
ar
X

iv
:0

70
7.

09
26

v2
  [

cs
.L

O
]  

10
 J

ul
 2

00
7

appor t  
de  r ech er ch e 

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
62

42
--

F
R

+
E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Theorem proving support in programming language
semantics

Yves Bertot

N° 6242

July 2007

http://arXiv.org/abs/0707.0926v2




Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Theorem proving support in programming language

semantics

Yves Bertot

Thème SYM — Systèmes symboliques
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Abstract: We describe several views of the semantics of a simple programming language as
formal documents in the calculus of inductive constructions that can be verified by the Coq
proof system. Covered aspects are natural semantics, denotational semantics, axiomatic
semantics, and abstract interpretation. Descriptions as recursive functions are also provided
whenever suitable, thus yielding a a verification condition generator and a static analyser
that can be run inside the theorem prover for use in reflective proofs. Extraction of an inter-
preter from the denotational semantics is also described. All different aspects are formally
proved sound with respect to the natural semantics specification.

Key-words: Coq, natural semantics, structural operational semantics, denotational se-
mantics, axiomatic semantics, abstract interpretation, formal verification, calculus of induc-
tive constructions, proof by reflection, program extraction



Sémantique des langages de programmation avec le

support d’un outil de preuve

Résumé : Nous décrivons plusieurs points de vue sur la sémantique d’un petit langage
de programmation, vus comme des documents dans le calcul des constructions inductives
qui peuvent être vérifiés par le système Coq. Les aspects couverts sont la sémantique na-
turelle, la sémantique dénotationnelle, la sémantique axiomatique, et l’interprétation abs-
traite. Des descriptions sous formes de fonctions récursives sont fournies quand c’est adapté,
et on obtient ainsi un générateur de conditions de vérification et un analyseur statique qui
peuvent être utilisés dans des preuves par réflexion. L’extraction d’un interprète à partir
de la sémantique dénotationnelle est également décrite. Des preuves formelles assurant la
correction des différents aspects vis-à-vis de la sémantique naturelle sont également abordes.

Mots-clés : Coq, sémantique naturelle, sémantique dénotationnelle, sémantique axio-
matique, interprétation abstraite, vérification formelle, calcul des constructions inductives,
preuve par réflexion, extraction de programmes
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This paper is dedicated to the memory of Gilles Kahn, my thesis advisor, my mentor,
my friend.

1 introduction

Nipkow demonstrated in [24] that theorem provers could be used to formalize many aspects
of programming language semantics. In this paper, we want to push the experiment further
to show that this formalization effort also has a practical outcome, in that it makes it
possible to integrate programming tools inside theorem provers in an uniform way. We
re-visit the study of operational, denotational semantics, axiomatic semantics, and weakest
pre-condiction calculus as already studied by Nipkow and we add a small example of a static
analysis tool based on abstract interpretation.

To integrate the programming tools inside the theorem prover we rely on the possibility
to execute the algorithms after they have been formally described inside the theorem prover
and to use theorems about these algorithms to assert properties of the algorithm’s input,
a technique known as reflection [2, 9]. Actually, we also implemented a parser, so that the
theorem prover can be used as a playground to experiment on sample programs. We per-
formed this experiment using the Coq system [16, 6]. The tools that are formally described
can also be “extracted” outside the proof environment, so that they become stand alone
programs, thanks to the extracting capabilities provided in [22].

The desire to use computers to verify proofs about programming language semantics was
probably one of the main incentives for the design of modern interactive theorem provers.
The LCF system was a pioneer in this direction. The theory of programming languages was
so grounded in basic mathematics that a tool like LCF was quickly recognized as a tool in
which mathematical reasoning can also be simulated and proofs can be verified by decom-
posing them in sound basic logical steps. LCF started a large family of theorem proving
tools, among which HOL [18] and Isabelle [25] have achieved an outstanding international
recognition. Nipkow’s experiments were conducted using Isabelle.

In the family of theorem proving tools, there are two large sub-families: there are the
direct descendants of the LCF system [19], which rely on simply-typed λ-calculus and the
axioms of higher-order logic to provide foundations for a large portion of mathematics;
on the other hand, there are systems descending from de Bruijn’s Automath system and
Martin-Löf’s theory of types, where propositions are directly represented as types, “non-
simple” types, namely dependent types, can be used to represent quantified statements,
and typed functions are directly used to represent proofs (the statement they prove being
their type). In systems of the LCF family, typed λ-terms are used in the representation
of logical statements and proofs are objects of another nature. In systems of the latter
family, usually called type theory-based theorem proving tools, typed λ-terms are used both
in the representation of logical statements and in the representation of proofs. Well-known
members of the type theory based family of theorem proving tools are Nuprl [11], Agda [12],
and Coq.
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4 Bertot

The fact that typed λ-terms are used both to represent logical statements and proofs
in type theory-based theorem proving tool has the consequence that computation in the
typed λ-calculus plays a central role in type-theory based theorem proving tools, because
verifying that a theorem is applied to an argument of the right form may require an arbitrary
large computation in these systems. By contrast, computation plays only a secondary role
in LCF-style theorem proving tools and facilities to execute programs efficiently inside the
theorem prover to support proofs was only added recently [3].

