
Logic, Part II: Computer-Assisted Proofs

Logic, Part II: Computer-Assisted Proofs

Pierre Castéran

October-December 2014

Slides written by Yves Bertot, Sandrine Blazy, Pierre Castéran,
Pierre Letouzey, and Assia Mabhoubi for Summer Schools in Paris,
Beijing, Suzhou, Shanghai and Shonan Village Center (Kanagawa).

Logic, Part II: Computer-Assisted Proofs

About Coq

Awarded to an institution or individual(s) recognized for
developing a software system that has had a lasting
influence, reflected in contributions to concepts, in
commercial acceptance, or both. The Software System
Award carries a prize of $35,000. Financial support for the
Software System Award is provided by IBM.

http://awards.acm.org/software_system/

http://awards.acm.org/software_system/

Logic, Part II: Computer-Assisted Proofs

Coq is a software tool for the interactive development of formal
proofs, which is a key enabling technology for certified software. It
provides a formal language to write mathematical definitions,
executable algorithms and theorems together with an environment
for semi-interactive development of machine-checked proofs. An
open source product, Coq has played an influential role in formal
methods, programming languages, program verification and formal
mathematics. As certification gains importance in academic and
industrial arenas, Coq plays a critical role as a primary programming
and certification tool. Coq’s first implementation was in 1985 . . .

Logic, Part II: Computer-Assisted Proofs

Documentation

I http://www.labri.fr/perso/casteran/FM/LogiqueM1
This course’s page

I http://coq.inria.fr
Coq web site (look at documentation index)

I http://www.labri.fr/perso/casteran/CoqArt
Book by Yves Bertot and Pierre Castéran (french version freely
available)

I http://www.cis.upenn.edu/∼bcpierce/sf
Software Fundations, by Benjamin Pierce.

I Interactive Theorem Proving and Program Development
Coq’Art, The Calculus of Inductive Constructions
Yves Bertot and Pierre Castéran, Springer, 2004.

http://www.labri.fr/perso/casteran/FM/LogiqueM1/
http://coq.inria.fr
http://www.labri.fr/perso/casteran/CoqArt
http://www.cis.upenn.edu/~bcpierce/sf

Logic, Part II: Computer-Assisted Proofs

I What is Coq ?
I A programming language
I A proof development tool

I Why do we use Coq ?
I To develop software with few errors
I To explore mathematical theories and/or proof theory
I To use the computer to verify that all details are right

I How does one use Coq ?
I The topic of this course.

Logic, Part II: Computer-Assisted Proofs

Describing the data

Describing the data

I Case-based
I show all possible cases for the data
I a finite number of different cases

I Structured
I each case has all the components needed in the data
I like a record

I Sometimes recursive
I use the “divide-and-conquer” approach
I recognize repetition to tame infinite datatypes

I Theoretical foundation : algebraic datatypes, term algebras,
cartesian products, disjoint sums, least and greatest fixed
points

Logic, Part II: Computer-Assisted Proofs

Describing the operations

Describing the operations

I Functional programming : each operation is described as a
function

I Map inputs to outputs, do not modify
I Programmation guided by the cases from data-types
I Avoid undefined values

I all cases must be covered
I guaranteed termination of computations

I safer programming

Logic, Part II: Computer-Assisted Proofs

Describing the properties

Describing the properties

I A predefined language of higher-order logic and, or, forall,
exists.

I Possibility to express consistency between several functions
I example whenever f (x) is true, g(x) is a prime number

I A general scheme to define new predicates : inductive
predicates

I example the set of even numbers is the least set E so that
0 ∈ E and x ∈ E ⇒ x + 2 ∈ E

I foundation : least fixed points

Logic, Part II: Computer-Assisted Proofs

Proving properties of programs

Proving properties of programs

I Decompose a logical formula into simpler ones
I Goal oriented approach, backward reasoning
I Consider a goal P(a)
I Suppose there is a theorem ∀x ,Q(x) ∧ R(x)⇒ P(x)
I By choosing to apply this theorem, get two new goals : Q(a)

and R(a)
I The system makes sure no condition is overlooked
I A collection for tools specialized for a variety of situations
I Handle equalities (rewriting), induction, numeric computation,

function definitions, etc...

Logic, Part II: Computer-Assisted Proofs

A commented example on sorting

A commented example on sorting : the data

Inductive list (A : Type) : Type :=
nil | cons (a : A) (l : list A).

Implicit Arguments nil [A].
Implicit Arguments cons [A].

Notation "a :: l" := (cons a l).

Logic, Part II: Computer-Assisted Proofs

A commented example on sorting

The operations

Fixpoint insert (x : Z) (l : List Z) :=
match l with
| nil => x::nil
| a::l’ =>

if Zle_bool x a then x::a::l’ else a::insert x l’
end.

Fixpoint sort l :=
match l with
| nil => nil
| a::l’ => insert a (sort l’)
end.

Logic, Part II: Computer-Assisted Proofs

A commented example on sorting

The properties

I Have a property sorted l to express that a list l is sorted
I Have a property permutation l1 l2

Definition permutation l1 l2 :=
forall x, count x l1 = count x l2.

