Inductive data types

Assia Mahboubi, Pierre Castéran Paris, Beijing, Bordeaux, Suzhou

28 septembre 2011

Inductive declarations

In this class, we shall present how Coq's type system allows us to define data types using inductive declarations.

First, note that an arbitrary type as assumed by :

Variable T : Type.

gives no a priori information on the nature, the number, or the properties of its inhabitants.

A small example : discrete plane

```
Require Import ZArith.
Open Scope Z_scope.
```

```
Record Point := {Point_x : Z;
Point_y : Z}.
```

```
Definition origin := Build_Point 0 0.
```

Inductive Direction : Type := North | East | South | West.

Definition move (from:Point)(d:Direction) :=
 match d with
 | North => Build_Point (Point_x from) (1 + Point_y from)
 | East => Build_Point (Point_x from + 1) (Point_y from)
 | South => Build_Point (Point_x from) (Point_y from -1)
 | West => Build_Point (Point_x from - 1) (Point_y from)
 end.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

```
Definition route := list Direction.
```

Compute follow origin (North::East::South::West::nil).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

An inductive type declaration explains how the inhabitants of the type are built, by giving names to each construction rule : Just remember :

Inductive bool : Set := true : bool | false : bool.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Inductive nat : Set := 0 : nat | S : nat -> nat. Each such rule is called a constructor.

Inductive declarations in Coq

Inductive types in *Coq* can be seen as the generalization of similar type constructions in more common programming languages.

They are in fact an extremely rich way of defining data-types, operators, connectives, specifications,...

They are at the core of powerful programming and reasoning techniques.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Enumerated types are types which list and name *exhaustively* their inhabitants (just like bool).

```
Inductive color : Type :=
| white | black
| red | blue | green | yellow | cyan | magenta .
Check cyan.
cyan : color
Lemma red_diff_black : red <> black.
Proof.
 discriminate.
Qed.
```

Enumerated types : program by case analysis

Inspect the enumerated type inhabitants and assign values :

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

```
Compute (is_bw red).
= false : bool
```

Enumerated types : reason by case analysis

Inspect the enumerated type inhabitants and build proofs :

Let for instance P : color \rightarrow Prop and a goal whose conclusion is P c. Then the tactic case c generates a subgoal for each constructor : P black, P white, P red, etc.

```
Lemma is_bw_cases : forall c : color,
  is_bw c = true ->
  c = white \setminus / c = black.
Proof.
(* Case analysis + computation *)
intro c; case c; simpl; intro e.
8 subgoals
 c: color
 e: true = true
  white = white \backslash white = black
. . .
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

left;reflexivity.

7 subgoals

c : color

e: true = true

 $black = white \setminus / black = black$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

```
subgoal 2 is:
red = white \/ red = black
...
```

right; trivial.

6 subgoals

c : color e : false = true

 $red = white \setminus / red = black$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

discriminate e.

5 subgoals...

. . .

A shorter proof :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Qed.

Note

- The tactic case t affects only the conclusion of the goal.
- The tactic destruct t can affect the hypotheses where t occurs.
- The tactic case_eq t allows to make explicit the equalities t = C_i for each constructor C_i.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(see the reference manual).

Enumerated types : reason by case analysis

Two important tactics :

- simpl : makes computation progress (pattern matching applied to a term starting with a constructor)
- discriminate : allows to use the fact that constructors are distincts :
 - discriminate H : closes a goal featuring a hypothesis H like
 (H : red = blue);
 - discriminate : closes a goal whose conclusion is (red <> black).

```
Remember nat and list A :
Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.
Inductive list (A : Type) :=
| nil : list A
| cons : A -> list A -> list A.
```

Base case constructors do not feature self-reference to the type. Recursive case constructors do.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

An inhabitant of a recursive type is built from a finite number of constructor applications.

Programming with recursive types : pattern matching and recursivity

```
Definition is_leaf (t : natBinTree) :=
match t with
|Leaf => true
|_ => false
end.
```

```
Fixpoint mirror (t: natBinTree) : natBinTree :=
match t with
| Leaf => Leaf
| Node n t1 t2 => Node n (mirror t2) (mirror t1)
end.
```

```
Fixpoint tree_size (t:natBinTree): nat :=
match t with
 | Leaf => 1
 Node t1 t2 \Rightarrow 1 + size t1 + size t2
 end.
Require Import Max.
Fixpoint tree_height (t: natBinTree) : nat :=
match t with
| Leaf => 1
| Node _ t1 t2 => 1 + max (tree_height t1)
                           (tree_height t2)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

end.

```
Require Import List.
```

```
Fixpoint labels (t: natBinTree) : list nat :=
match t with
| Leaf => nil
| Node n t1 t2 => labels t1 ++ (n :: labels t2)
end.
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

```
Compute labels (Node 9 t0 t0).
= 3 :: 5 :: 9 :: 3 :: 5 :: nil
: list nat
```

Recursive types : proofs by case analysis

```
Lemma tree_decompose : forall t, tree_size t <> 1 ->
                     exists n:nat, exists t1:natBinTree,
                     exists t2:natBinTree,
                      t = Node n t 1 t 2.
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof.

intros t H; destruct t as [| i t1 t2].