With structural operational semantics and natural semantics, Gordon Plotkin and Gilles
Kahn provided systematic approaches to describing programming languages relying mostly
on the basic concepts of inductive types and inductive propositions. Execution states are
represented as environments, in other words lists of pairs binding a variable name and a
value. Programs themselves can also be represented as an inductive data-type, following
the tradition of abstract syntax trees, a streamlined form of parsing trees. Execution of
instructions can then be described as inductive propositions, where executing an instruction
is described as a ternary relation between an input environment, an instruction, and an
output value. The execution of each program construct is described by composing “smaller”
executions of this construct or its sub-components. We will show that descriptions of exe-
cution can also be represented using functions inside the theorem prover and we will prove
that these functions are consistent with the initial semantics, in effect producing certified
interpreters for the studied language.

Another approach to describing the behavior of programs is to express that a program
links properties of inputs with properties of outputs. In other words, one provide a logical
system to describe under which condition on a program’s input a given condition on the
program’s output can be guaranteed (as long as the program terminates). This style of
description is known as axiomatic semantics and was proposed by Hoare [20]. Here again,
we can use an inductive type to represent a basic language of properties of input and output
of programs. We will show that axiomatic semantics can easily be described using inductive
properties and recursive functions and again we will show that the new reasoning rules
are consistent with the initial operational semantics. Axiomatic semantics also support an
algorithmic presentation, known as a verification condition generator for the weakest pre-
condition calculus as advocated by Dijkstra [15]. Again, we provide an implementation
of this generator and a proof that it is correct. Thanks to the reflection approach, this
generator can be used inside the theorem prover to establish properties of sample programs.

The next style of semantic description for programming language that we will study
will be the style known as denotational semantics or domain theory, actually the style
that motivated the first implementation of the LCF system. Here, the semantics of the
instructions is described as a collection of partial functions from a type of inputs to a type
of outputs. The kind of functions that are commonly used in type-theory based theorem
proving tools are not directly suited for this approach, for fundamental reasons. We will
show what axioms of classical logical can be used to provide a simple encoding of the partial
functions we need. However, using these axioms precludes computing inside the theorem
prover, so that the function we obtain are executable only after extraction outside the
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Theorem proving support in programming language semantics 5

theorem prover. This approach can still be used to derive an interpreter, a tool to execute
programs, with a guarantee that the interpreter respects the reference operational semantics.

The last category of semantic approaches to programming languages that we want to
address in this paper is an approach to the static analysis of programs known as abstract
interpretation. While other approaches aim at giving a completely precise understanding
of what happens in programs, abstract interpretation focusses on providing abstract views
of execution. The goal is to hide enough details so that the information that is obtained
from the analysis is easier to manage and more importantly the computations to perform
the analysis can be performed by a program that is guaranteed to terminate.

1.1 Related work

The main reference we used on programming language semantics is Winskel’s text book [29].
Many publications have been provided to show that these various aspects of programming

language could be handled in theorem provers. Our first example is [7] where we described
the correctness of a program transformation tool with respect to the language’s operational
semantics. This work was performed in the context of the Centaur system [8] where semantic
descriptions could be executed with the help of a prolog interpreter or reasoned about using
a translation to the Coq theorem prover [26]. The most impressive experiment is described
in [24], who approximately formalizes the first 100 pages of Winskel’s book, thus including
a few more proofs around the relations between operational semantics, axiomatic semantics,
and denotational semantics than we describe here. The difference between our work and
Nipkow’s is that we rely more on reflection and make a few different choices, like the choice
to provide a minimal syntax for assertions, while Nipkow directly uses meta-level logical
formulas and thus avoid the need to describe substitution. On the other hand, our choice
of an abstract syntax for assertions makes it possible to integrate our verification generator
with a parser, thus providing a more user-friendly approach to annotated programs.

The work on denotational semantics is a transposition and a reduction of the work
on domain theory that could already be described formally in the framework of logic of
computable functions, in Isabelle [23].

The study of interactions between abstract interpretation and theorem provers is the
object of more recent work. Intermediate approaches use abstract interpreters to generated
proofs of correctness of programs in axiomatics semantics as in [10]. Pichardie [14] actually
goes all the way to formally describing a general framework for abstract interpretation and
then instantiating it for specific domains to obtain static analysis tools. Our work is similar
except that Pichardie’s work is based on transition semantics, this imposes that recursion
is based on well-founded recursion, a feature that makes it ill-suited for use in reflection.

Application domains for theorem prover-aware formal semantics of programming lan-
guages abound. Nipkow and his team [28], Jacobs and his team, [27], and Barthe and his
team [1, 5] showed the benefits there could be in describing the Java programming language
and the Java virtual machine, to verify soundness properties of the byte-code verifier and
apply this the guarantees of the security that the Java language and its Smartcard-aware
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6 Bertot

offspring, JavaCard. More recent work by Leroy and his team show that this work can be
extended to the formalization of efficient compilers.

