
Simple proofs about recursive functions

Simple proofs about recursive functions

Yves Bertot

August 2009

Simple proofs about recursive functions

Reasoning about programs and behavior

I Proofs by induction to cover the whole input type

I Reasoning by cases on function inputs

I Getting rid of inconsistent assumptions

I Using the injectivity of datatype constructors

I Using specialized induction principles

Simple proofs about recursive functions

Reasoning by induction

Proofs by induction

I Goal of the form C x, where x is an integer

I Tactic : induction n as [| p IHp]
I The system creates two goals corresponding to cases

I C 0
I C (S p)

I In the second goal, a fact IHp is added to the context
with statement C p

Simple proofs about recursive functions

Reasoning by induction

Main guideline

Reason on executions of functions

I Reason by induction when working on a recursive function

I Induction on the argument where recursion occurs

Fixpoint fact (n:nat) : nat :=
match n with
| 0 => 1
| S p => S p * fact p
end.

Lemma factp : forall n, 0 < fact n.

Simple proofs about recursive functions

Reasoning by induction

Proof by induction on fact

Two cases for the input of fact : 0 or S p

I In second case, recursive call on p

Proof by induction makes the cases appear

I in step case where n = S p, induction hypothesis on p

Induction n as [| p IHp].
======================
0 < fact 0

Subgoal 2 is:
0 < fact (S p)

Simple proofs about recursive functions

Reasoning by induction

Force computation of recursive functions

Tactic simpl : compute the function but respect the recursive
structure

===================
0 < fact 0

simpl.

===================
0 < 1

omega.

Simple proofs about recursive functions

Reasoning by induction

Force computation of recursive functions

Tactic simpl : compute the function but respect the recursive
structure

===================
0 < fact 0

simpl.

===================
0 < 1

omega.

Simple proofs about recursive functions

Reasoning by induction

1 subgoal
IHp : 0 < fact p
===================
0 < fact (S p)

simpl.

...
0 < fact p + p * fact p

Simple proofs about recursive functions

Reasoning by induction

1 subgoal
IHp : 0 < fact p
===================
0 < fact (S p)

simpl.
...

0 < fact p + p * fact p

Simple proofs about recursive functions

Reasoning by induction

Completing the example

apply lt_le_trans with (fact p).

...
IHp : 0 < fact p
====================
0 < fact p

Subgoal 2 is:
factp <= fact p + p * fact p

SearchPattern (?x <= ?x + _).
le_plus_l : forall n m, n <= n + m
apply le_plus_l.
Qed.

Simple proofs about recursive functions

Reasoning by induction

Completing the example

apply lt_le_trans with (fact p).
...
IHp : 0 < fact p
====================
0 < fact p

Subgoal 2 is:
factp <= fact p + p * fact p

SearchPattern (?x <= ?x + _).
le_plus_l : forall n m, n <= n + m
apply le_plus_l.
Qed.

Simple proofs about recursive functions

Reasoning by induction

Completing the example

apply lt_le_trans with (fact p).
...
IHp : 0 < fact p
====================
0 < fact p

Subgoal 2 is:
factp <= fact p + p * fact p

SearchPattern (?x <= ?x + _).
le_plus_l : forall n m, n <= n + m

apply le_plus_l.
Qed.

Simple proofs about recursive functions

Reasoning by induction

Completing the example

apply lt_le_trans with (fact p).
...
IHp : 0 < fact p
====================
0 < fact p

Subgoal 2 is:
factp <= fact p + p * fact p

SearchPattern (?x <= ?x + _).
le_plus_l : forall n m, n <= n + m
apply le_plus_l.
Qed.

Simple proofs about recursive functions

Induction on lists

Induction on lists

Induction on lists is like induction on natural numbers

I base case : the empty list

I step case : the list with an element at the head and another
list at the tail

I the tail can be handled by recursive calls and induction
hypotheses

Simple proofs about recursive functions

Induction on lists

An example on lists

Require Import List.

Fixpoint rev1 (A : Type) (l1 l2 : list A) :=
match l1 with
| nil => l2
| a::t1 => rev1 A t1 (a::l2)
end.

Fixpoint rev (A : Type) (l : list A) :=
match l with
| nil => nil
| a::tl => rev A tl ++ a::nil
end.

Simple proofs about recursive functions

Induction on lists

Proof on rev

Lemma rev1_rev : forall A (l1 l2 : list A),
rev1 A l1 l2 = rev A l1 ++ l2.

intros A; induction l1 as [| a t1 IHt1].

========================
forall l2, rev1 A nil l2 = rev A nil ++ l2

intros l2; reflexivity.
IHt1 : forall l2 : list A,

rev1 A t1 l2 = rev A t1 ++ l2
============================
forall l2 : list A,

rev1 A (a :: t1) l2 = rev A (a :: t1) ++ l2

Simple proofs about recursive functions

Induction on lists

Proof on rev

Lemma rev1_rev : forall A (l1 l2 : list A),
rev1 A l1 l2 = rev A l1 ++ l2.

intros A; induction l1 as [| a t1 IHt1].
========================
forall l2, rev1 A nil l2 = rev A nil ++ l2

intros l2; reflexivity.

