
Inductive properties

Inductive properties

Assia Mahboubi, Pierre Castéran
Paris, Beijing, Bordeaux, Suzhou

11 octobre 2011

Inductive properties

We have already seen how to define new datatypes by the mean of
inductive types.
During this session, we shall present how Coq’s type system allows
us to define specifications using inductive declarations.

Inductive properties

First examples

Inductive even : nat -> Prop :=
| even0 : even 0
| evenS : forall p:nat, even p -> even (S (S p)).
(demo)

Require Import List.
Set Implicit Arguments.
Inductive is_repetition(A:Type) : list A -> Prop :=
| is_rep_nil : is_repetition nil
| is_rep_single : forall a, is_repetition (a::nil)
| is_rep_cons: forall a l, is_repetition (a::l) ->

is_repetition (a::a::l).
(demo)

Inductive properties

First examples

Inductive predicates

Let us consider again our little programming language. We can
define the predicate “the variable v appears in the expression e” :

Inductive Occurs (v:toy_Var): toy_Exp -> Prop :=
|Occ_var : Occurs v (variable v)
|Occ_op1 : forall op e1 e2, Occurs v e1 ->

Occurs v (toy_op op e1 e2)
|Occ_op2 : forall op e1 e2, Occurs v e2 ->

Occurs v (toy_op op e1 e2).

Constructors are displayed in red.

Inductive properties

First examples

Likewise, “The variable v may be modified by an execution of the
statement s”.

Inductive Assigned_in (v:toy_Var): toy_Statement->Prop :=
| Assigned_assign : forall e, Assigned_in v (assign v e)
| Assigned_seq1 : forall s1 s2,

Assigned_in v s1 ->
Assigned_in v (sequence s1 s2)

| Assigned_seq2 : forall s1 s2,
Assigned_in v s2 ->
Assigned_in v (sequence s1 s2)

| Assigned_loop : forall e s,
Assigned_in v s ->
Assigned_in v (simple_loop e s).

Inductive properties

First examples

For proving that some given variable is assigned in some given
statement, just apply (a finite number of times) the constructors.

Lemma Y_assigned : Assigned_in Y factorial_Z_program.
Proof.
unfold factorial_Z_program.
constructor 3 (* apply Assigned_seq2 *).
constructor 2 (* apply Assigned_seq1 *) .
constructor 1 (* apply Assigned_assign *).
Qed.

Inductive properties

First examples

(* Using hints and auto *)
Hint Constructors Assigned_in.

Lemma X_assigned : Assigned_in X factorial_Z_program.
Proof.
unfold factorial_Z_program;auto.
Qed.

Lemma Z_unassigned : ~(Assigned_in Z factorial_Z_program).
intro H.
1 subgoal
H : Assigned in Z factorial Z program
============================
False

(* ???????????? *)
Abort.

Inductive properties

First examples

(* Using hints and auto *)
Hint Constructors Assigned_in.

Lemma X_assigned : Assigned_in X factorial_Z_program.
Proof.
unfold factorial_Z_program;auto.
Qed.

Lemma Z_unassigned : ~(Assigned_in Z factorial_Z_program).
intro H.
1 subgoal
H : Assigned in Z factorial Z program
============================
False

(* ???????????? *)
Abort.

Inductive properties

First examples

(* Using hints and auto *)
Hint Constructors Assigned_in.

Lemma X_assigned : Assigned_in X factorial_Z_program.
Proof.
unfold factorial_Z_program;auto.
Qed.

Lemma Z_unassigned : ~(Assigned_in Z factorial_Z_program).
intro H.
1 subgoal
H : Assigned in Z factorial Z program
============================
False

(* ???????????? *)
Abort.

Inductive properties

First examples

Note :
OK, we are going too fast !

So . . .
Let us consider some simpler examples, learn more about inductive
predicates, and the proof of the previous lemma will be a piece of
cake.