2 Concrete and abstract syntax

We consider a while loop programing language with simple arithmetic expressions: it is the
Imp language of [24] without the conditional instruction. The language has been trimmed
to a bare skeleton, but still retains the property of being Turing complete. We will use ρ as
meta-variables for variable declarations (we will also often use the word environment), e for
expressions, b for boolean expressions, and i for instructions. We use an infinite denumerable
set of variable names whose elements are written x, y, x1, . . . and we use n, n1, n

′ to represent
integers. The syntactic categories are defined as follows:

ρ ::= (x, n) · ρ|∅ e ::= n | x | e+e b ::= e <e

i ::= skip | x:=e | i;i | while b do i done

The intended meaning of most of these constructs should be obvious. The only suprising
element may be the skip instruction: this is an empty program, which does nothing.

In the theorem prover, we use inductive types to describe these syntactic categories. The
convention that numbers are expressions needs to be modified: there is a constructor anum in
the type of arithmetic expression aexpr that maps a number to the corresponding expression.
Similarly, variable names are transformed into arithmetic expressions and assignments just
use variable names as first components.

Inductive aexpr : Type := avar (s : string) | anum (n : Z) | aplus (a1 a2 :aexpr).

Inductive bexpr : Type := blt (a1 a2 : aexpr).

Inductive instr : Type :=
assign (s: string)(e:aexpr) | sequence (i1 i2:instr) | while (b:bexpr)(i:instr) | skip.

3 Operational semantics

3.1 Evaluation and environment update

3.1.1 Inference rules

We will describe the evaluation of expressions using judgments of the form ρ ⊢ e→ v or
ρ ⊢ b→ v (with a straight arrow). These judgments should be read as in environment ρ, the
arithmetic expression e (resp. the expression b) has the value v. The value v is an integer or
a boolean value depending on the kind of expression being evaluated. The rules describing

INRIA



Theorem proving support in programming language semantics 7

evaluation are as follows:

ρ ⊢ n→ n (x, n) · ρ ⊢ x→ n

ρ ⊢ x→ n x 6= y

(y, n′) · ρ ⊢ x→ n

ρ ⊢ e1 → n1 ρ ⊢ e2 → n2

ρ ⊢ e1+e2 → n1 + n2

ρ ⊢ e1 → n1 ρ ⊢ e2 → n2 n1 < n2

ρ ⊢ e1<e2 → true

ρ ⊢ e1 → n1 ρ ⊢ e2 → n2 n2 ≤ n1

ρ ⊢ e1<e2 → false

During the execution of instructions, we will regularly need describing the modification of
an environment, so that the value associated to a variable is modified. We use judgments
of the form ρ ⊢ x, n 7→ ρ′, which should be read as x has a value in ρ and ρ′ and the value
for x in ρ′ is n; every other variable that has a value in ρ has the same value in ρ′. This is
simply described using two inference rules, in the same spirit as rules to evaluate variables.

3.1.2 Theorem prover encoding

Judgments of the form · ⊢ · → · are represented by three-argument inductive predicates
named aeval and beval. We need to have two predicates to account for the fact that the
same judgment is actually used to describe the evaluations of expressions of two different
types. The encoding of premises is quite straight forward using nested implications, and
we add universal quantifications for every variable that occurs in the inference rules. All
inference rules for a given judgment are grouped in a single inductive definition. This makes
it possible to express that the meaning of the judgment · ⊢ · → · is expressed by these
inferences and only these inferences rules.

Environments are encoded as lists of pairs of a string and an integer, so that the envi-
ronment ∅ is encoded as nil and the environment (x, n) · ρ is (x,n)::r.

Definition env := list(string*Z).

Inductive aeval : env → aexpr → Z → Prop :=
ae int : ∀ r n, aeval r (anum n) n
| ae var1 : ∀ r x n, aeval ((x,n)::r) (avar x) n
| ae var2 : ∀ r x y v v’ , x 6= y → aeval r (avar x) v → aeval ((y,v’)::r) (avar x) v
| ae plus : ∀ r e1 e2 v1 v2, aeval r e1 v1 → aeval r e2 v2 →

aeval r (aplus e1 e2) (v1 + v2).

Inductive beval : env → bexpr → bool → Prop :=
| be lt1 : ∀ r e1 e2 v1 v2, aeval r e1 v1 → aeval r e2 v2 → v1 < v2 →

beval r (blt e1 e2) true
| be lt2 : ∀ r e1 e2 v1 v2, aeval r e1 v1 → aeval r e2 v2 → v2 ≤ v1 →

beval r (blt e1 e2) false.
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8 Bertot

the four place judgment · ⊢ ·, · 7→ · is also encoded as an inductive definition for a predicate
named update.

Induction principles are automatically generated for these declarations of inductive pred-
icates. These induction principles are instrumental for the proofs presented later in the
paper.

3.2 Functional encoding

The judgment ρ ⊢ e → n actually describes a partial function: for given ρ and e, there is
at most one value n such that ρ ⊢ e → n holds. We describe this function in two steps
with lookup and af, which return values in option Z. When computing additions, we need
to compose total functions with partial functions. For this, we define a bind function that
takes care of undefined values in intermediate results. The pre-defined function string dec is
used to compare two strings.

Fixpoint lookup (r:env)(s:string){struct r} : option Z :=
match r with
nil ⇒ None | (a,b)::tl ⇒ if (string dec a s) then Some b else lookup tl s
end.

Definition bind (A B:Type)(v:option A)(f:A→option B) : option B :=
match v with Some x ⇒ f x | None ⇒ None end.

