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** Infinite Objects and Proofs

Reasoning about infinite objects while staying in the finite world of a computer
is one of the most fascinating uses of proof tools.

Inductive proof techniques already make it possible to prove statements
for infinite collections of objects, that is, integers, binary trees, and so on. Of
course, each of these objects is built in a finite number of steps and this is the
intuitive justification for induction. We propose taking a further step, with
techniques to build and handle infinite objects, integrated in the Coq system
by Gimenez [43, 44]. The main example that we use in this chapter consists in
streams, which are especially adapted to model reactive systems. In domains
such as communication, energy, or transportation, infinite execution is the
norm rather than the exception.

13.1 Co-inductive Types

The types we often study are extensions of classical data types, that is, infinite
or potentially infinite lists, potentially infinite trees, and so on. Most of our
examples deal with finite or infinite lists and some exercises deal with binary
trees that may contain an infinity of nodes.

13.1.1 The CoInductive Command

To understand the concept of co-inductive types, we can compare it with
the concept of inductive types. Terms in an inductive type are obtained by re-
peated uses of the constructors provided in the definition. Moreover, the terms
should be constructed in such a way that there cannot be infinite branches
of subterms. This constraint is actually expressed by the induction principle
associated with the type. Co-inductive types are similar to inductive types,
in the sense that terms should still be obtained by repeated uses of the con-
structors. However, there is no induction principle and the branches in the
inductive types may be infinite.
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The command to define a new co-inductive type is thus very similar to the
command to define a new inductive type. We have to provide the type name,
its own type, and the names and types of its constructors. For this reason,
definitions of co-inductive types will be the same as definitions of inductive
types, with only one exception: we replace the keyword Inductive by the
keyword CoInductive.

13.1.2 Specific Features of Co-inductive Types

The fact that terms should be obtained through the constructors is ensured
by the possibility of defining terms by pattern matching, as with inductive
types. Recursive functions cannot be defined in the same manner. Because we
want to preserve the property that every function in Coq represents a termi-
nating computation, we cannot consider functions that perform the complete
traversal of terms in a co-inductive type. However, we can consider a class of
lazy recursive functions that build infinite terms in co-inductive types. The
terms these functions produce may be infinite, but as long as we require only
to see a finite part of these terms, these functions only need to perform fi-
nite computations. These functions will be described below as co-recursive
functions. The most characteristic aspect of these functions is that they build
values in co-inductive types, while the recursive functions we studied in previ-
ous chapters consume values in inductive types. The term “co-inductive type”
stems from this duality: co-inductive types are the co-domains (the ranges)
of co-recursive functions while inductive types are the domains of recursive
functions.

We shall also see that Leibniz equality (i.e., eq) is too strong to be used
to compare co-inductive values. Whenever we cannot prove that two objects
built with distinct constructions are identical, we will have to content ourselves
with a weaker notion of equivalence: two objects are “equal” if their—maybe
infinite—exploration always finds the same component in the same place. Let
us say that two such objects are bisimilar.

The next three sections describe examples of co-inductive types. Pattern
matching is described in Sect. 13.2.2 and co-recursive functions are described
in Sect. 13.3.

13.1.3 Infinite Lists (Streams)

The Streams module from the Coq library defines a type operator for infinite
sequences called Streams:Set→Set. If A is a type in the Set sort, the type
“Stream A” contains infinite sequences of elements of type A. It is defined
with a single constructor named Cons:

CoInductive Stream (A:Set): Set :=

Cons : A → Stream A → Stream A.
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An important difference with the definition of lists from Sect. 6.4.1 is that
there is no constructor for the empty list. Thus, we cannot construct finite
lists and every element has the form “Cons a l.”

13.1.4 Lazy Lists

The only difference between the type “LList A,” used to build finite or infinite
lists, and the type “Stream A” is that, for the type “LList A,” there exists a
constructor LNil for empty lists. One can consider a lazy list as the output
stream of some process whose behavior can be either finite or infinite. For this
reason, let us call a stream or sequence any inhabitant of the type “LList A,”
since this type is more general than the type “Stream A” provided in the Coq
libraries.

Set Implicit Arguments.

CoInductive LList (A:Set) : Set :=

LNil : LList A

| LCons : A → LList A → LList A.

Implicit Arguments LNil [A].

The prefix L (for “lazy”) given to most of the constants we define is to avoid
confusion with the similar constants from the modules List and Stream in
the Coq library. From a set-theoretic point of view, we could say that LList
is the largest set of terms built with constructors LNil and LCons, and this
includes both finite and infinite terms. As for inductive types, constructors
are considered injective and distinguishable (two different constructors always
return different results). The tactics injection (described in Sect. 6.2.3.1)
and discriminate (Sect. 6.2.2.2) are thus also relevant for co-inductive types.

13.1.5 Lazy Binary Trees

Finite or infinite binary trees (or lazy binary trees) labeled with values of type
A can be described using the following co-inductive definition:

CoInductive LTree (A:Set) : Set :=

LLeaf : LTree A

| LBin : A → LTree A → LTree A → LTree A.

Implicit Arguments LLeaf [A].

The problems we can encounter with these trees are more complex than for
lists. A tree in the type “LTree A” may be finite or infinite; when it is infinite
it may still have some finite branches or it may have only infinite branches.
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13.2 Techniques for Co-inductive Types

It may seem paradoxical to say that we build infinite terms, since we work
in the bounded framework of a computer. The first problem we need to solve
is the representation problem. This situation is similar to the simulation of
streams in applicative languages with a call-by-value strategy. Such a simula-
tion relies on anonymous functions (see [18]). In general, a finite representation
of an infinite object is suitable if we can use it to obtain every component of
the object by a finite computation. For instance, we should be able to use the
finite representation of a lazy list l to determine whether this list contains an
nth element and to know its value, for every n. We should be able to use the
representation of lazy trees to determine whether a given access path leads to
a leaf, an internal node, or does not exist in the tree.

13.2.1 Building Finite Objects

Co-inductive types are defined by a collection of constructors. We can apply
these constructors a finite number of times to obtain finite objects, provided
there exists at least one non-recursive constructor. For instance, we can build
finite terms of type “LList A” as was done for the lists of Sect. 6.4.1, simply
by repetitive uses of the constructor LCons, starting from the constant LNil.
The following example builds a list containing the integers 1, 2, and 3 in this
order. Note that thanks to implicit arguments, the type argument to LCons

is omitted because it can be inferred from the type of the second argument.