IHt1 : forall l2 : list A,
rev1 A t1 l2 = rev A t1 ++ l2

============================
forall l2 : list A,

rev1 A (a :: t1) l2 = rev A (a :: t1) ++ l2

Simple proofs about recursive functions

Induction on lists

Proof on rev

Lemma rev1_rev : forall A (l1 l2 : list A),
rev1 A l1 l2 = rev A l1 ++ l2.

intros A; induction l1 as [| a t1 IHt1].
========================
forall l2, rev1 A nil l2 = rev A nil ++ l2

intros l2; reflexivity.
IHt1 : forall l2 : list A,

rev1 A t1 l2 = rev A t1 ++ l2
============================
forall l2 : list A,

rev1 A (a :: t1) l2 = rev A (a :: t1) ++ l2

Simple proofs about recursive functions

Induction on lists

Finishing the proof on rev

intros l2; simpl.

IHt1 : forall l2, rev1 A t1 l2 = rev A t1 ++ l2
=====================
rev1 A t1 (a::l2) = (rev A tl ++ a::nil) ++ l2

rewrite IHt1, app_ass; simpl; reflexivity.
Qed.

Simple proofs about recursive functions

Induction on lists

Finishing the proof on rev

intros l2; simpl.
IHt1 : forall l2, rev1 A t1 l2 = rev A t1 ++ l2
=====================
rev1 A t1 (a::l2) = (rev A tl ++ a::nil) ++ l2

rewrite IHt1, app_ass; simpl; reflexivity.
Qed.

Simple proofs about recursive functions

Induction on lists

Reasoning by cases

I Reasoning by cases is already provided by the tactic
induction

I But induction adds induction hypotheses
I The tactics case, case_eq, destruct are more lightweight

I case e replaces all instances of e in the conclusion with
possible cases

I case_eq e the same and adds an equality to remember the
case

I destruct e replaces all instances in conclusion and
hypotheses of the goal

Simple proofs about recursive functions

Induction on lists

Example of case, case_eq, and destruct

Definition max m n := if leb m n then n else m.

Lemma maxge1 : forall m n, m <= max m n.
intros m n; unfold max.
assert (t1 := leb_complete m n).
assert (t2 := leb_complete_conv n m).
t1 : leb m n = true -> m <= n
t2 : leb m n = false -> n < m
=========================
m <= if leb m n then n else m

Simple proofs about recursive functions

Induction on lists

Example of case_eq

t1 : leb m n = true -> m <= n
t2 : leb m n = false -> n < m
=========================
m <= if leb m n then n else m
case_eq (leb m n).
t1 : leb m n = true -> m <= n
t2 : leb m n = false -> n < m
=========================
leb m n = true -> m <= n

intros t; apply t1; exact t.

Simple proofs about recursive functions

Induction on lists

Example of destruct

t1 : leb m n = true -> m <= n
t2 : leb m n = false -> n < m
=========================
m <= if leb m n then n else m

destruct (leb m n)).
t1 : true = true -> m <= n
t2 : true = false -> n < m
=========================
m <= n

apply t1; reflexivity.

Simple proofs about recursive functions

Induction on lists

Example of case

t1 : leb m n = true -> m <= n
t2 : leb m n = false -> n < m
=========================
m <= if leb m n then n else m

case (leb m n).
t1 : leb m n = true -> m <= n
t2 : leb m n = false -> n < m
=========================
m <= n

Abort.

Simple proofs about recursive functions

Induction on lists

Controlling execution

The tactic simpl performs computation, but sometimes it goes
too far

I When you know what value to aim for use change e1 with
e2

I The values e1 and e2 have to be obviously the same (for Coq)

I Use replace e1 and e2 : it gives you more work, but is more
supple

I Use change C ′ to change the whole goal conclusion

I Use unfold f to only unfold the definition of f

Simple proofs about recursive functions

Getting rid of inconsistent cases

Getting rid of inconsistent cases

An equality between two different constructors is an inconsistency

I to be handled with discriminate or discriminate H

H : a::l = nil
====================
C

discriminate.
Proof completed.

Simple proofs about recursive functions

Decomposing equalities

Decomposing equalities of constructors

An equality between two terms with the same constructor

I Components must be equal : constructors are injective

I The tactic is injection

H : a :: l = b :: l’
====================
C

injection H.
H : a :: l = b :: l’
====================
l = l’ -> a = b -> C

Simple proofs about recursive functions

Decomposing equalities

Specialized induction principles

I General approach is to follow the structure of functions

I This can be expressed in a theorem

I Theorem generated by Functional Scheme

I Theorem then used by functional induction

Simple proofs about recursive functions

Decomposing equalities

A last example

Fixpoint even (n:nat) : bool :=
match n with
| 0 => true
| 1 => false
| S (S p) => even p
end.

Functional Scheme even_ind :=
Induction for even Sort Prop.

Simple proofs about recursive functions

Decomposing equalities

Proof by specialized induction

Lemma even_double : forall n, even n = true ->
exists p, n = 2 * p.

intros n; functional induction even n.
3 subgoals
============================
true = true -> exists p : nat, 0 = 2 * p

subgoal 2 is:
false = true -> exists p : nat, 1 = 2 * p
subgoal 3 is:
even p = true -> exists p0 : nat, S (S p) = 2 * p0

Simple proofs about recursive functions

Decomposing equalities

Finishing the proof for even_double

exists 0; reflexivity.
intros; discriminate.
IHb : even p = true -> exists p0 : nat, p = 2 * p0
============================
even p = true -> exists p0 : nat, S (S p) = 2 * p0

intros t; destruct (IHb t) as [p’ qp’]; rewrite qp’.
exists (S p’); ring.

	Reasoning by induction
	Induction on lists
	Getting rid of inconsistent cases
	Decomposing equalities