Fixpoint af (r:env)(a:aexpr) : option Z :=
match a with
avar index ⇒ lookup r index | anum n ⇒ Some n
| aplus e1 e2 ⇒ bind (af r e1) (fun v1 ⇒ bind (af r e2) (fun v2 ⇒ Some (v1+v2)))
end.

We can define functions bf to evaluate boolean expressions and uf to compute updated
environments in a similar way.

We use two functions to describe the evaluation of arithmetic expressions, because eval-
uating variables requires a recursion where the environment decreases at each recursive call
(the expression staying fixed), while the evaluation of additions requires a recursion where
the expression decreases at each recursive call (the environment staying fixed). The Fixpoint
construct imposes that the two kinds of recursion should be separated.

With aeval and af, we have two encodings of the same concept. We need to show that
these encoding are equivalent, this is done with the following lemmas.

Lemma lookup aeval : ∀ r s v, lookup r s = Some v → aeval r (avar s) v.

Lemma af eval : ∀ r e v, af r e = Some v → aeval r e v.

Lemma aeval f : ∀ r e n, aeval r e n → af r e = Some n.

INRIA



Theorem proving support in programming language semantics 9

The proof of the first lemma is done by induction on the structure of r, the proof of the
second lemma is done by induction on e, while the proof of the third lemma is done by
induction on the structure of the proof for aeval (using the induction principle, which is
generated when the inductive predicate is declared). Using simple proof commands, each of
these proofs is less than ten lines long. We also have similar correctness proofs for bf and uf.

3.3 Natural semantics

With natural semantics [21], Gilles Kahn proposed that one should rely on judgments ex-
pressing the execution of program fragments until they terminate. The same style was
also called big-step semantics. The main advantage of this description style is that it sup-
ports very concise descriptions for sequential languages. For our little language with four
instructions, we only need five inference rules.

We rely on judgments of the form ρ ⊢ i  ρ′ (with a twisted arrow). These judgments
should be read as executing i from the initial environment ρ terminates and yields the new
environment ρ′.

ρ ⊢ skip ρ
ρ ⊢ e→ n ρ ⊢ x, n 7→ ρ′

ρ ⊢ x:=e ρ′

ρ ⊢ i1  ρ′ ρ′ ⊢ i2  ρ′′

ρ ⊢ i1;i2  ρ′′
ρ ⊢ b→ false

ρ ⊢ while b do i done ρ

ρ ⊢ b→ true ρ ⊢ i ρ′ ρ′ ⊢ while b do i done ρ′′

ρ ⊢ while b do i done ρ′′

Because it is described using collections of rules, the judgment · ⊢ ·  · can be described
with an inductive predicate exactly like the judgments for evaluation and update. We use
the name exec for this judgment.

Like the judgment ρ ⊢ e→ v, the judgment ρ ⊢ i ρ′ actually describes a partial func-
tion. However, this partial function cannot be described as a structural recursive function
as we did when defining the functions lookup and af. For while loop, Such a function would
present a recursive call where neither the environment nor the instruction argument would
be a sub-structure of the corresponding initial argument. This failure also relates to the fact
that the termination of programs is undecidable for this kind of language, while structural
recursion would provide a terminating tool to compute whether programs terminate. In the
later section on denotational semantics, we will discuss ways to encode a form of recursion
that is powerful enough to describe the semantics as a recursive function.

4 Axiomatic semantics

We study now the encoding of axiomatic semantics as proposed by Hoare [20] and the
weakest pre-condition calculus as proposed by Dijkstra [15]. The principle of this semantic
approach is to consider properties that are satisfied by the variables of the program before
and after the execution.

RR n° 6242



10 Bertot

4.1 The semantic rules

To describe this approach, we use judgments of the following form: {P}i{Q}. This should
be read as if P is satisfied before executing i and executing i terminates, then Q is guaranteed
to be satisfied after executing i.

There are two key aspects in axiomatic semantics: first the behavior of assignment
is explained by substituting variables with arithmetic expressions; second the behavior of
control operators is explained by isolating properties that are independent from the choice
made in the control operator and properties that can be deduced from the choice made in
the control operator.

{P}skip{P}
{P}i1{Q} {Q}i2{R}

{P}i1;i2{R}

{P [x← e]}x:=e{P}
{b ∧ P}i{P}

{P}while b do i done{¬b ∧ P}

P ⇒ P1 {P1}i{Q1} Q1 ⇒ Q

{P}i{Q}

In the rule for while loops, the property P corresponds to something that should be verified
whether the loop body is executed 0, 1, or many times: it is independent from the choice
made in the control operator. However, when the loop terminates, one knows that the
test must have failed, this is why the output property for the loop contains ¬b. Also, if P

should be preserved independently of the number of executions of the loop, then it should
be preserved through execution of the loop body, but only when the test is satisfied.

We call the first four rules structural rules: each of them handles a construct of the
programming language. The last rule, known as the consequence rule, makes it possible to
mix logical reasoning about the properties with the symbolic reasoning about the program
constructs. To prove the two premises that are implications, it is necessary to master the
actual meaning of the properties, conjunction, and negation.

4.2 Theorem prover encoding

The first step is to define a data-type for assertions. Again, we keep things minimal. Obvi-
ously, the inference rules require that the language of assertions contain at least conjunctions,
negations, and tests from the language’s boolean expressions. We also include the possibil-
ity to have abitrary predicates on arithmetic expressions, represented by a name given as a
string.