Check (LCons 1 (LCons 2 (LCons 3 LNil))).

LCons 1 (LCons 2 (LCons 3 LNil)) : LList nat

On the other hand, it is not possible to build a finite object of type Stream.

Exercise 13.1 * Define an injection mapping every list of type “list A” to
a list of type “LList A” and prove that it is injective.

13.2.2 Pattern Matching

Since infinite objects are represented by a possibly complex encoding, it is
important to provide a simple way to obtain their components. We can use
the fact that every term of co-inductive type C is necessarily of the form
“c t1 . . . tn” where c is a constructor of C. The match construct (introduced
in Sect. 6.1.4 for inductive types) is the standard tool to reach the components
t1 . . . tn. Figure 13.1 gives a few functions for accessing the components of lazy
lists. Here is an example using one of these functions:

Eval compute in (LNth 2 (LCons 4 (LCons 3 (LCons 90 LNil)))).

= Some 90 : option nat



13.3 Building Infinite Objects 351

Definition isEmpty (A:Set)(l:LList A) : Prop :=

match l with LNil ⇒ True | LCons a l’ ⇒ False end.

Definition LHead (A:Set)(l:LList A) : option A :=

match l with | LNil ⇒ None | LCons a l’ ⇒ Some a end.

Definition LTail (A:Set)(l:LList A) : LList A :=

match l with LNil ⇒ LNil | LCons a l’ ⇒ l’ end.

Fixpoint LNth (A:Set)(n:nat)(l:LList A){struct n}

: option A :=

match l with

| LNil ⇒ None

| LCons a l’ ⇒
match n with O ⇒ Some a | S p ⇒ LNth p l’ end

end.

Fig. 13.1. Access functions for lazy lists

Exercise 13.2 * Define predicates and access functions for the type of lazy
binary trees:

• is_LLeaf: to be a leaf,
• L_root: the label of the tree root (when it exists),
• L_left_son,
• L_right_son,
• L_subtree: yields the subtree given by a path from the root (when it exists),
• Ltree_label: yields the label of the subtree given by a path from the root

(when it exists).

The paths are described as lists of directions where a direction is defined as
follows:

Inductive direction : Set := d0 (* left *) | d1 (* right *).

13.3 Building Infinite Objects

In this section, we study how to represent infinite structures in a finite manner.
We cannot provide a representation for all infinite structures. A simple cardi-
nality argument is enough to convince us that this is not possible. For instance,
infinite lists of boolean values can be used to represent non-denumerable sets
like the real interval [0, 1] while finite representations can only be used to rep-
resent denumerable sets. Still, there are infinite objects that we can describe.
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13.3.1 A Failed Attempt

We study the way to build the stream of all natural numbers. Of course, it is
impossible to build by hand an infinite term with the following form:

LCons 0 (LCons 1 (LCons 2 (LCons 3 ... ))).

Another way to proceed is to consider the streams “from n” of all numbers
starting from n in a symbolic way. We should have the following equality:

from n = (LCons n (from n+ 1))

We are tempted to use a recursive definition, using Fixpoint:

Fixpoint from (n:nat) {struct n} : LList nat :=

LCons n (from (S n)).

However, this is not correct. This definition is not well-formed because n is not
structurally decreasing in the recursive call, quite the contrary. It is refused
by the Coq system:

Error: Recursive definition of ‘‘from’’ is ill-formed.
In environment n : nat,
Recursive call to ‘‘from’’ has principal argument equal to
‘‘S n’’ instead of a subterm of ‘‘n’’

13.3.2 The CoFixpoint Command

The syntax of the CoFixpoint command is close to the syntax of the
Definition command. However, it makes recursive calls possible and there-
fore infinite recursion leading to infinite data is possible. Here is how we can
define the list of all natural numbers starting at n:

CoFixpoint from (n:nat) : LList nat := LCons n (from (S n)).

Definition Nats : LList nat := from 0.

There is also an anonymous form of cofixpoint, called cofix, used in the
same way as fix:

Definition Squares_from :=

let sqr := fun n:nat ⇒ n*n in

cofix F : nat → LList nat :=

fun n:nat ⇒ LCons (sqr n)(F (S n)).

The Cofixpoint command is closer to the Definition command because
co-recursion relies on the fact that the function’s co-domain is a co-inductive
type and there is no constraint on the function’s domain, while the Fixpoint

command imposes a constraint on the function’s domain and we need to state
which input argument is the principal argument. From now on, functions
defined with the cofixpoint command or the cofix construct will be called
co-recursive functions.
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Guard Conditions

Not all recursive definitions are allowed using the cofixpoint command.
First, the result type must be a co-inductive type, second there is a syntactic
condition on recursive calls that is somehow related to the syntactic condition
on recursive calls in the Fixpoint command. A definition by cofixpoint is
only accepted if all recursive calls (like “from (S n)” in our example) occur
inside one of the arguments of a constructor of the co-inductive type. This is
called the guard condition. This guard condition is inspired by lazy program-
ming languages in which constructors do not evaluate their arguments. This
prevents the evaluation of “from 0” from looping. In our definition of from,
the guard condition is satisfied, and the only recursive call “from (S n)” oc-
curs as the second argument of the constructor LCons.

To motivate this guard condition, let us consider the ways in which infi-
nite objects are used. We can read the data in an infinite object by pattern
matching and we would like all computation to terminate, including pattern
matching on an infinite object. The guard condition ensures that every co-
recursive call produces at least one constructor of the co-inductive type being
considered. Thus, a pattern matching operation on data in a co-inductive type
requires a finite number of co-recursive calls to decide the branch to follow.
Let us consider a few examples:

Eval simpl in (isEmpty Nats).

= False : Prop

The isEmpty predicate is defined using pattern matching. After βδ-reductions,
the term to simplify has the following shape:

match (cofix from (n:nat): LList nat :=
LCons n (from (S n))) 0 with

| LNil ⇒ True
| LCons _ _ ⇒ False
end

: Prop

The pattern matching construct provokes an expansion of the co-fixpoint ex-
pression and this produces the LCons constructor applied to 0 and the recur-
sive call “from 1.” The pattern matching clause for this value yields False.

