
Inductive data types

Inductive data types

Assia Mahboubi, Pierre Castéran
Paris, Beijing, Bordeaux, Suzhou

28 septembre 2011

Inductive data types

Generalities

Inductive declarations

I In this class, we shall present how Coq’s type system allows us
to define data types using inductive declarations.

I First, note that an arbitrary type as assumed by :

Variable T : Type.

gives no a priori information on the nature, the number, or the
properties of its inhabitants.

Inductive data types

Generalities

A small example : discrete plane

Require Import ZArith.
Open Scope Z_scope.

Record Point := {Point_x : Z;
Point_y : Z}.

Definition origin := Build_Point 0 0.

Inductive data types

Generalities

Inductive Direction : Type := North | East | South | West.

Definition move (from:Point)(d:Direction) :=
match d with
| North => Build_Point (Point_x from) (1 + Point_y from)
| East => Build_Point (Point_x from + 1) (Point_y from)
| South => Build_Point (Point_x from) (Point_y from -1)
| West => Build_Point (Point_x from - 1) (Point_y from)
end.

Inductive data types

Generalities

Definition route := list Direction.

Fixpoint follow (from:Point)(p: route) :Point :=
match p with nil => from

| d::p’ => follow (move from d) p’
end.

Compute follow origin (North::East::South::West::nil).

Inductive data types

Generalities

I An inductive type declaration explains how the inhabitants of
the type are built, by giving names to each construction rule :
Just remember :

Inductive bool : Set := true : bool | false : bool.

Inductive nat : Set := O : nat | S : nat -> nat.

Each such rule is called a constructor.

Inductive data types

Generalities

Inductive declarations in Coq

Inductive types in Coq can be seen as the generalization of similar
type constructions in more common programming languages.

They are in fact an extremely rich way of defining data-types,
operators, connectives, specifications,...

They are at the core of powerful programming and reasoning
techniques.

Inductive data types

Enumerated types

Enumerated types

Enumerated types are types which list and name exhaustively their
inhabitants (just like bool).

Inductive color : Type :=
| white | black
| red | blue | green | yellow | cyan | magenta .

Check cyan.
cyan : color

Lemma red_diff_black : red <> black.
Proof.
discriminate.
Qed.

Inductive data types

Enumerated types

Enumerated types : program by case analysis

Inspect the enumerated type inhabitants and assign values :

Definition is_bw (c : color) : bool :=
match c with
| black => true
| white => true
| _ => false
end.

Compute (is_bw red).
= false : bool

Inductive data types

Enumerated types

Enumerated types : reason by case analysis

Inspect the enumerated type inhabitants and build proofs :

Let for instance P : color→Prop and a goal whose conclusion is
P c.
Then the tactic case c generates a subgoal for each constructor :
P black, P white, P red, etc.

Inductive data types

Enumerated types

Lemma is_bw_cases : forall c : color,
is_bw c = true ->
c = white \/ c = black.

Proof.
(* Case analysis + computation *)
intro c; case c; simpl; intro e.
8 subgoals

c : color
e : true = true
============================
white = white \/ white = black

. . .
left;reflexivity.

Inductive data types

Enumerated types

7 subgoals

c : color
e : true = true
============================
black = white \/ black = black

subgoal 2 is:
red = white \/ red = black
. . .
right;trivial.

Inductive data types

Enumerated types

6 subgoals

c : color
e : false = true
============================
red = white \/ red = black

. . .
discriminate e.

5 subgoals. . .

Inductive data types

Enumerated types

A shorter proof :

Lemma is_bw_cases’ : forall c, is_bw c = true ->
c=white \/ c=black.

Proof.
intros c H; destruct c; try discriminate H ;

((left;reflexivity) ||
(right;reflexivity)).

Qed.

Inductive data types

Enumerated types

Note

I The tactic case t affects only the conclusion of the goal.

I The tactic destruct t can affect the hypotheses where t
occurs.

I The tactic case eq t allows to make explicit the equalities
t = Ci for each constructor Ci .

(see the reference manual).

Inductive data types

Enumerated types

Enumerated types : reason by case analysis

Two important tactics :

I simpl : makes computation progress (pattern matching
applied to a term starting with a constructor)

I discriminate : allows to use the fact that constructors are
distincts :

I discriminate H : closes a goal featuring a hypothesis H like
(H : red = blue) ;

I discriminate : closes a goal whose conclusion is (red <>
black).

Inductive data types

Recursive types

Recursive types

Remember nat and list A :

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Inductive list (A : Type) :=
| nil : list A
| cons : A -> list A -> list A.