Recursive types : proofs by case analysis

```
Lemma tree_decompose : forall t, tree_size t <> 1 ->
    exists n:nat, exists t1:natBinTree,
    exists t2:natBinTree,
    t = Node n t1 t2.
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof.

```
intros t H; destruct t as [ | i t1 t2].
```

2 subgoals:

H : tree_size Leaf <> 1

exists n : nat, exists t1 : natBinTree, exists t2 : natBinTree, Leaf = Node n t1 t2 destruct H;reflexivity.

1 subgoal

i : nat t1 : natBinTree t2 : natBinTree H : tree_size (Node i t1 t2) <> 1

exists n : nat, exists t3 : natBinTree, exists t4 : natBinTree, Node i t1 t2 = Node n t3 t4 exists i;exists t1;exists t2;reflexivity. Qed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Recursive types

Constructors are injective :

Lemma Node_inj : forall n p t1 t2 t3 t4, Node n t1 t2 = Node p t3 t4 -> n = p /\ t1 = t3 /\ t2 = t4.

Proof.

intros n p t1 t2 t3 t4 H; injection H.

Recursive types

Constructors are injective :

Lemma Node_inj : forall n p t1 t2 t3 t4, Node n t1 t2 = Node p t3 t4 -> n = p / t1 = t3 / t2 = t4.

Proof.

intros n p t1 t2 t3 t4 H; injection H.

1 subgoal:

n : nat ...

t3 : natBinTree

t4 : natBinTree

H: Node n t1 t2 = Node p t3 t4

 $t2 = t4 \rightarrow t1 = t3 \rightarrow n = p \rightarrow n = p / t1 = t3 / t2 = t4$ auto.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Qed.

Let us go back to the definition of natural numbers :

```
Inductive nat : Set := 0 : nat | S : nat -> nat.
```

The Inductive keyword means that at definition time, this system generates an induction principle :

```
nat_ind
   : forall P : nat -> Prop,
        P 0 ->
        (forall n : nat, P n -> P (S n)) ->
        forall n : nat, P n
```

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

To prove that for P : natBinTree -> Prop, the theorem forall t : term, P t holds, it is sufficient to :

To prove that for P : natBinTree -> Prop, the theorem forall t : term, P t holds, it is sufficient to :

- Prove that the property holds for the base case :
 - ▶ (P Leaf)

To prove that for P : natBinTree -> Prop, the theorem forall t : term, P t holds, it is sufficient to :

- Prove that the property holds for the base case :
 - ▶ (P Leaf)

Prove that the property is transmitted inductively :

forall (n :nat) (t1 t2 : natBinTree), P t1 -> P t2 -> P (Node n t1 t2)

To prove that for P : natBinTree -> Prop, the theorem forall t : term, P t holds, it is sufficient to :

- Prove that the property holds for the base case :
 - ▶ (P Leaf)

Prove that the property is transmitted inductively :

> forall (n :nat) (t1 t2 : natBinTree), P t1 -> P t2 -> P (Node n t1 t2)

The type natBinTree is the smallest type containing Leaf, and closed under Node.

```
Check natBinTree_ind.

natBinTree_ind

: forall P : natBinTree -> Prop,

P Leaf ->

(forall (n : nat) (t1 : natBinTree),

P t1 -> forall t2 : natBinTree, P t2 -> P (Node n t1 t2)) ->

forall n : natBinTree, P n
```

Recursive types : structural induction

The induction principles generated at definition time by the system allow to :

- Program by recursion (Fixpoint)
- Prove by induction (induction)

```
Recursive types : proofs by structural induction
   We have already seen induction at work on nats and lists.
    Here its goes on binary trees :
   Lemma le_height_size : forall t : natBinTree,
                tree_height t <= tree_size t.</pre>
   Proof.
    induction t; simpl.
   2 subgoals:
      1 < = 1
```

subgoal 2 is: S (max (tree_height t1) (tree_height t2)) <= S (tree_size t1 + tree_size t2) auto with arith.

n : nat t1 : natBinTree t2 : natBinTree IHt1 : tree_height t1 <= tree_size t1 IHt2 : tree_height t2 <= tree_size t2

S (max (tree_height t1) (tree_height t2)) <=
S (tree_size t1 + tree_size t2)
Require Import Omega.
Search About max.
max_case
: forall (n m : nat) (P : nat -> Type), P n -> P m -> P (max n m)
apply max_case;omega.

Qed.

A more concrete example

Let us consider a $toy\ (very\ small)\ programming\ language. You will see bigger languages with Yves and Sandrine .$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We want to be able to write and analyze programms lile below :