Inductive properties

First examples

A relation already used in previous lectures

The ≤ relation on nat is defined by the means of an inductive
predicate :

Inductive le (n : nat) : nat -> Prop :=
| le_n : le n n
| le_S : forall m : nat, le n m -> le n (S m)

The proposition (le n m) is denoted by n <= m.
n is called a parameter of the previous definition.
(demos)

Inductive properties

First examples

Reasoning with inductive predicates
Use constructors as introduction rules.

Lemma le_n_plus_pn : forall n p: nat, n <= p + n.
Proof.
induction p;simpl.

2 subgoals

n : nat
============================
n <= n

subgoal 2 is:
n <= S (p + n)
constructor 1.

Inductive properties

First examples

1 subgoal

n : nat
p : nat
IHp : n <= p + n
============================
n <= S (p + n)
constructor 2;assumption.
Qed.

Inductive properties

First examples

The induction principle for le

le_ind
: forall (n : nat) (P : nat -> Prop),
P n ->
(forall m : nat, n <= m -> P m -> P (S m)) ->
forall p : nat, n <= p -> P p

In order to prove that for every p ≥ n, P p, prove :

I P n

I for any m ≥ n, if P m holds, then P (S m) holds.

Inductive properties

First examples

Use induction or destruct as elimination tactics.

Lemma le_plus : forall n m, n <= m ->
exists p:nat, p+n = m
(* P m *).

Proof.
intros n m H.
1 subgoal
n : nat
m : nat
H : n <= m
============================
exists p : nat, p + n = m

induction H.

Inductive properties

First examples

2 subgoals

n : nat
============================
exists p : nat, p + n = n
(* P n *)

subgoal 2 is:
exists p : nat, p + n = S m
exists 0;trivial.

Inductive properties

First examples

1 subgoal

n : nat
m : nat
H : n <= m
IHle : exists p : nat, p + n = m (* P m *)
============================
exists p : nat, p + n = S m (* P (S m) *)

destruct IHle as [q Hq]; exists (S q);
simpl;rewrite Hq;trivial.

Qed.

Inductive properties

First examples

The inversion tactic

How to prove that :

Lemma foo : ~(1 <= 0).

Proof.
intro h.
inversion h.
Qed.

The inversion tactic derives all the necessary conditions to an
inductive hypothesis. If no condition can realize this hypothesis,
the goal is proved by ex falso quod libet.

Inductive properties

First examples

The inversion tactic

How to prove that :

Lemma foo : ~(1 <= 0).
Proof.
intro h.
inversion h.
Qed.

The inversion tactic derives all the necessary conditions to an
inductive hypothesis. If no condition can realize this hypothesis,
the goal is proved by ex falso quod libet.

Inductive properties

First examples

Lemma le_n_0 : forall n, n <= 0 -> n = 0.
Proof.
intros n H;inversion H.
1 subgoal

n : nat
H : n <= 0
H0 : n = 0
============================
0 = 0

trivial.
Qed.

Inductive properties

First examples

Some other examples

Lemma Assigned_inv1 : forall v w e,
Assigned_in v (assign w e) ->
v=w.

Proof.
intros v w e H; inversion H. ...

Lemma Assigned_inv2 : forall v s1 s2,
Assigned_in v (sequence s1 s2) ->
Assigned_in v s1 \/ Assigned_in v s2.

Proo.
intros v s1 s2 H; inversion H. ...

Are we now able to prove our “piece of cake” lemma ? look at the
demo !

Inductive properties

First examples

Some other examples

Lemma Assigned_inv1 : forall v w e,
Assigned_in v (assign w e) ->
v=w.

Proof.
intros v w e H; inversion H. ...

Lemma Assigned_inv2 : forall v s1 s2,
Assigned_in v (sequence s1 s2) ->
Assigned_in v s1 \/ Assigned_in v s2.

Proo.
intros v s1 s2 H; inversion H. ...

Are we now able to prove our “piece of cake” lemma ?

look at the
demo !

Inductive properties

First examples

Some other examples

Lemma Assigned_inv1 : forall v w e,
Assigned_in v (assign w e) ->
v=w.

Proof.
intros v w e H; inversion H. ...

Lemma Assigned_inv2 : forall v s1 s2,
Assigned_in v (sequence s1 s2) ->
Assigned_in v s1 \/ Assigned_in v s2.