Base case constructors do not feature self-reference to the type.
Recursive case constructors do.

Inductive data types

Recursive types

Recursive types

Let us craft new inductive types :

Inductive natBinTree : Set :=
| Leaf : natBinTree
| Node (n:nat)(t1 t2 : natBinTree).

Definition t0 : natBinTree :=
Node 5 (Node 3 Leaf Leaf)

(Node 8 Leaf Leaf).

An inhabitant of a recursive type is built from a finite number of
constructor applications.

Inductive data types

Recursive types

Programming with recursive types : pattern matching and
recursivity

Definition is_leaf (t : natBinTree) :=
match t with
|Leaf => true
|_ => false
end.

Fixpoint mirror (t: natBinTree) : natBinTree :=
match t with
| Leaf => Leaf
| Node n t1 t2 => Node n (mirror t2) (mirror t1)
end.

Inductive data types

Recursive types

Fixpoint tree_size (t:natBinTree): nat :=
match t with
| Leaf => 1
| Node _ t1 t2 => 1 + size t1 + size t2
end.

Require Import Max.
Fixpoint tree_height (t: natBinTree) : nat :=
match t with
| Leaf => 1
| Node _ t1 t2 => 1 + max (tree_height t1)

(tree_height t2)
end.

Inductive data types

Recursive types

Require Import List.

Fixpoint labels (t: natBinTree) : list nat :=
match t with
| Leaf => nil
| Node n t1 t2 => labels t1 ++ (n :: labels t2)
end.

Compute labels (Node 9 t0 t0).
= 3 :: 5 :: 9 :: 3 :: 5 :: nil

: list nat

Inductive data types

Recursive types

Recursive types : proofs by case analysis

Lemma tree_decompose : forall t, tree_size t <> 1 ->
exists n:nat, exists t1:natBinTree,
exists t2:natBinTree,
t = Node n t1 t2.

Proof.
intros t H; destruct t as [| i t1 t2].

2 subgoals:
H : tree size Leaf <> 1
============================
exists n : nat,

exists t1 : natBinTree,
exists t2 : natBinTree,

Leaf = Node n t1 t2
destruct H;reflexivity.

Inductive data types

Recursive types

Recursive types : proofs by case analysis

Lemma tree_decompose : forall t, tree_size t <> 1 ->
exists n:nat, exists t1:natBinTree,
exists t2:natBinTree,
t = Node n t1 t2.

Proof.
intros t H; destruct t as [| i t1 t2].

2 subgoals:
H : tree size Leaf <> 1
============================
exists n : nat,
exists t1 : natBinTree,
exists t2 : natBinTree,

Leaf = Node n t1 t2
destruct H;reflexivity.

Inductive data types

Recursive types

1 subgoal

i : nat
t1 : natBinTree
t2 : natBinTree
H : tree size (Node i t1 t2) <> 1

============================
exists n : nat,
exists t3 : natBinTree,
exists t4 : natBinTree, Node i t1 t2 = Node n t3 t4

exists i;exists t1;exists t2;reflexivity.
Qed.

Inductive data types

Recursive types

Recursive types
Constructors are injective :

Lemma Node_inj : forall n p t1 t2 t3 t4,
Node n t1 t2 = Node p t3 t4 ->
n = p /\ t1 = t3 /\ t2 = t4.

Proof.
intros n p t1 t2 t3 t4 H;injection H.

1 subgoal:
n : nat . . .
t3 : natBinTree
t4 : natBinTree
H : Node n t1 t2 = Node p t3 t4
============================
t2 = t4 -> t1 = t3 -> n = p -> n = p /\ t1 = t3 /\ t2 = t4

auto.
Qed.

Inductive data types

Recursive types

Recursive types
Constructors are injective :

Lemma Node_inj : forall n p t1 t2 t3 t4,
Node n t1 t2 = Node p t3 t4 ->
n = p /\ t1 = t3 /\ t2 = t4.

Proof.
intros n p t1 t2 t3 t4 H;injection H.

1 subgoal:
n : nat . . .
t3 : natBinTree
t4 : natBinTree
H : Node n t1 t2 = Node p t3 t4
============================
t2 = t4 -> t1 = t3 -> n = p -> n = p /\ t1 = t3 /\ t2 = t4

auto.
Qed.

Inductive data types

Recursive types

Recursive types : structural induction

Let us go back to the definition of natural numbers :

Inductive nat : Set := O : nat | S : nat -> nat.