Inductive assert : Type :=
a b (b: bexpr) | a not (a: assert) | a conj (a a’: assert) | pred (s: string)(l: int aexpr).

Inductive condition : Type := c imp (a a’:assert).

For variables that occur inside arithmetic expressions, we use valuation functions of type
string→ Z instead of environments and we define a new function af’ (respectively bf’, lf’)

INRIA



Theorem proving support in programming language semantics 11

to compute the value of an arithmetic expression (respectively boolean expressions, lists of
arithmetic expressions) for a given valuation. The function af’ is more practical to use and
define than af because it is total, while af was partial.

Fixpoint af’ (g:string→Z)(a:aexpr) : Z :=
match a with avar s ⇒ g s | anum n ⇒ n | aplus e1 e2 ⇒ af’ g e1 + af’ g e2 end.

To give a meaning to predicates, we use lists of pairs associating names and predicates on
lists of integers as predicate environments and we have a function f p to map an environment
and a string to a predicate on integers.

With all these functions, we can interpret assertions as propositional values using a
function i a and conditions using a function i c.

Definition p env := list(string*(list Z→Prop)).

Fixpoint i a (m: p env)(g:string→Z)(a:assert) : Prop :=
match a with
a b e ⇒ bf’ g e | a not a ⇒ ˜ i a m g a
| pred p l ⇒ f p m p (lf’ g l) | a conj a1 a2 ⇒ i a m g a1 ∧ i a m g a2

end.

Definition i c (m:p env)(g:string→Z)(c:condition) :=
match c with c imp a1 a2 ⇒ i a m g a1 → i a m g a2 end.

The validity of conditions can be expressed for a given predicate environment by saying that
their interpretation should hold for any valuation.

Definition valid (m:p env)(c:condition) := ∀ g, i c m g c.

We also define substitution for arithmetic expressions, boolean expressions, and so on, each
time traversing structures. The function at the level of assertions is called a subst. We can
then define the axiomatic semantics.

Inductive ax sem (m :p env): assert → instr → assert → Prop:=
ax1 : ∀ P, ax sem m P skip P
| ax2 : ∀ P x e, ax sem m (a subst P x e) (assign x e) P
| ax3 : ∀ P Q R i1 i2, ax sem m P i1 Q → ax sem m Q i2 R →

ax sem m P (sequence i1 i2) R
| ax4 : ∀ P b i, ax sem m (a conj (a b b) P) i P →

ax sem m P (while b i) (a conj (a not (a b b)) P)
| ax5 : ∀ P P’ Q’ Q i,

valid m (c imp P P’) → ax sem m P’ i Q’ → valid m (c imp Q’ Q) →
ax sem m P i Q.

RR n° 6242



12 Bertot

4.3 Proving the correctness

We want to certify that the properties of programs that we can prove using axiomatic
semantics hold for actual executions of programs, as described by the operational semantics.
We first define a mapping from the environments used in operational semantics to the
valuations used in the axiomatic semantics. This mapping is called e to f, the expression
e to f e g x is the value of x in the environment e, when it is defined, and g x otherwise. The
formula e to f e g is also written e@g. We express the correctness of axiomatic semantics by
stating that if “exec r i r′” and “ax sem P i Q” hold, if P holds in the initial environment,
Q should hold in the final environment Q.

Theorem ax sem sound : ∀ m r i r’ g P Q, exec r i r’ → ax sem m P i Q →
i a m (r@g) P → i a m (r’@g) Q.

When we attempt to prove this statement by induction on exec and case analyis on ax sem,
we encounter problem because uses of consequence rules may make axiomatic semantics
derivations arbitrary large. To reduce this problem we introduce a notion of normalized
derivations where exactly one consequence step is associated to every structural step. We
introduce an extra inductive predicate call nax to model these normalized derivation, with
only four constructors. For instance, here is the constructor for loops:

nax4 : ∀ P P’ Q b i,
valid m (c imp P P’) → valid m (c imp (a conj (a not (a b b)) P’) Q) →
nax m (a conj (a b b) P’) i P’ → nax m P (while b i) Q.

We prove that ax sem and nax are equivalent. This “organisational” step is crucial. We can
now prove the correctness statement by induction on exec and by cases on nax, while a proof
by double induction would be required with ax sem.

Another key lemma shows that updating an environment for a variable and a value, as
performed in operational semantics, and substituting an arithmetic expression for a variable,
as performed in axiomatic semantics, are consistent.

Lemma a subst correct : forall a r1 e v m g r2 x,
aeval r1 e v → s update r1 x v r2 →
(i a m (r1@g) (a subst a x e) ↔ i a m (r2@g) a).

4.4 The weakest pre-condition calculus

Most of the structure of an axiomatic semantics proof can be deduced from the structure
of the instruction. However, the assertions in loop invariants and in consequence rules
cannot be guessed. Dijkstra proposed to annotate programs with the unguessable formulas
and to automatically gather the implications used in consequence steps as a collection of
conditions to be proved on the side. The result is a verification condition generator which
takes annotated program as input and returns a list of conditions. We will now show how
to encode such a verification condition generator (vcg).