Proo.
intros v s1 s2 H; inversion H. ...

Are we now able to prove our “piece of cake” lemma ? look at the
demo !

Inductive properties

First examples

An interesting technique : Use the type bool !

We first define a boolean function for testing equality on variables :

Require Import Bool.
Definition var_eqb (v w : toy_Var) :=
match v,w with X, X => true

| Y, Y => true
| Z, Z => true
| _, _ => false

end.

Inductive properties

First examples

We define a boolean test for the “assigned” property :

Fixpoint assigned_inb (v:toy_Var)(s:toy_Statement) :=
match s with

| assign w _ => var_eqb v w
| sequence s1 s2 =>

assigned_inb v s1 || assigned_inb v s2
| simple_loop e s => assigned_inb v s

end.

Inductive properties

First examples

Bridge lemmas

Lemma Assigned_In_OK : forall v s,
Assigned_in v s ->
assigned_inb v s = true.

Proof.
intros v s H;induction H;simpl;...

Lemma Assigned_In_OK_R :
forall v s, assigned_inb v s = true ->

Assigned_in v s.
Proof.
induction s;simpl.
...

Inductive properties

First examples

Lemma Z_unassigned : ∼(Assigned_in Z factorial_Z_program).
Proof.
intro H;assert(H0 := Assigned_In_OK _ _ H).
1 subgoal

H : Assigned in Z factorial Z program
H0 : assigned inb Z factorial Z program = true
============================
False

simpl in H0;discriminate H0.
Qed.

Inductive properties

First examples

Demos and exercises on ≤

Inductive properties

First examples

Let us consider again two aspects of ≤ :

Inductive le (n : nat) : nat -> Prop :=
| le_n : n <= n
| le_S : forall m : nat, le n m -> le n (S m)

The term (le n m) is denoted by n <= m.

Fixpoint leb n m : bool :=
match n, m with
|0, _ => true
|S i, S j => leb i j
| _, _ => false

end.

Inductive properties

First examples

Eval compute in leb 5 45.
= true : bool

Lemma L5_45 : 5 <= 45.
Proof.
repeat constructor.
Qed.

Just try Print L5 45. !

Inductive properties

First examples

Eval compute in leb 5 45.
= true : bool

Lemma L5_45 : 5 <= 45.
Proof.
repeat constructor.
Qed.

Just try Print L5 45. !

Inductive properties

First examples

Lemma le_trans :
forall n p q, n <= p -> p <= q -> n <= q.

Proof.

We recognize the scheme :

p <= q -> P q where P q is n <= q.

Thus, the base case is n <= p and the inductive step is

forall q, p <= q -> n <= q -> n <= S q.

Inductive properties

First examples

Lemma le_trans :
forall n p q, n <= p -> p <= q -> n <= q.

Proof.

We recognize the scheme :

p <= q -> P q where P q is n <= q.

Thus, the base case is n <= p and the inductive step is

forall q, p <= q -> n <= q -> n <= S q.

Inductive properties

First examples

intros n p q H H0;induction H0.
2 subgoals

n : nat
p : nat
H : n <= p
============================
n <= p . . .
assumption.

Inductive properties

First examples

1 subgoal

n : nat
p : nat
H : n <= p
m : nat
H0 : p <= m
IHle : n <= m
============================
n <= S m

constructor;assumption.
Qed.

The tactic constructor tries to make the goal progress by applying
a constructor. Constructors are tried in the order of the inductive
type definition.

Inductive properties

First examples

Lemma le_Sn_Sp_inv: forall n p, S n <= S p -> n <= p.
intros n p H;inversion H.
2 subgoals

n : nat
p : nat
H : S n <= S p
H1 : n = p
============================
p <= p . . .

constructor.

Inductive properties

First examples

1 subgoal

n : nat
p : nat
H : S n <= S p
m : nat
H1 : S n <= p
H0 : m = p
============================
n <= p

apply le_trans with (S n);
[repeat constructor|assumption].

Inductive properties

First examples

le or leb ?

