
Coq quick reference

Coq 8.2pl2

Starting the system

coqtop or coqide
use coqc to compile a file

Quitting the system

Quit.

Starting a proof

Lemma the name : forall x y, x < x + y.

Finishing a proof

Abort.
Qed.

Libraries

Loading libraries
Require Import ...
Important libraries
Arith, ZArith, List, Wellfounded, Reals

Gathering information

Locate " /\ ’’.
SearchAbout name.
Search name.
SearchPattern (<= *).
SearchRewrite (* (+)).

Defining a datatype

Inductive tree (A : Type) : Type :=
L (a : A) | N (t1 t2 : tree A).

Programming

Fixpoint ev (n:nat) : bool :=
match n with
| 0 => true
| 1 => false
| S (S p) => ev p
end.

Fixpoint revt A (l1 l2 : list A) :=
match l1 with
| nil => l2
| a::tl => revt A tl (a::l2)
end.

Definition rev’ A l := revt A l nil.

Computing values

Eval vm compute in ev 3.

1

Basic tactics

Simple goals

trivial, assumption, exact H

Adding intermediate facts

assert (H : formula),
assert (H := theorem a b)

universal quantification forall x:T, A (conclusion)
implication A -> B (conclusion)

intros a b c

universal quantification (hypothesis)
implication (hypothesis)

apply H

equality A = B (conclusion)

reflexivity, trivial, ring

equality, universally quantified equality (hypothesis)

rewrite H

equality between constructors

injection H, discriminate

conjunction, A /\ B (conclusion)

split

conjunction (hypothesis)

destruct H as [H1 H2]

disjunction, A \/ B (conclusion)

left, right

disjunction (hypothesis)

destruct H as [H1 | H2]

existential quantification
exists a:T, P a (conclusion)

exists e

existential quantification (hypothesis)

destruct H as [x Px]

negation ~A (conclusion)

intros H

negation (hypothesis)

case H

case analysis

destruct (f x) as [v1 | v2 v3]
case eq (f x), case (f x)

computation and replacement

unfold f,fold a, simpl, simpl f, simpl (f x)
change (f x) with (g x), replace (f x) with
(g x)

Proof by induction

elim x, elim H, induction x,
functional induction f x

Automatic proof tactics

tauto, firstorder, omega, ring

2