```
X = 0 ;
Y = 1 ;
do Z times {
    X = X + 1;
    Y := Y * X
}
```

- Only three variables : X, Y and Z
- 2 operations : addition and multiplication
- simple for loop

A type for the variables

```
Inductive toy_Var : Set := X | Y | Z.
```

Note : If you wanted an infinite number of variables, you would have written :

```
Inductive toy_Var : Set := toy_Var (label : nat).
```

or

```
Require Import String.
Inductive toy_Var : Set := toy_Var (name: string).
```

Expressions

We associate a constructor to each way of building an expression :

- integer constants
- variables
- application of a binary operation

Inductive toy_Op := toy_plus | toy_mult.

Don't be mistaken!

```
Lemma toy_plus_inj : forall e1 e2 e3 e4,
  toy_op toy_plus e1 e2 = toy_op toy_plus e3 e4 ->
  e1 = e3 /\ e2 = e4.
Proof.
  intros e1 e2 e3 e4 H;injection H;auto.
Qed.
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Don't be mistaken!

```
Lemma toy_plus_inj : forall e1 e2 e3 e4,
  toy_op toy_plus e1 e2 = toy_op toy_plus e3 e4 ->
  e1 = e3 / 2 = e4.
Proof.
 intros e1 e2 e3 e4 H; injection H; auto.
Qed.
Lemma plus_not_inj : ~(forall n p q r:nat, n+p=q+r ->
                       n = q / p = r).
Proof.
 intro H;destruct (H 2 2 3 1) as [HO H1].
trivial.
 discriminate HO.
Qed.
                                     ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
```

Statements

```
Inductive toy_Statement :=
  | (* x = e *)
    assign (v:toy_Var)(e:toy_Exp)
  | (* s ; s1 *)
    sequence (s s1: toy_Statement)
  | (* for i := e to n do s *)
    simple_loop (e:toy_Expr)(s : toy_Statement).
```

```
Definition factorial_Z_program :=
sequence (assign X (const 0))
 (sequence
   (assign Y (const 1))
   (simple_loop (variable Z)
    (sequence
      (assign X
         (toy_op toy_plus (variable X) (const 1)))
      (assign Y
         (toy_op toy_mult (variable Y) (variable X))))).
```

```
Inductive toy_State : Set :=
state (val_X val_Y val_Z : nat).
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Option types

A polymorphic (like list) non recursive type :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Print option.
Inductive option (A : Type) : Type :=
 Some : A -> option A | None : option A

Option types

```
A polymorphic (like list) non recursive type :
Print option.
Inductive option (A : Type) : Type :=
 Some : A \rightarrow option A \mid None : option A
Use it to lift a type to version with default value :
Fixpoint olast (A : Type)(1 : list A) : option A :=
  match 1 with
    Inil => None
    la :: nil => Some a
    la :: 1 => olast A 1
  end.
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pairs & co

A polymorphic (like list) pair construction :

```
Print pair.
Inductive prod (A B : Type) : Type :=
    pair : A -> B -> A * B
The notation A * B denotes (prod A B).
The notation (x, y) denotes (pair x y) (implicit argument).
```

```
Check (2, 4). : nat * nat
Check (true, 2 :: nil). : bool * (list nat)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fetching the components :

```
Compute (fst (0, true)).
= 0 : nat
Compute (snd (0, true)).
= true : bool
```

Inductive data types

- They are also inductive types !

Pairs & co

This can also be adapted to polymorphic n-tuples :

Inductive triple (T1 T2 T3 : Type) := Triple T1 -> T2 -> T3 -> triple T1 T2 T3.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Record types

A record type bundles pieces of data you wish to gather in a single type.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
Record admin_person := MkAdmin {
  id_number : nat;
  date_of_birth : nat * nat * nat;
  place_of_birth : nat;
  sex : bool}
```

They are also inductive types with a single constructor !

Record types

```
You can access to the fields :
```

```
Variable t : admin_person.
Check (id_number t).
id_number t : nat
Check id_number.
id_number : admin_person -> nat
```

In proofs, you can break an element of record type with tactics case/destruct.

Warning : this is pure functional programming...