On the other hand, simplifying an expression that is not inside a pattern
matching construct does not provoke any expansion of co-fixpoint expressions:

Eval simpl in (from 3).

= from 3 : LList nat

Eval compute in (from 3).

= (cofix from (n:nat): LList nat :=
LCons n (from (S n))) 3

: LList nat
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Expansions can be iterated when pattern matching occurs in structurally re-
cursive functions for other inductive types. The LNth function is structurally
recursive over an argument of type nat.

Eval compute in (LHead (LTail (from 3))).

= Some 4 : option nat

Eval compute in (LNth 19 (from 17)).

= Some 36 : option nat

13.3.3 A Few Co-recursive Functions

We advise the reader to check that the guard condition is satisfied in all the
examples in this section.

13.3.3.1 Repeating the Same Value

The function repeat takes as argument a value and yields a list where this
value is repeated indefinitely:

CoFixpoint repeat (A:Set)(a:A) : LList A := LCons a (repeat a).

13.3.3.2 Concatenating Lists

A solution to concatenating potentially infinite lists is to analyze the first list
by pattern matching and to decide what value should be returned depending
on the pattern matching cases. This is an example of a function that has a
potentially infinite list as input and produces another one. Nevertheless, the
guard is expressed with respect to the output rather than the input.

CoFixpoint LAppend (A:Set)(u v:LList A) : LList A :=

match u with

| LNil ⇒ v

| LCons a u’ ⇒ LCons a (LAppend u’ v)

end.

Here are a few examples combining LAppend, repeat, and LNth. In the first
example, the 123 recursive calls to LNth provoke as many recursive calls to
LAppend and to repeat. In the second example, the first argument to LAppend

is exhausted after the first three recursive calls and the second argument is
then used.

Eval compute in (LNth 123 (LAppend (repeat 33) Nats)).

= Some 33 : option nat

Eval compute in

(LNth 123 (LAppend (LCons 0 (LCons 1 (LCons 2 LNil))) Nats)).

= Some 120 : option nat
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13.3.3.3 Repeating the Same Sequence

The last example is more complex. We want to generalize the repeat function
by considering the infinite iteration of a sequence “u: LList A.” For instance,
the infinite iteration of “LCons 0 (LCons 1 LNil)” should return a stream
that alternates the values 0 and 1. When u is infinite, the result is u itself.
When u is empty, the result is also the empty stream.

A direct definition by CoFixpoint does not work. We would have to con-
struct the infinite iteration of “Lcons a v” from the infinite iteration of v,
but there is no simple correspondence. To solve this problem, it is better to
solve a more general problem. We first consider the problem of concatenating
a sequence u with an infinite repetition of another sequence v, a value which
we write temporarily as uvω.

• If v is empty the result is u.
• Otherwise, consider v = LCons b v′:

– if u is empty then the result is a sequence with b as head and
v′(LCons b v′)ω as tail,

– otherwise, consider u = LCons a u′: the result is a sequence with a as
head and u′vω as tail.

The function computing uvω can be defined as a co-recursive function. We
can apply this function to u = v to solve the initial problem.

CoFixpoint general_omega (A:Set)(u v:LList A) : LList A :=

match v with

| LNil ⇒ u

| LCons b v’ ⇒
match u with

| LNil ⇒ LCons b (general_omega v’ v)

| LCons a u’ ⇒ LCons a (general_omega u’ v)

end

end.

Definition omega (A:Set)(u:LList A) : LList A :=

general_omega u u.

These functions may look quite complex but we see later how to obtain a few
simple lemmas that make it easier to reason on them.

Exercise 13.3 ** Build a binary tree containing all strictly positive integers.

Exercise 13.4 * Define a function graft on “LTree A” so that “graft t t′”
is the result of replacing all leaves of t by t′.
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13.3.4 Badly Formed Definitions

Of course, functions that do not satisfy the guard conditions are rejected.
Here are a few classical examples, most of which were described in Gimenez’
work [44].

13.3.4.1 Direct Recursive Calls

The following definition of a “filter”—a functional that takes from a stream
only those elements that satisfy a boolean predicate—is not accepted, because
one of the recursive calls to filter appears directly as the value of one of the
cases:

CoFixpoint filter (A:Set)(p:A→bool)(l:LList A) : LList A :=

match l with

LNil ⇒ LNil

| LCons a l’ ⇒ if p a then LCons a (filter p l’)

else (filter p l’)

end.

If Coq accepted this definition, evaluating the following term would trigger a
non-terminating computation:

LHead (filter (fun p:nat ⇒
match p with 0 ⇒ true | S n ⇒ false end)

(from 1))

Another example is the following definition, where the first call to the function
buggy_repeat is not guarded:

CoFixpoint buggy_repeat (A:Set)(a:A) : (LList A) :=

match buggy_repeat a with

LNil ⇒ LNil

| LCons b l’ ⇒ LCons a (buggy_repeat a)

end.

13.3.4.2 Recursive Calls in a Non-constructor Context

In the following definition, one of the internal calls to F is only included in a
call of F itself, and F is not a constructor of the targeted co-inductive type:

CoFixpoint F (u:LList nat) : LList nat :=

match u with

LNil ⇒ LNil

| LCons a v ⇒ match a with

O ⇒ LNil

| S b ⇒ LCons b (F (F v))

end

end.



13.4 Unfolding Techniques 357

Determining whether this function always terminates would require an anal-
ysis that is too complex to be automated. The Coq system relies on a rather
simple criterion and rejects this kind of definition.

Exercise 13.5 * Define the functional with the following type

LMap:prodsymA B:Set, (A→B) → LList A → LList B

such that “LMap f l” is the list of images by f of all elements of l.
Can you define the functional with the following type

LMapcan:∀ A B:Set, (A→(LList B)) → LList A → LList B

such that “LMapcan f l” is the concatenation using LAppend of the images by
f of all elements of l?

13.4 Unfolding Techniques

We must now study the techniques to reason on co-recursively defined func-
tions. We have seen in the previous section that unfolding a recursive defini-
tion is very restricted. We can illustrate this with an attempt to compute the
concatenation of two finite sequences:

Eval simpl in

(LAppend (LCons 1 (LCons 2 LNil))(LCons 3 (LCons 4 LNil))).