We need to define a new data-type for these annotated programs.

INRIA



Theorem proving support in programming language semantics 13

Inductive a instr : Type :=
prec (a:assert)(i:a instr) | a skip | a assign (s:string)(e:aexpr)
| a sequence (i1 i2:a instr) | a while (b:bexpr)(a:assert)(i:a instr).

The prec constructor is used to assert properties of a program’s variables at any point in the
program.

The computation of all the implications works in two steps. The first step is to understand
what is the pre-condition for an annotated instruction and a given post-condition. For the
a while and prec constructs, the pre-condition is simply the one declared in the corresponding
annotation, for the other constructs, the pre-condition has to be computed using substitution
and composition.

Fixpoint pc (i:a instr)(a:assert) {struct i} : assert :=
match i with
prec a’ i ⇒ a’ | a while b a’ i ⇒ a’ | a skip ⇒ a
| a assign x e ⇒ a subst a x e | a sequence i1 i2 ⇒ pc i1 (pc i2 a)
end.

The second step is to gather all the conditions that would appear in a minimal axiomatic
semantics proof for the given post-condition, starting from the corresponding pre-condition.

Fixpoint vcg (i:a instr)(post : assert) {struct i} : list condition :=
match i with
a skip ⇒ nil | a assign ⇒ nil | prec a i ⇒ c imp a (pc i post)::vcg i post
| a sequence i1 i2 ⇒ vcg i2 post ++ vcg i1 (pc i2 post)
| a while e a i ⇒

c imp (a conj (a not (a b e)) a) post :: c imp (a conj (a b e) a) (pc i a) :: vcg i a
end.

The correctness of this verification condition generator is expressed by showing that it suffices
to prove the validity of all the generated conditions to ensure that the Hoare triple holds.
This proof is done by induction on the instruction. We can then obtain a proof that relates
the condition generator and the operational semantics. In this statement, un annot maps an
annotated instruction to the corresponding bare instruction.

Theorem vcg sound :
∀ m i A, (valid l m (vcg i A)) → ∀ g r1 r2, exec r1 (un annot i) r2 →
i a m (e to f g r1) (pc i A) → i a m (e to f g r2) A.

4.5 An example of use in proof by reflection

We consider the program that adds the n first positive integers. We use a predicate envi-
ronment ex m that maps two names le and pp to two predicates on lists of two integers. For
the two integers x and y, the first predicate holds when x ≤ y and the second holds when
2 × y = x × (x + 1). With the help of a parser function, we can state the properties of
interest for our program in a concise manner:
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Example ex1 : ∀ g r2, 0 < n →
exec ((”x”, 0)::(”y”, 0)::(”n”,n)::nil)

(un annot (parse instr’
”while x < n do [le(x,n) ∧ pp(y,x)] x:=x+1;y:=x+y done”)) r2 →

2*(r2@g)”y” = (r2@g)”x”*((r2@g)”x”+1).

After a few logistic steps, we can show that the conclusion is an instance of the pp predicate,
and then apply the correctness theorem, which leads to two logical requirements. The first
is that the verification conditions hold:

valid l ex m
(vcg (parse instr’ ”while x < n do [le(x,n) ∧ pp(y,x)] x:=x+1;y:=x+y done”)
(parse assert’ ”pp(y,n)”))

After forcing the computation of the parser and the condition generator and a few more
logistic steps, this reduces to the following logical statement

∀x y n.

(x 6< n ∧ x ≤ n ∧ 2y = x(x + 1)⇒ 2 ∗ y = n(n + 1))∧
(x < n ∧ x ≤ n ∧ 2y = x(x + 1)⇒ x + 1 ≤ n ∧ 2(x + 1 + y) = (x + 1)(x + 2)).

This is easily proved using the regular Coq tactics. The second requirement is that the
pre-condition should be satisfied and reduces to the statement

0 ≤ n ∧ 0 = 0.

We have actually automated proofs about programs inside the Coq system, thus providing
a simple model of tools like Why [17].

5 Denotational semantics

In denotational semantics, the aim is to describe the meaning of instructions as functions.
The functions need to be partial, because some instructions never terminate on some inputs.
We already used partial functions for the functional encoding of expression evaluation. How-
ever, the partial recursive function that we defined were structural, and therefore guaranteed
to terminate. The execution function for instructions does not fit in this framework and we
will first define a new tool to define recursive function. Most notably, we will need to use
non-constructive logic for this purpose.

Again the partial functions will be implemented with the option inductive type, but the
None constructor will be used to represent either that an error occurs or that computation
does not terminate.
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Theorem proving support in programming language semantics 15

5.1 The fixpoint theorem

The approach described in [29] relies on Tarski’s fixpoint theorem, which states that every
continuous function in a complete partial order with a minimal element has a least fixpoint
and that this fixpoint is obtained by iterating the function from the minimal element.

Our definition of complete partial order relies on the notion of chains, which are mono-
tonic sequences. A partial order is a type with a relation ⊆ that is reflexive, antisymmetric,
and transitive; this partial order is complete if every chain has a least upper bound. A
function f is continuous if for every chain c with a least upper bound l, the value f(l) is
the least upper bound of the sequence f(cn). Notice that when defining continuous function
in this way, we do not require f to be monotonic; actually, we prove that every continuous
function is monotonic.