The Inductive keyword means that at definition time, this system
generates an induction principle :

nat_ind
: forall P : nat -> Prop,
P 0 ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n

Inductive data types

Recursive types

Recursive types : structural induction

To prove that for P : natBinTree -> Prop, the theorem
forall t : term, P t holds, it is sufficient to :

I Prove that the property holds for the base case :
I (P Leaf)

I Prove that the property is transmitted inductively :

I forall (n :nat) (t1 t2 : natBinTree),
P t1 -> P t2 -> P (Node n t1 t2)

The type natBinTree is the smallest type containing Leaf, and
closed under Node.

Inductive data types

Recursive types

Recursive types : structural induction

To prove that for P : natBinTree -> Prop, the theorem
forall t : term, P t holds, it is sufficient to :

I Prove that the property holds for the base case :
I (P Leaf)

I Prove that the property is transmitted inductively :

I forall (n :nat) (t1 t2 : natBinTree),
P t1 -> P t2 -> P (Node n t1 t2)

The type natBinTree is the smallest type containing Leaf, and
closed under Node.

Inductive data types

Recursive types

Recursive types : structural induction

To prove that for P : natBinTree -> Prop, the theorem
forall t : term, P t holds, it is sufficient to :

I Prove that the property holds for the base case :
I (P Leaf)

I Prove that the property is transmitted inductively :

I forall (n :nat) (t1 t2 : natBinTree),
P t1 -> P t2 -> P (Node n t1 t2)

The type natBinTree is the smallest type containing Leaf, and
closed under Node.

Inductive data types

Recursive types

Recursive types : structural induction

To prove that for P : natBinTree -> Prop, the theorem
forall t : term, P t holds, it is sufficient to :

I Prove that the property holds for the base case :
I (P Leaf)

I Prove that the property is transmitted inductively :

I forall (n :nat) (t1 t2 : natBinTree),
P t1 -> P t2 -> P (Node n t1 t2)

The type natBinTree is the smallest type containing Leaf, and
closed under Node.

Inductive data types

Recursive types

Check natBinTree_ind.
natBinTree ind

: forall P : natBinTree -> Prop,
P Leaf ->
(forall (n : nat) (t1 : natBinTree),
P t1 -> forall t2 : natBinTree, P t2 -> P (Node n t1 t2)) ->
forall n : natBinTree, P n

Inductive data types

Recursive types

Recursive types : structural induction

The induction principles generated at definition time by the system
allow to :

I Program by recursion (Fixpoint)

I Prove by induction (induction)

Inductive data types

Recursive types

Recursive types : proofs by structural induction
We have already seen induction at work on nats and lists.
Here its goes on binary trees :

Lemma le_height_size : forall t : natBinTree,
tree_height t <= tree_size t.

Proof.
induction t; simpl.
2 subgoals:

============================
1 <= 1

subgoal 2 is:
S (max (tree height t1) (tree height t2)) <=
S (tree size t1 + tree size t2)
auto with arith.

Inductive data types

Recursive types

n : nat
t1 : natBinTree
t2 : natBinTree
IHt1 : tree height t1 <= tree size t1
IHt2 : tree height t2 <= tree size t2
============================
S (max (tree height t1) (tree height t2)) <=
S (tree size t1 + tree size t2)

Require Import Omega.
Search About max.
max case

: forall (n m : nat) (P : nat -> Type), P n -> P m -> P (max n m)
apply max_case;omega.
Qed.

Inductive data types

Recursive types

A more concrete example

Let us consider a toy (very small) programming language. You will
see bigger languages with Yves and Sandrine .
We want to be able to write and analyze programms lile below :

X = 0 ;
Y = 1 ;
do Z times {

X = X + 1;
Y := Y * X

}

I Only three variables : X, Y and Z

I 2 operations : addition and multiplication

I simple for loop

Inductive data types

Recursive types

A type for the variables

Inductive toy_Var : Set := X | Y | Z.

Note : If you wanted an infinite number of variables, you would
have written :

Inductive toy_Var : Set := toy_Var (label : nat).

or

Require Import String.
Inductive toy_Var : Set := toy_Var (name: string).

Inductive data types

Recursive types

Expressions

We associate a constructor to each way of building an expression :

I integer constants

I variables

I application of a binary operation

Inductive toy_Op := toy_plus | toy_mult.

Inductive toy_Exp := const (i:nat) |
variable (v:toy_Var) |
toy_op (op:toy_Op) (e1 e2: toy_Exp)

Inductive data types

Recursive types

Don’t be mistaken !