= LAppend (LCons 1 (LCons 2 LNil))(LCons 3 (LCons 4 LNil))
: LList nat

No substantial modification is performed and LAppend still appears as applied
to the two streams it had as arguments, while we would have expected to
obtain a single term written only with LCons, LNil, and natural numbers.
The next example shows a proof attempt that fails for the same reason:

Theorem LAppend_LCons :

∀ (A:Set)(a:A)(u v:LList A),

LAppend (LCons a u) v = LCons a (LAppend u v).

Proof.

intros; simpl.

...
============================

LAppend (LCons a u) v = LCons a (LAppend u v)

The simpl tactic did not make any progress.
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13.4.1 Systematic Decomposition

We saw in Sect. 13.3.3.2 that an access operation provokes the unfolding of a
co-recursive function like LAppend. In general, if a term t has a co-inductive
type C, then there exists a constructor of C so that t is obtained by applying
this constructor. This property can be expressed as an equality between t and a
pattern matching construct. This equality is the statement of a decomposition
lemma. Such a lemma can be built for every inductive or co-inductive type,
but it is only useful for co-inductive types, because reduction takes care of the
decomposition for recursive functions of inductive types (this approach was
suggested to us by Christine Paulin-Mohring). For instance, the decomposition
lemma for the type of potentially infinite lists is described with an auxiliary
function:

Definition LList_decompose (A:Set)(l:LList A) : LList A :=

match l with

| LNil ⇒ LNil

| LCons a l’ ⇒ LCons a l’

end.

The following lemma shows that LList_decompose really is an identity func-
tion on “list A.” Its proof is a simple case-by-case analysis:

Theorem LList_decomposition_lemma :

∀ (A:Set)(l:LList A), l = LList_decompose l.

Proof.

intros A l; case l; trivial.

Qed.

Exercise 13.6 * Follow the same approach for the type of potentially infinite
binary trees.

13.4.2 Applying the Decomposition Lemma

From a functional point of view, the function LList_decompose is only an
identity function on “list A,” and it seems stupid to define it. From an
operational point of view, however, this function is interesting because its
application on the result of co-recursive functions provokes an unfolding of
these co-recursive functions.

Eval simpl in (repeat 33).

= repeat 33 : LList nat

Eval simpl in (LList_decompose (repeat 33)).

= LCons 33 (repeat 33) : LList nat

Exercise 13.7 * Define a function LList_decomp_n with type
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∀ A:Set, nat→ LList A → LList A

that iterates the function LList_decompose. For instance, we should have the
following dialogue:

Eval simpl in (LList_decomp_n 4

(LAppend (LCons 1 (LCons 2 LNil))

(LCons 3 (LCons 4 LNil)))).

= LCons 1 (LCons 2 (LCons 3 (LCons 4 LNil)))
: LList nat

Eval simpl in (LList_decomp_n 6 Nats).

= LCons 0
(LCons 1

(LCons 2
(LCons 3

(LCons 4 (LCons 5 (from 6))))))
: LList nat

Eval simpl in

(LList_decomp_n 5 (omega (LCons 1 (LCons 2 LNil)))).

= LCons 1
(LCons 2

(LCons 1
(LCons 2

(LCons 1
(general_omega (LCons 2 LNil)(LCons 1 (LCons 2 LNil)))))))

: LList nat

Generalize the decomposition lemma to this function.

13.4.3 Simplifying a Call to a Co-recursive Function

The decomposition lemma makes it possible to force the expansion of co-
recursive calls, when necessary. For instance, we want to prove the equality

LAppend Lnil v = v

for every type A and every list v of the type “LList A”.
Thanks to the decomposition lemma, we can transform this goal into

LList_decompose (LAppend LNil v) = v.

A case-by-case analysis on v leads to the following two goals:

LList_decompose (LAppend LNil LNil) = LNil

LList_decompose (LAppend LNil (LCons a v)) = LCons a v.
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In both cases, simplification leads to a trivial equality. Here is the complete
script, with a tactic that simplifies the reasoning process and that will be used
extensively throughout the rest of this chapter:

Ltac LList_unfold term :=

apply trans_equal with (1 := LList_decomposition_lemma term).

Theorem LAppend_LNil : ∀ (A:Set)(v:LList A), LAppend LNil v = v.

Proof.

intros A v.

LList_unfold (LAppend LNil v).

case v; simpl; auto.

Qed.

In the same manner, we can prove the lemma LAppend_LCons (a proof attempt
for this lemma failed at the start of Sect. 13.4).

Theorem LAppend_LCons :

∀ (A:Set)(a:A)(u v:LList A),

LAppend (LCons a u) v = LCons a (LAppend u v).

Proof.

intros A a u v.

LList_unfold (LAppend (LCons a u) v).

case v; simpl; auto.

Qed.

These useful lemmas can be placed in the databases for the tactic autorewrite.

Hint Rewrite LAppend_LNil LAppend_LCons : llists.

Exercise 13.8 ** Prove the unfolding lemmas for the example functions de-
fined in this chapter:

Lemma from_unfold : ∀ n:nat, from n = LCons n (from (S n)).

Lemma repeat_unfold :

∀ (A:Set)(a:A), repeat a = LCons a (repeat a).

Lemma general_omega_LNil : ∀ A:Set, omega LNil = LNil (A := A).

Lemma general_omega_LCons :

∀ (A:Set)(a:A)(u v:LList A),

general_omega (LCons a u) v = LCons a (general_omega u v).

Lemma general_omega_LNil_LCons :

∀ (A:Set)(a:A)(u:LList A),

general_omega LNil (LCons a u) =
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LCons a (general_omega u (LCons a u)).

Conclude with the following lemma:

Lemma general_omega_shoots_again : ∀ (A:Set)(v:LList A),

general_omega LNil v = general_omega v v.

Remark 13.1 We would have also liked to give the following lemma as an
exercise:

Lemma omega_unfold :

∀ (A:Set)(u:LList A), omega u = LAppend u (omega u).

But this cannot be proved. This is not the direct translation of the omega

function or its auxiliary function. There is a complex issue when u is infinite.
In fact we can only prove this lemma when u is finite, but with a much more
complex reasoning than for the examples given so far. Another solution that
we study in Sect. 13.7 consists in providing an equivalence relation that is
weaker than the usual Coq equality. Two lists are equivalent if they have the
same elements at the same place.