The proof of Tarski’s theorem is quite easy to formalize and it can be formalized using
intuitionistic logic, so the plain calculus of constructions is a satisfactory framework for this.

5.2 Partial functions form a complete partial order

The main work in applying Tarski’s theorem revolves around proving that types of partial
functions are complete partial orders. A type of the form option A has the structure of
a complete partial order when choosing as order the relation such that x ⊆ y exactly
when x = y or x = None. The element None is the minimal element. Chains have a
finite co-domain, with at most two elements, the least upper bound can be proved to exist
using the non-consructive excluded-middle axiom; this is our first step outside constructive
mathematics.

Given an arbitrary complete partial order (B,⊆), the type of functions of type A → B

is a complete partial order for the order defined as follows:

f ⊆ g ⇔ ∀x, f(x) ⊆ g(x).

The proof that this is a complete partial order requires other non-constructive axioms:
extensionality is required to show that the order is antisymetric and a description operator
is required to construct the least upper bound of a chain of functions. We actually rely on the
non-constructive ǫ operator proposed by Hilbert and already used in HOL or Isabelle/HOL.
This ǫ operator is a function that takes a type T , a proof that T is inhabited, a predicate
on T , and returns a value in T that is guaranteed to satisfy the predicate when possible.

For a sequence of functions fn (not necessarily a chain), we can define a new function f ,
which maps every x to the value given by the ǫ operator for the predicate “to be the least
upper bound of the sequence sequence fn(x)”. Now, if it happens that fn is a chain, then
each of the sequences fn(x) is a chain, f(x) is guaranteed to be the least upper bound, and
f is the least upper bound of fn.

In practice, Tarski’s least fixpoint theorem is a programming tool. If one wishes to define
a recursive function with a definition of the form

f x = e
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such that f appears in e, it suffices that the function λf.λx.e is continuous and the theorem
returns a function that satisfies this equation, a natural candidate for the function that one
wants to define. We encode this fixpoint operator as a function called Tarski fix.

5.3 Defining the semantics

For a while loop of the form while b do i done, such that the semantic function for i is fi,
we want the value of semantic function to be the function φb,i such that :

φb,i(ρ) =







ρ if bf b=false
φb,i(ρ

′) if bf b=true and fi(ρ) = Some ρ′

None otherwise

This function φb,i is the least fixpoint of the function F phi obtained by combining a condi-
tional construct, a sequential composition function (already described using the bind func-
tion, and a few constant functions. We encode F phi and phi as follows:

Definition ifthenelse (A:Type)(t:option bool)(v w: option A) :=
match t with Some true ⇒ v | Some false ⇒ w | None ⇒ None end.

Notation ”’IF x ’THEN a ’ELSE b” := (ifthenelse x a b) (at level 200).

Definition F phi (A:Set)(t:A→option bool)(f g :A→option A) : A → option A :=
fun r ⇒ ’IF (t r) ’THEN (bind (f r) g) ’ELSE (Some r).

We proved that each of the constructs and F phi are continuous. The semantics for instruc-
tions can then be described by the following functions:

Definition phi := fun A t f ⇒ Tarski fix (F phi A t f).

Fixpoint ds(i:instr) : (list(string*Z)) → option (list(string*Z)) :=
match i with
assign x e ⇒ fun l ⇒ bind (af l e)(fun v ⇒ update l x v)
| sequence i1 i2 ⇒ fun r ⇒ (ds i1 r)(ds i2)
| while e i ⇒ fun l ⇒ phi env (fun l’ ⇒ bf l’ e)(ds i) l
| skip ⇒ fun l ⇒ Some l
end.

We also proved the equivalence of this semantic definition and the natural semantics speci-
fication:

Theorem ds eq sn : ∀ i l l’, ds i l = Some l’ ↔ exec l i l’.

We actually rely on the second part of the fixpoint theorem, which states that the least
fixpoint of a continuous function is the least upper bound of the chain obtained by iterating
the function on the least element. In our case, this gives the following corollary:

∀x v, φ x = Some v ⇒ ∃n, F phin (fun y → None) x = Some x
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We can then proceed with a proof by induction on the number n.
Unlike the functions af, af’, or vcg, the function phi is not usable for computation inside

the theorem prover, but F phin can be used to compute using approximations. We can still
extract this code and execute it in Ocaml, as long as we extract the Tarski fixpoint theorem
to a simple fixpoint function:

let rec fix f = f (fun y → fix f y)

This interpreter loops when executing a looping program; this is predicted in the Coq
formalization by a value of None.

6 Abstract interpretation

The goal of abstract interpretation [13] is to infer automatically properties about programs
based on approximations described as an abstract domain of values. Approximations make
it possible to consider several executions at a time, for example all the executions inside a
loop. This way the execution of arbitrary programs can be approximated using an algorithm
that has polynomial complexity.

Abstract values are supposed to represent subsets of the set of concrete values. Each
abstract interpreter works with a fixed set of abstract values, which much have a certain
structure. An operation on abstract values must be provided for each operation in the
language (in our case we only have to provide an addition on abstract values). The sub-
set represented by the result of an abstract operation must contain all the values of the
corresponding operation when applied to values in the input subsets. The set of abstract
values should also be ordered, in a way that is compatible with the inclusion order for the
subsets they represent. Also, the type of abstract values should also contain an element
corresponding to the whole set of integers. We will call this element the bottom abstract
value. The theoretical foundations provided by Cousot and Cousot [13] actually enumerate
all the properties that are required from the abstract values.