Lemma toy_plus_inj : forall e1 e2 e3 e4,
toy_op toy_plus e1 e2 = toy_op toy_plus e3 e4 ->
e1 = e3 /\ e2 = e4.

Proof.
intros e1 e2 e3 e4 H;injection H;auto.
Qed.

Lemma plus_not_inj : ∼(forall n p q r:nat, n+p=q+r ->
n = q /\ p = r).

Proof.
intro H;destruct (H 2 2 3 1) as [H0 H1].
trivial.
discriminate H0.
Qed.

Inductive data types

Recursive types

Don’t be mistaken !

Lemma toy_plus_inj : forall e1 e2 e3 e4,
toy_op toy_plus e1 e2 = toy_op toy_plus e3 e4 ->
e1 = e3 /\ e2 = e4.

Proof.
intros e1 e2 e3 e4 H;injection H;auto.
Qed.

Lemma plus_not_inj : ∼(forall n p q r:nat, n+p=q+r ->
n = q /\ p = r).

Proof.
intro H;destruct (H 2 2 3 1) as [H0 H1].
trivial.
discriminate H0.
Qed.

Inductive data types

Recursive types

Statements

Inductive toy_Statement :=
| (* x = e *)

assign (v:toy_Var)(e:toy_Exp)
| (* s ; s1 *)

sequence (s s1: toy_Statement)
| (* for i := e to n do s *)
simple_loop (e:toy_Expr)(s : toy_Statement).

Inductive data types

Recursive types

Definition factorial_Z_program :=
sequence (assign X (const 0))
(sequence
(assign Y (const 1))
(simple_loop (variable Z)
(sequence
(assign X

(toy_op toy_plus (variable X) (const 1)))
(assign Y

(toy_op toy_mult (variable Y) (variable X)))))).

Inductive data types

Recursive types

Inductive toy_State : Set :=
state (val_X val_Y val_Z : nat).

Definition update (v:toy_Var)(s: toy_State)(val : nat):=
match v,s with |X, state _ y z => state val y z

|Y, state x _ z => state x val z
|Z, state x y _ => state x y val

end.

Inductive data types

They are also inductive types !

Option types

A polymorphic (like list) non recursive type :

Print option.
Inductive option (A : Type) : Type :=

Some : A -> option A | None : option A

Use it to lift a type to version with default value :

Fixpoint olast (A : Type)(l : list A) : option A :=
match l with
|nil => None
|a :: nil => Some a
|a :: l => olast A l

end.

Inductive data types

They are also inductive types !

Option types

A polymorphic (like list) non recursive type :

Print option.
Inductive option (A : Type) : Type :=

Some : A -> option A | None : option A

Use it to lift a type to version with default value :

Fixpoint olast (A : Type)(l : list A) : option A :=
match l with
|nil => None
|a :: nil => Some a
|a :: l => olast A l

end.

Inductive data types

They are also inductive types !

Pairs & co
A polymorphic (like list) pair construction :

Print pair.
Inductive prod (A B : Type) : Type :=

pair : A -> B -> A * B

The notation A * B denotes (prod A B).
The notation (x, y) denotes (pair x y) (implicit argument).

Check (2, 4). : nat * nat
Check (true, 2 :: nil). : bool * (list nat)

Fetching the components :

Compute (fst (0, true)).
= 0 : nat
Compute (snd (0, true)).
= true : bool

Inductive data types

They are also inductive types !

Pairs & co

Pairs can be nested :

Check (0, 1, true).
: nat * nat * bool

Compute (fst (0, 1, true)).
= (0, 1)

: nat * nat

This can also be adapted to polymorphic n-tuples :

Inductive triple (T1 T2 T3 : Type) :=
Triple T1 -> T2 -> T3 -> triple T1 T2 T3.

Inductive data types

They are also inductive types !

Record types

A record type bundles pieces of data you wish to gather in a single
type.

Record admin_person := MkAdmin {
id_number : nat;
date_of_birth : nat * nat * nat;
place_of_birth : nat;
sex : bool}

They are also inductive types with a single constructor !

Inductive data types

They are also inductive types !

Record types

You can access to the fields :

Variable t : admin_person.
Check (id_number t).
id number t : nat
Check id_number.
id number : admin person -> nat

In proofs, you can break an element of record type with tactics
case/destruct.

Warning : this is pure functional programming...

	Generalities
	Enumerated types
	Recursive types
	Recursive types
	They are also inductive types!

