Some impredicative definitions

Let us consider the following impredicative definitions of falsehood, conjunction, disjunction and existencial quantification.
Definition my_False : Prop := forall P:Prop, P.

Definition my_not (P:Prop) : Prop := P -> my_False.

Definition my_and (P Q:Prop) : Prop := forall R:Prop, (P -> Q -> R) -> R.

Definition my_or (P Q:Prop) : Prop :=
  forall R:Prop, (P -> R) -> (Q -> R) -> R.

Definition my_ex (A:Set) (P:A -> Prop) : Prop :=
  forall R:Prop, (forall x:A, P x -> R) -> R.
Prove the following theorems :
Theorem my_and_left : forall P Q:Prop, my_and P Q -> P.

Theorem my_and_right : forall P Q:Prop, my_and P Q -> Q.

Theorem my_and_ind : forall P Q R:Prop, (P -> Q -> R) -> my_and P Q -> R.

Theorem my_or_introl : forall P Q:Prop, P -> my_or P Q.

Theorem my_or_intror : forall P Q:Prop, Q -> my_or P Q.

Theorem my_or_ind : forall P Q R:Prop, (P -> R) -> (Q -> R) -> my_or P Q -> R.

Theorem my_or_False : forall P:Prop, my_or P my_False -> P.

Theorem my_or_comm : forall P Q:Prop, my_or P Q -> my_or Q P.

Theorem my_ex_intro : forall (A:Set) (P:A -> Prop) (a:A), P a -> my_ex A P.

Theorem my_not_ex_all :
 forall (A:Set) (P:A -> Prop), my_not (my_ex A P) -> forall a:A, my_not (P a).

Theorem my_ex_ex : forall (A:Set) (P:A -> Prop), my_ex A P -> ex P.


See this file


We encourage the reader to look at these proofs, and find another solutions, for instance by removing the automatisms.

Going home
Pierre Castéran