Exercise 13.9 ** Prove the unfolding lemmas for the function graft defined
in Exercise 13.4.

13.5 Inductive Predicates over Co-inductive Types

Most of the tools studied in previous chapters for inductive properties still ap-
ply for dependent inductive types whose arguments have a co-inductive type.
This section does not introduce new notions and only gives a few examples.

A Predicate for Finite Sequences

Since the type “LList A” contains finite and infinite sequences it is useful
to have a predicate Finite. A finite sequence is built by a finite number of
applications of the constructors LNil and LCons and it is natural to describe
this using an inductive definition:

Inductive Finite (A:Set) : LList A → Prop :=

| Finite_LNil : Finite LNil

| Finite_LCons :

∀ (a:A)(l:LList A), Finite l → Finite (LCons a l).

Hint Resolve Finite_LNil Finite_LCons : llists.
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Constructor application, inversion, and induction can be applied on this in-
ductive predicate without any problem. The following proofs also rely on au-
tomatic proofs using auto and autorewrite:

Lemma one_two_three :

Finite (LCons 1 (LCons 2 (LCons 3 LNil))).

Proof.

auto with llists.

Qed.

Theorem Finite_of_LCons :

∀ (A:Set)(a:A)(l:LList A), Finite (LCons a l) → Finite l.

Proof.

intros A a l H; inversion H; assumption.

Qed.

Theorem LAppend_of_Finite :

∀ (A:Set)(l l’:LList A),

Finite l → Finite l’ → Finite (LAppend l l’).

Proof.

induction 1; autorewrite with llists using auto with llists.

Qed.

Exercise 13.10 *** Prove the following lemma that expresses how the func-
tion omega iterates on its argument. Note that this theorem is restricted to
finite streams. This is a partial solution to the problem described in Re-
mark 13.1.

Theorem omega_of_Finite :

∀ (A:Set)(u:LList A), Finite u → omega u = LAppend u (omega u).

Hint: use lemmas from Exercise 13.8.

Exercise 13.11 Define the predicate on “LTree A” which characterizes finite
trees. Prove the equality

graft t (LLeaf A) = t

for every finite tree t.

13.6 Co-inductive Predicates

We have seen in Chap. 3 that propositions are types and their proofs are in-
habitants of these types. Co-inductive types of sort Prop make it possible to
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describe co-inductive predicates; proofs of statements using these predicates
are infinite proof terms, which we can construct with the cofix construct.
Nothing distinguishes the construction of co-inductive data from the construc-
tion of co-inductive proofs. As an illustrative example, we define the predicate
that characterizes infinite lists.

13.6.1 A Predicate for Infinite Sequences

We used an inductive definition to describe the finite sequences of “LList A”:
a finiteness proof is a term obtained with a finite number of applications
of Finite_LCons to an term obtained with Finite_LNil. In a symmetric
manner, we propose to describe the co-inductive type Infinite with only
one constructor:

CoInductive Infinite (A:Set) : LList A → Prop :=

Infinite_LCons :

∀ (a:A)(l:LList A), Infinite l → Infinite (LCons a l).

Hint Resolve Infinite_LCons : llists.

With respect to proof techniques, we start by presenting the techniques to
prove that a given term is infinite. The techniques to use the fact that a term
is infinite are a subset of the techniques seen for inductive types.

13.6.2 Building Infinite Proofs

13.6.2.1 An Intuitive Description

Let us start with a simple example. We want to show that the function from,
which maps any n to the stream of natural numbers starting from n, yields
infinite lists. We should build a term of type “∀ n:nat, Infinite (from n).”
We first present a manual proof, but this is to introduce the more elaborate
tools that will be used for other proofs.

A good way to build a term of the required type is to define a co-recursive
function in the type “∀ n:nat, Infinite (from n).” Such a function has to
satisfy the guard conditions. In fact, this co-recursive function is a fixpoint of
a functional from the type “∀ n:nat, Infinite (from n)” to itself. We first
define this functional, which requires no recursion.

Definition F_from :

(∀ n:nat, Infinite (from n))→∀ n:nat, Infinite (from n).

intros H n; rewrite (from_unfold n).

...
H : ∀n:nat, Infinite (from n)
n : nat
============================
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Infinite (LCons n (from (S n)))

split.

...
H : ∀n:nat, Infinite (from n)
n : nat
============================

Infinite (from (S n))

trivial.

Defined.

We really took care that the function H was only used to provide an argument
to a constructor. This corresponds to a guard condition; moreover, we made
this function transparent, so that the Coq system is able to check the guard
condition when reusing this functional in a cofix construct:

Theorem from_Infinite_V0 : ∀ n:nat, Infinite (from n).

Proof cofix H : ∀ n:nat, Infinite (from n) := F_from H.

13.6.2.2 The cofix Tactic

The elementary steps we have taken in the previous section are automatically
taken by the cofix tactic. The principle remains the same. There is a hy-
pothesis that cannot be used carelessly. To prove a property P where P is
based on a co-inductive predicate, one should construct a term of the form
“cofix H:P := t” where t has type P in the context with a hypothesis H:P
and the term we obtain satisfies the guard condition.

From the user’s point of view, the cofix H tactic takes charge of intro-
ducing the hypothesis H and providing a new goal with statement P . When
this goal is solved, the whole proof term is built; then, and only then, is the
guard condition verified.

Here is an interactive proof of from_Infinite using this tactic:

Theorem from_Infinite : ∀ n:nat, Infinite (from n).

Proof.

cofix H.

...
H : ∀n:nat, Infinite (from n)
============================

∀n:nat, Infinite (from n)

intro n; rewrite (from_unfold n).

split; auto.

Qed.
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We suggest that the reader tests this script on a computer, using the Print

command to check that a co-recursive function is defined.

13.6.3 Guard Condition Violation

In the previous proof, it is the tactic split that imposes that the guard
condition is satisfied. An attempt to let automatic tactics do the whole job
in one shot leads to a proof that is too simple and does not satisfy the guard
condition.

In the following script, the tactic “auto with llists” prefers a direct use
of the hypothesis H and the proof term that we obtain is incorrect. This kind
of situation is one of the rare cases where the user is mislead in thinking the
proof is over because there are no more goals:

Lemma from_Infinite_buggy : ∀ n:nat, Infinite (from n).