We can build a bridge between both aspects by proving the
following theorems :

Lemma le_leb_iff : forall n p, n <= p <-> leb n p=true.

Lemma lt_leb_iff : forall n p, n < p <-> leb p n = false.
(* Proofs left as exercise *)

Inductive properties

First examples

Lemma L: 0 <= 47.
Proof.
rewrite le_leb_iff.

1 subgoal

============================
leb 0 47 = true

trivial.
Qed.

Inductive properties

First examples

Lemma leb_Sn_n : forall n p, leb n (n + p)= true.
Proof.
intros n p;rewrite <- le_leb_iff.

1 subgoal

n : nat
p : nat
============================
n <= n + p
SearchPattern (_ <= _ + _).
apply le_plus_l;auto.
Qed.

Inductive properties

First examples

Inductive definitions and functions

It is sometimes very difficult to represent a function f : A -> B
as a Coq function, for instance because of the :

I Undecidability (or hard proof) of termination

I Undecidability of the domain characterization

This situation often arises when studying the semantic of
programming languages.

In that case, describing functions as inductive relations is really
efficient.

Inductive properties

First examples

Definition odd n := ~ even n.

Inductive syracuse_steps : nat -> nat -> Prop :=
done : syracuse_steps 1 1
|even_case : forall n p,even n ->

syracuse_steps (div2 n) p ->
syracuse_steps n (S p)

|odd_case : forall n p , odd n ->
syracuse_steps (S(n+n+n)) p ->
syracuse_steps n (S p).

Exercise
Prove the proposition syracuse steps 5 6. Try to improve the
previous definitions !

Inductive properties

Road-map

What you think is not what you get

An odd alternative definition of le :

Inductive alter_le (n : nat) : nat -> Prop :=
| alter_le_n : alter_le n n
| alter_le_S : forall m : nat, alter_le n m ->

alter_le n (S m)
| alter_dummy : alter_le n (S n).

The third constructor is useless ! It may increase the size of the
proofs by induction.

Inductive properties

Road-map

What you think is not what you get

An odd alternative definition of le :

Inductive alter_le (n : nat) : nat -> Prop :=
| alter_le_n : alter_le n n
| alter_le_S : forall m : nat, alter_le n m ->

alter_le n (S m)
| alter_dummy : alter_le n (S n).

The third constructor is useless ! It may increase the size of the
proofs by induction.

Inductive properties

Road-map

A more abstract example

Section transitive_closures.
Definition relation (A : Type) := A -> A -> Prop.
Variables (A : Type)(R : relation A).

(* the transitive closure of R is the least
relation ... *)
Inductive clos_trans : relation A :=
(* ... that contains R *)
| t_step : forall x y : A, R x y -> clos_trans x y
(* ... and is transitive *)
| t_trans : forall x y z : A,
clos_trans x y -> clos_trans y z

-> clos_trans x z.

Inductive properties

Road-map

If some relation R is transitive, then its transitive closure in
included in R :

Hypothesis Rtrans :
forall x y z, R x y -> R y z -> R x z.

Lemma trans_clos_trans : forall a1 a2,
clos_trans a1 a2 -> R a1 a2.

Proof.
intros a1 a2 H; induction H.
2 subgoals
x : A
y : A
H : R x y
============================
R x y . . .

exact H.

Inductive properties

Road-map

x : A
y : A
z : A
H : clos trans x y
H0 : clos trans y z
IHclos trans1 : R x y
IHclos trans2 : R y z
============================
R x z

apply Rtrans with y; assumption.
Qed.