I assuming the existence of a function count

Logic, Part II: Computer-Assisted Proofs

A commented example on sorting

Proving the properties

Two categories of statements :
I General theory about the properties (statements that do not

mention the algorithm being proved)
I ∀x y l, sorted (x:: y:: l) ⇒ x ≤ y
I transitive(permutation)

I Specific theory about the properties being proved
I ∀x l, sorted l ⇒ sorted (insert x l)
I ∀x l, permutation (x:: l) (insert x l)

Logic, Part II: Computer-Assisted Proofs

First steps in Coq

First steps in Coq
Write a comment “open parenthesis-star”, “star-close parenthesis”

(* This is a comment *)

Give a name to an expression

Definition three := 3.
three is defined

Verify that an expression is well-formed

Check three.
three : nat

Compute a value

Eval compute in three.
= 3 : nat

Logic, Part II: Computer-Assisted Proofs

First steps in Coq

Defining functions

Expressions that depend on a variable

Definition add3 (x : nat) := x + 3.
add3 is defined

Logic, Part II: Computer-Assisted Proofs

First steps in Coq

The type of values

The command Check is used to verify that an expression is
well-formed

I It returns the type of this expression
I The type says in which context the expression can be used

Check 2 + 3.
2 + 3 : nat

Check 2.
2 : nat

Check (2 + 3) + 3.
(2 + 3) + 3 : nat

Logic, Part II: Computer-Assisted Proofs

First steps in Coq

The type of functions

The value add3 is not a natural number

Check add3.
add3 : nat -> nat

The value add3 is a function
I It expects a natural number as input
I It outputs a natural number

Check add3 + 3.
Error the term "add3" has type "nat -> nat"
while it is expected to have type "nat"

Logic, Part II: Computer-Assisted Proofs

First steps in Coq

Applying functions
Function application is written only by juxtaposition

I Parentheses are not mandatory

Check add3 2.
add3 2 : nat

Eval compute in add3 2.
= 5 : nat

Check add3 (add3 2).
add3 (add3 2) : nat

Eval compute in add3 (add3 2).
= 8 : nat

Logic, Part II: Computer-Assisted Proofs

First steps in Coq

Functions with several arguments
At definition time, just use several variables

Definition s3 (x y z : nat) := x + y + z.
s3 is defined

Check s3.
s3 : nat -> nat -> nat -> nat

Functions with one argument that return functions.

Check s3 2.
s3 2 : nat -> nat -> nat

Check s3 2 1.
s3 2 1 : nat -> nat

Logic, Part II: Computer-Assisted Proofs

First steps in Coq

Functions are values

I The value add3 2 is a natural number,
I The value s3 2 is a function,
I The value s3 2 1 is a function, like add3

Logic, Part II: Computer-Assisted Proofs

First steps in Coq

Function arguments

I Functions can also expect functions as argument

Definition rep2 (f : nat -> nat)(x:nat) := f (f x).
rep2 is defined

Check rep2.
rep2 : (nat -> nat) -> nat -> nat

Definition rep2on3 (f : nat -> nat) := rep2 f 3.

Check rep2on3.
rep2on3 : (nat -> nat) -> nat

Logic, Part II: Computer-Assisted Proofs

First steps in Coq

Type verification strategy (function application)

Function application is well-formed if types match :
I Assume a function f has type A -> B
I Assume a value a has type A
I then the expression f a is well-formed and has type B

Check rep2on3. rep2on3 : (nat -> nat) -> nat
Check add3. add3 : nat -> nat
Check rep2 add3. rep2on3 add3 : nat

Logic, Part II: Computer-Assisted Proofs

First steps in Coq

Anonymous functions

Functions can be built without a name
Construct well-formed expressions containing a variable, with a
header

Check fun (x : nat) => x + 3.
fun x : nat => x + 3 : nat -> nat

The new expression is a function, usable like add3 or s3 2 1

Check rep2on3 (fun (x : nat) => x + 3).
rep2on3 (fun x : nat => x + 3) : nat

This is called an abstraction

Logic, Part II: Computer-Assisted Proofs

First steps in Coq

Type verification strategy (abstraction)

An anonymous function is well-formed if the body is well formed
I add the assumption that the variable has the input type
I add the argument type in the result
I Example, verify : fun x : nat => x + 3
I x + 3 is well-formed when x has type nat, and has type nat
I Result : fun x : nat => x + 3 has type nat -> nat

Logic, Part II: Computer-Assisted Proofs

Defined datatypes and notations

A few datatypes

I An introduction to some of the pre-defined parts of Coq
I Grouping objects together : tuples
I Natural numbers and the basic operations
I Boolean values and the basic tests on numbers

Logic, Part II: Computer-Assisted Proofs

Defined datatypes and notations

Putting data together

I Grouping several pieces of data : tuples,
I fetching individual components : pattern-matching,

Check (3,4).
(3, 4) : nat * nat

Check
fun v : nat * nat =>

match v with (x, y) => x + y end.
fun v : nat * nat => let (x, y) := v in x + y

: nat * nat -> nat

Logic, Part II: Computer-Assisted Proofs

Defined datatypes and notations

Numbers

As in programming languages, several types to represent numbers
I natural numbers (non-negative), relative integers,

more efficient reprentations
I Need to load the corresponding libraries
I Same notations for several types of numbers : need to choose

a scope
I By default : natural numbers

I Good properties to learn about proofs
I Not adapted for efficient computation

Logic, Part II: Computer-Assisted Proofs

Defined datatypes and notations

Focus on natural numbers

Require Import Arith.
Open Scope nat_scope.

Check 3.
3 : nat

Check S.
S : nat -> nat

Check S 3.
4 : nat

Check 3 * 3.
3 * 3 : nat

Logic, Part II: Computer-Assisted Proofs

Defined datatypes and notations

Boolean values

I Values true and false
I Usable in if .. then .. else .. statements
I comparison function provided for numbers
I To find them : use the command Search

	Describing the data
	Describing the operations
	Describing the properties
	Proving properties of programs
	A commented example on sorting
	First steps in Coq
	Defined datatypes and notations