Proof.

cofix H.

auto with llists.

Proof completed.
Qed.

Error: Recursive definition of ‘‘H’’ is ill-formed.
In environment
H : ∀n:nat, Infinite (from n)
unguarded recursive call in ‘‘H’’

In the case of proofs that can be much more complex than our example, it
is sensible to question the perversity of a system that lets the user painfully
design a proof term and announces that this term is incorrect only after the
complete term is given. Fortunately, an extra command named Guarded is
provided to test whether the guard condition is respected in the current proof
attempt. We advise users to use this command when there is any doubt,
especially after each use of an automatic tactic like assumption or auto, or
any explicit use of the hypothesis introduced by the cofix tactic.

In our small example, this command makes it possible to detect the prob-
lem directly after the automatic tactic has been used:

Lemma from_Infinite_saved : ∀ n:nat, Infinite (from n).

Proof.

cofix H.

auto with llists.

Guarded.

Error: Recursive definition of ‘‘H’’ is ill-formed.
In environment
H : ∀n:nat, Infinite (from n)
unguarded recursive call in ‘‘H’’
Undo.
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intro n; rewrite (from_unfold n).

split; auto.

Guarded.

The condition holds up to here
Qed.

Exercise 13.12 * Prove the following lemmas, using the cofix tactic:

Lemma repeat_infinite : ∀ (A:Set)(a:A), Infinite (repeat a).

Lemma general_omega_infinite :

∀ (A:Set)(a:A)(u v:LList A),

Infinite (general_omega v (LCons a u)).

Conclude with the following theorem:

Theorem omega_infinite :

∀ (A:Set)(a:A)(l:LList A), Infinite (omega (LCons a l)).

Exercise 13.13 A distracted student confuses keywords and gives an induc-
tive definition of being infinite:

Inductive BugInfinite (A:Set) : LList A → Prop :=

BugInfinite_intro :

∀ (a:A)(l:LList A),

BugInfinite l → BugInfinite (LCons a l).

Show that this predicate can never be satisfied.

Exercise 13.14 ** Define the predicates “to have at least one infinite branch”
and “to have all branches infinite” for potentially infinite binary trees (see
Sect. 13.1.5). Consider similar predicates for finite branches. Construct a term
that satisfies each of these predicates and prove it. Study the relationships
between these predicates; beware that the proposition statement:

“If a tree has no finite branch, then it contains an infinite branch”

can only be proved using classical logic, in other words with the following added
axiom:

∀ P:Prop, ∼∼P→P.

13.6.4 Elimination Techniques

Can we prove theorems where co-inductive properties appear in the premises?
Clearly, the induction technique can no longer be used, since lists are poten-
tially infinite. Still, case-by-case analysis and inversion are still available. We
illustrate this in a simple example and leave other interesting proofs as exer-
cises.
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LNil Is Not Infinite

The following proof uses an inversion on “Infinite (LNil (A:=A)).” Because
there is no constructor for Infinite concerning the empty list, this inversion
proves the theorem immediately.

Theorem LNil_not_Infinite :

∀ A:Set, ∼Infinite (LNil (A:=A)).

Proof.

intros A H; inversion H.

Qed.

Exercise 13.15 ** Prove the following statements:

Theorem Infinite_of_LCons :

∀ (A:Set)(a:A)(u:LList A), Infinite (LCons a u)→ Infinite u.

Lemma LAppend_of_Infinite :

∀ (A:Set)(u:LList A),

Infinite u → ∀ v:LList A, Infinite (LAppend u v).

Lemma Finite_not_Infinite :

∀ (A:Set)(l:LList A), Finite l → ∼Infinite l.

Lemma Infinite_not_Finite :

∀ (A:Set)(l:LList A), Infinite l → ∼Finite l.

Lemma Not_Finite_Infinite :

∀ (A:Set)(l:LList A), ∼Finite l → Infinite l.

Exercise 13.16 ** Prove the following two statement in the framework of
classical logic.1 To do these proofs, load the Classical module from the Coq
library.

Lemma Not_Infinite_Finite :

∀ (A:Set)(l:LList A), ∼Infinite l → Finite l.

Lemma Finite_or_Infinite :

∀ (A:Set)(l:LList A), Finite l ∨ Infinite l.

1 It is impossible to build intuitionistic proofs of these statements. For the first
statement, no logical argument can be given to build a proof of “Finite l;” of
course there is no induction on l and a case analysis on l makes it possible to
conclude only if l is empty. For the second one, a strong argument (given by
E. Gimenez) expresses that if an intuitionistic proof of this statement existed,
then one would be able to conclude that the halting problem is decidable for
Turing machines, by considering the lists associated with execution traces.
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Exercise 13.17 *** The following definitions are valid in the Coq system:

Definition Infinite_ok (A:Set)(X:LList A → Prop) :=

∀ l:LList A,

X l → ∃ a:A, (∃ l’:LList A, l = LCons a l’ ∧ X l’).

Definition Infinite1 (A:Set)(l:LList A) :=

∃ X:LList A → Prop, Infinite_ok X ∧ X l.

Prove that the predicates Infinite and Infinite1 are logically equivalent.

13.7 Bisimilarity

This section considers equality proofs between terms of a co-inductive type.
We have already proved a few results where the conclusion is such an equality:
LAppend_LNil, LAppend_LCons, omega_of_Finite—all have been obtained
with a finite sequence of unfoldings. There are examples of equality proofs
where finite sequences of unfoldings are not enough. For instance, consider
the proof that concatenating any infinite stream to any other stream yields
the first stream. Here is a first attempt to perform this proof:

Lemma Lappend_of_Infinite_0 :

∀ (A:Set)(u:LList A),

Infinite u → ∀ v:LList A, u = LAppend u v.

The only tool at our disposal is a case analysis on the variable u. If we de-
compose u into “LCons a u’,” we obtain a goal that is similar to the initial
goal:

H1 : Infinite u’
v : LList A
============================

u’ = LAppend u’ v

We see that a finite numbers of these steps will not make it possible to con-
clude. However, we can restrict our attention to a relation on streams that is
weaker than equality but supports co-inductive reasoning.

Exercise 13.18 Write the proof steps that lead to this situation.