Inductive properties

Road-map

End transitive_closures.
Check trans_clos_trans.
trans clos trans

: forall (A : Type) (R : relation A),
(forall x y z : A, R x y -> R y z -> R x z) ->
forall a1 a2 : A, clos trans A R a1 a2 -> R a1 a2

Implicit Arguments clos_trans [A].
Implicit Arguments trans_clos_trans [A].
Check (trans_clos_trans le le_trans).
trans clos trans nat le le trans

: forall a1 a2 : nat, clos trans le a1 a2 -> a1 <= a2

Inductive properties

Road-map

End transitive_closures.
Check trans_clos_trans.
trans clos trans

: forall (A : Type) (R : relation A),
(forall x y z : A, R x y -> R y z -> R x z) ->
forall a1 a2 : A, clos trans A R a1 a2 -> R a1 a2

Implicit Arguments clos_trans [A].
Implicit Arguments trans_clos_trans [A].
Check (trans_clos_trans le le_trans).
trans clos trans nat le le trans

: forall a1 a2 : nat, clos trans le a1 a2 -> a1 <= a2

Inductive properties

Road-map

Advice for crafting useful inductive definitions

I Constructors are “axioms” : they should be intuitively true...

I Constructors should as often as possible deal with mutually
exclusive cases, to ease proofs by induction ;

I When an argument always appears with the same value, make
it a parameter

I Test your predicate on negative and positive cases !

Inductive properties

Logical connectives

Logical connectives as inductive definitions

Most logical connectives are defined using inductive types :

I Conjunction /\

I Disjunction \/

I Existential quantification ∃
I Equality

I Truth and False

Notable exceptions : implication, negation.

Let us revisit the 3th and 4th lectures.

Inductive properties

Logical connectives

Logical connectives : conjunction

Conjunction is a pair :

Inductive and (A B : Prop) := conj : A -> B -> and A B.

I Term (and A B) is denoted (A /\ B).

I Prove a conjunction goal with the split tactic (generates
two subgoals).

I Use a conjunction hypothesis with the destruct as [...]
tactic.

Inductive properties

Logical connectives

Logical connectives : disjunction

Disjunction is a two constructors inductive :

Inductive or (A B : Prop) : Prop :=
|or_introl : A -> or A B | or_intror : B -> or A B.

I Term (or A B) is denoted(A \/ B).

I Prove a disjunction with the left, right tactics (choose the
side to prove).

I Use a conjunction hypothesis with the case or
destruct as [...|...] tactics.

Inductive properties

Logical connectives

Logical connectives : existential quantification

Existential quantification is a pair :

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
ex_intro : forall x : A, P x -> ex P.

I The term ex A (fun x => P x) is denoted exists x, P x.

I Prove an existential goal with the exists tactic.

I Use an existential hypothesis with the destruct as [...]
tactic.

Inductive properties

Logical connectives

Equality

The built-in (predefined) equality relation in Coq is a parametric
inductive type :

Inductive eq (A : Type) (x : A) : A -> Prop :=
refl_equal : eq A x x.

I Term eq A x y is denoted (x = y)

I The induction principle is :

eq_ind : forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Inductive properties

Logical connectives

Equality

I Use an equality hypothesis with the rewrite [<-] tactic
(uses eq_ind)

I Remember equality is computation compliant !

Goal 2 + 2 = 4. apply refl_equal. Qed.

Because + is a program.

I Prove trivial equalities (modulo computation) using the
reflexivity tactic.

Inductive properties

Logical connectives

Truth

The “truth” is a proposition that can be proved under any
assumption, in any context. Hence it should not require any
argument or parameter.

Inductive True : Prop := I : True.

Its induction principle is :

True_ind : forall P : Prop, P -> True -> P

which is not of much help...

Inductive properties

Logical connectives

Falsehood

Falsehood should be a proposition of which no proof can be built
(in empty context).
In Coq, this is encoded by an inductive type with no constructor :

Inductive False : Prop :=

coming with the induction principle :

False_ind : forall P : Prop, False -> P

often referred to as ex falso quod libet.

I To prove a False goal, often apply a negation hypothesis.

I To use a H : False hypothesis, use destruct H.

Inductive properties

Logical connectives

Specifying programs with inductive predicates

Programs are computational objects.
Inductive types provide structured specifications.
How to get the best of both worlds ?

By combining programs with inductive specifications.

Inductive properties

Logical connectives

Specifying programs with inductive predicates

Programs are computational objects.
Inductive types provide structured specifications.
How to get the best of both worlds ?
By combining programs with inductive specifications.

	First examples
	Road-map
	Logical connectives

