library is available online at: https:
//github.com/math-classes. The library on categories and categorical syntax
and semantics by Benedikt Ahrens|Ahrens, uses heavily type classes and is worth
reading.

Generalized rewriting [Sozeaul [2009] is an example of the use of type classes
to develop a generic tactic that can apply to arbitrary user constants as long
as “Proper” instances are declared on them. As we’ve seen, the very nature of
type classes is to do proof search at typechecking-time. They are hence very
fit to implement generic tactics that depend on some properties of the terms
fed to them, for example associativity or commutativity of functions in the
work of |Braibant and Pous [2012]. They can also be used to concisely specify
domain-specific proof automation, solving side conditions for a particular class
of problems as in |Gonthier et al.|[2011]. These papers provide more advanced
examples and design patterns for working with type classes.
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