13.7.1 The bisimilar Predicate

The following co-inductive type gives a formal presentation of finite or infinite
proofs of equalities between streams:
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CoInductive bisimilar (A:Set) : LList A → LList A → Prop :=

| bisim0 : bisimilar LNil LNil

| bisim1 :

∀ (a:A)(l l’:LList A),

bisimilar l l’ → bisimilar (LCons a l)(LCons a l’).

Hint Resolve bisim0 bisim1 : llists.

A proof of a proposition “bisimilar u v” can be seen as a finite or infinite
proof term built with the constructors bisim0 and bisim1. Of course, these
proof terms are usually constructed using the cofix tactic with the constraint
of respecting the guard condition.

Exercise 13.19 After loading the module Relations from the Coq library,
show that bisimilar is an equivalence relation. Among other results, reflex-
ivity shows that the bisimilar relation accepts more pairs of streams than
equality.

Exercise 13.20 ** For a better understanding of the bisimilar relation,
we can use the function LNth defined in Fig. 13.1. Show the following two
theorems, which establish a relation between bisimilar and LNth:

Lemma bisimilar_LNth :

∀ (A:Set)(n:nat)(u v:LList A),

bisimilar u v → LNth n u = LNth n v.

Lemma LNth_bisimilar :

∀ (A:Set)(u v:LList A),

(∀ n:nat, LNth n u = LNth n v)→ bisimilar u v.

Exercise 13.21 Prove the following two theorems (the proof techniques are
interestingly different):

Theorem bisimilar_of_Finite_is_Finite :

∀ (A:Set)(l:LList A),

Finite l → ∀ l’:LList A, bisimilar l l’ → Finite l’.

Theorem bisimilar_of_Infinite_is_Infinite :

∀ (A:Set)(l:LList A),

Infinite l → ∀ l’:LList A, bisimilar l l’ → Infinite l’.

Exercise 13.22 Prove that restricting bisimilar to finite lists gives regular
equality, in other words
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Theorem bisimilar_of_Finite_is_eq :

∀ (A:Set)(l:LList A),

Finite l → ∀ l’:LList A, bisimilar l l’ → l = l’.

Exercise 13.23 ** Redo the previous exercises for lazy binary trees (see
Sect. 13.1.5). Define the relationship LTree_bisimilar and establish its rela-
tion with a function accessing the nodes of a tree, in a similar manner as to
what is done in Exercise 13.20.

13.7.2 Using Bisimilarity

This section shows that the equivalence relation bisimilar can be used to
express and prove some properties, which were unprovable when using the
regular equality.

LAppend Is Associative

The associativity of LAppend, when expressed using bisimilar, is proved by
co-induction with a case-by-case analysis for the first argument:

Theorem LAppend_assoc :

∀ (A:Set)(u v w:LList A),

bisimilar (LAppend u (LAppend v w))(LAppend (LAppend u v) w).

Proof.

intro A; cofix H.

destruct u; intros;

autorewrite with llists using auto with llists.

apply bisimilar_refl.

Qed.

Exercise 13.24 * Prove that every infinite sequence is left-absorbing for con-
catenation:

Lemma LAppend_of_Infinite_bisim :

∀ (A:Set)(u:LList A),

Infinite u → ∀ v:LList A, bisimilar u (LAppend u v).

Exercise 13.25 *** Prove that the sequence “omega u” is a fixpoint for con-
catenation (with respect to bisimilarity.)

Lemma omega_lappend :

∀ (A:Set)(u:LList A),

bisimilar (omega u)(LAppend u (omega u)).
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Hint: first prove a lemma about general_omega.

Exercise 13.26 ** As a continuation of Exercise 13.23, show that a tree
where all branches are infinite is left-absorbing for the graft operation defined
in Exercise 13.4.

13.8 The Park Principle

We adapt to lazy lists a presentation provided in Gimenez’s tutorial [43]. A
bisimulation is a binary relation R defined on “LList A” so that when “R u v”
holds, then either both u and v are empty, or there exist an a and two lists
u1 and v1 so that u is “LCons a u1,” v is “LCons a v1,” and the proposi-
tion ‘R u1 v1” holds. Here is a definition of the predicate that characterizes
bisimulations:

Definition bisimulation (A:Set)(R:LList A → LList A → Prop) :=

∀ l1 l2:LList A,

R l1 l2 →
match l1 with

| LNil ⇒ l2 = LNil

| LCons a l’1 ⇒
match l2 with

| LNil ⇒ False

| LCons b l’2 ⇒ a = b ∧ R l’1 l’2

end

end.

Exercise 13.27 *** Prove the following theorem (Park principle):

Theorem park_principle :

∀ (A:Set)(R:LList A → LList A → Prop),

bisimulation R → ∀ l1 l2:LList A, R l1 l2 →
bisimilar l1 l2.

Exercise 13.28 * Use the Park principle to prove that the following two
streams are bisimilar:

CoFixpoint alter : LList bool := LCons true (LCons false alter).

Definition alter2 : LList bool :=

omega (LCons true (LCons false LNil)).

Hint: consider the following binary relation and prove that it is a bisimulation:
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Definition R (l1 l2:LList bool) : Prop :=

l1 = alter ∧ l2 = alter2 ∨
l1 = LCons false alter ∧ l2 = LCons false alter2.

13.9 LTL

This section proposes a formalization of linear temporal logic, LTL [74]. The
definitions we present are an adaptation of the work done with D. Rouillard us-
ing Isabelle/HOL [21]. The work of Coupet-Grimal [28, 29], which is available
in the Coq contributions, formalizes a notion of the LTL formula restricted to
infinite executions (while we consider both finite and infinite executions). A
distinction between the two formalizations is that Coupet-Grimal’s presenta-
tion concentrates on the notion of LTL formulas and their abstract properties,
while our presentation concentrates on execution traces and their properties.
Still, both contributions use co-induction in a similar manner and we encour-
age readers to consult both developments.

We start our development by declaring a type A:Set and a few variables
that are later used for our examples:

Section LTL.

Variables (A : Set)(a b c : A).

We are interested in properties of streams on A. To make our presentation
more intuitive we introduce a notation “satisfies l P ” for “P l”:

Definition satisfies (l:LList A)(P:LList A → Prop) : Prop :=

P l.

Hint Unfold satisfies : llists.

We can now define a collection of predicates over “llist A.”

The Atomic Predicate

We can convert any predicate on A into a predicate on “llist A.” A stream
satisfies the predicate “Atomic At” if its first element satisfies At:

Inductive Atomic (At:A→Prop) : LList A → Prop :=

Atomic_intro :

∀ (a:A)(l:LList A), At a → Atomic At (LCons a l).

Hint Resolve Atomic_intro : llists.
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The Next Predicate

The predicate “Next P ” characterizes all sequences whose tail satisfies P .

Inductive Next (P:LList A → Prop) : LList A → Prop :=

Next_intro : ∀ (a:A)(l:LList A), P l → Next P (LCons a l).

Hint Resolve Next_intro : llists.

For instance, we show that the stream starting with a and followed by an
infinity of b satisfies the formula “Next (Atomic (eq b))”:

Theorem Next_example :

satisfies (LCons a (repeat b))(Next (Atomic (eq b))).

Proof.

rewrite (repeat_unfold b); auto with llists.

Qed.

The Eventually Predicate

The predicate “Eventually P ” characterizes the streams with at least one
(non-empty) suffix satisfying P . Note that the first constructor is written in
such a way that empty streams are excluded.

Inductive Eventually (P:LList A → Prop) : LList A → Prop :=

Eventually_here :

∀ (a:A)(l:LList A), P (LCons a l)→
Eventually P (LCons a l)

| Eventually_further :

∀ (a:A)(l:LList A), Eventually P l →
Eventually P (LCons a l).

Hint Resolve Eventually_here Eventually_further.

Exercise 13.29 (**) Here is a lemma and its proof:

Theorem Eventually_of_LAppend :

∀ (P:LList A → Prop)(u v:LList A),

Finite u → satisfies v (Eventually P)→
satisfies (LAppend u v)(Eventually P).

Proof.

unfold satisfies; induction 1; intros;

autorewrite with llists using auto with llists.

Qed.

What is the role of finiteness? Is it really necessary? If it is, build a counter-
example.
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The Always Predicate

The predicate “Always P ” characterizes the streams such that all the suffixes
are non-empty and satisfy P . It is natural to use a co-inductive definition with
only one constructor:

CoInductive Always (P:LList A → Prop) : LList A → Prop :=

Always_LCons :

∀ (a:A)(l:LList A),

P (LCons a l)→ Always P l → Always P (LCons a l).

Exercise 13.30 Prove that every stream satisfying “Always P ” is infinite.

Exercise 13.31 * Prove that every suffix of the stream “repeat a” starts
with a:

Lemma always_a : satisfies (repeat a)(Always (Atomic (eq a))).

The F∞ Predicate

The predicate “F_infinite P ” characterizes the streams such that an in-
finity of suffixes satisfy P ; this predicate is easily defined with Always and
Eventually.

Definition F_Infinite (P:LList A → Prop) : LList A → Prop :=

Always (Eventually P).

Exercise 13.32 **Show that the infinite sequence wω where a and b alternate
contains an infinity of occurrences of a.

The G∞ Predicate

The predicate “G_infinite P ” characterizes the streams such that all suffixes
except a finite number satisfy P .

Definition G_Infinite (P:LList A → Prop) : LList A → Prop :=

Eventually (Always P).

Exercise 13.33 * Show the following theorems:

Lemma LAppend_G_Infinite :

∀ (P:LList A → Prop)(u v:LList A),

Finite u → satisfies v (G_Infinite P)→
satisfies (LAppend u v) (G_Infinite P).
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Lemma LAppend_G_Infinite_R :

∀ (P:LList A → Prop)(u v:LList A),

Finite u → satisfies (LAppend u v) (G_Infinite P)→
satisfies v (G_Infinite P).

End LTL.

13.10 A Case Study: Transition Systems

In this section, we describe the structure of a development on transition sys-
tems, that is, automata. Only the statements of theorems are given, the reader
can complete the proofs or read the solution on the book’s Internet site.2

13.10.1 Automata and Traces

An automaton is defined using a type to represent states, a type to repre-
sent actions, an initial state, and a set of transitions, where each transition
is described by a source state, an action, and a target state. We choose to
represent the set of transitions with a boolean-valued function. The record
structure proposed by Coq is well-suited to represent automata. Here the
record must be defined in the Type sort because it contains fields of type Set

(see Sect. 14.1.2.3).

Record automaton : Type :=

mk_auto {

states : Set;

actions : Set;

initial : states;

transitions : states → actions → list states

}.

A trace is a sequence of actions corresponding to a sequence of transitions
of an automaton. Traces can be finite or infinite: when they are finite, they
have a final state, a deadlock. We give a co-inductive definition of a predicate
Traces, so that “Traces A q l” means l is the execution trace in A from the
state q. The predicate deadlock is defined so that “deadlock q” means there
is no transition leaving from q.

Definition deadlock (A:automaton)(q:states A) :=

∀ a:actions A, @transitions A q a = nil.

Unset Implicit Arguments.

CoInductive Trace (A:automaton) :

2
http://www.labri.fr/Perso/~casteran/CoqArt/co-inductifs/index.html
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states A → LList (actions A)→ Prop :=

empty_trace :

∀ q:states A, deadlock A q → Trace A q LNil

| lcons_trace :

∀ (q q’:states A)(a:actions A)(l:LList (actions A)),

In q’ (transitions A q a)→ Trace A q’ l →
Trace A q (LCons a l).

Set Implicit Arguments.

Exercise 13.34 *** We consider the following automaton:

(* states *)

Inductive st : Set := q0 | q1 | q2.

(* actions *)

Inductive acts : Set := a | b.

(* transitions *)

Definition trans (q:st)(x:acts) : list st :=

match q, x with

| q0, a ⇒ cons q1 nil

| q0, b ⇒ cons q1 nil

| q1, a ⇒ cons q2 nil

| q2, b ⇒ cons q2 (cons q1 nil)

| _, _ ⇒ nil (A:=_)

end.

Definition A1 := mk_auto q0 trans.

Draw this automaton, then show that every trace for A1 contains an infinite
number of b actions:

Theorem Infinite_bs :

∀ (q:st)(t:LList acts), Trace A1 q t →
satisfies t (F_Infinite (Atomic (eq b))).

13.11 Conclusion

A good source on co-inductive types is the work of Gimenez [44, 43] and the
documentation of Coq . Co-inductive types have also been used to verify the
correctness of circuit designs [30].