Given an abstract valuation where variable names are mapped to abstract values, we
program an abstract evaluation function ab eval for arithmetic expressions that returns a
new abstract value. This function is programmed exactly like the function af’ we used for
axiomatic semantics, simply replacing integer addition with an abstract notion of addition
on abstract values.

When we need to evaluate with respect to an abstract environment l, i.e., a finite list of
pairs of variable names and abstract values, we use the function (ab lookup l) that associates
the bottom value to all variables that do not occur in the abstract environment.

Abstract execution of instructions takes as input an abstract environment and a bare
instruction and returns the pair of an annotated instruction and an optional final abstract
environment. When the optional environment is None, this means that the analysis detected
that concrete execution never terminate. The annotations in the result instruction describe
information that is guaranteed to be satisfied when execution reaches the corresponding
point.
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Abstract execution for assignments, sequences, and skip instructions is natural to express:
we just compute abtract values for expressions and pass abstract environments around as we
did in the concrete semantics. For while loops, we handle them in a static way: our abstract
interpreter is designed as a tool that always terminate (even if the analyzed program loops
for ever).

The approach is to make the abstract environment coarser and coarser, until we reach
an approximation that is stable through abstract interpretation of the loop body. Thus, we
want to find an invariant abstract environment for loops, as we did in axiomatic semantics.
Finding the best possible approximation is undecidable and over-approximation is required.
We chose to implement a simple strategy:

1. We first check whether the input abstract environment for the while loop is stable,
that is, if abstract values in the output environment are included in the corresponding
abstract value for the input environment,

2. If this fails, we use a widen function to compute an over-approximation of both the
input and the output, and we then check whether the new environment is stable,
widen), and we check whether this new environment is stable,

3. If the first two steps failed, we overapproximate every value with the bottom abstract
value; this is necessarily stable but gives no valuable information about any variable.

We also incorporate information from the loop test. When the test has the form v < e,
where v is a variable, we can use this to refine the abstract value for v. At this point, we
may detect that the new abstract value represents the empty set, this only happens when the
test can never succeed or never fail, and in this case some code behind this test is dead-code.
This is performed by a function intersect env. This function takes a first boolean argument
that is used to express that we check whether the test is satisfied or falsified. This function
returns None when the test can never be satisfied or can never be falsified. When dead-code
is detected, we mark the instruction with false assertions, to express that the location is
never reached, (this is done in mark).

To check for stability of environments, we first need to combine the input and the output
environment to find a new environment where the value associated to each variable contains
the two values obtained from the two other environments. This is done with a function
noted l @@ l′ (we named it join env). For a given while loop body, we call intersect env and
mark or @@ three times, one for every stage of our simple strategy. These operations are
gathered in a function fp1.

Definition fp1(l0 l:ab env)(b:bexpr)(i:instr)(f:ab env→ a instr*option ab env) :=
match intersect env true l b with
None ⇒ (prec false assert (mark i), Some l)
| Some l’ ⇒ let (i’, l’’) := f l’ in
match l’’ with None ⇒ (i’, None) | Some l2 ⇒ (i’, Some (l0 @@ l’ @@ l2)) end

end.
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This function takes as argument the function f that performs abstract interpretation on the
loop body i. We use this function fp1 several times and combine it with widening functions
to obtain a function fp that performs our three stage strategy. When the result of fp is (i,
Some l), l satisfies the equation snd(f i l)=l.

Our abstract interpreter is then described as a recursive function abstract i (here we use
to a to transform an environment into an assertion, and to a’ for optional environments,
mapping None to false assert).

Fixpoint abstract i (i : instr)(l : ab env) : a instr*option ab env :=
match i with
skip ⇒ (prec (to a l) a skip, Some l)
| sequence i1 i2 ⇒
let (i’1, l’) := abstract i i1 l in
match l’ with
None ⇒ (a sequence i’1 (prec false assert (mark i2)), None)
| Some l’ ⇒ let (i’2, l’’) := abstract i i2 l’ in (a sequence i’1 i’2, l’’)
end
| assign x e ⇒
(prec (to a l) (a assign x e), Some (ab update l x (ab eval (ab lookup l) e)))
| while b i ⇒
match intersect env true l b with
None ⇒
(prec (to a e)(a while b (a conj (a not (a b b)) (to a l)) (mark i)), Some l)
| Some l’ ⇒
let (i’,l’’) := fp l b i (abstract i i) in

match l’’ with
None ⇒ (prec (to a l) (a while b (to a l) i’), intersect env false l)
| Some l’’ ⇒ (prec (to a l) (a while b (to a l’’) i’), intersect env false l’’ b)
end

end
end.

This abstract interpreter is a programming tool: it can be run with an instruction and a set
of initial approximations for variables. It returns the same instruction, where each location
is annotated with properties about the variables at this location, together with properties
for the variables at the end. This abstract interpreter is structurally recursive and can be
run inside the Coq proof system.

We proved a correctness statement for this abstract interpreter. This statement relies
on the verification condition generator that we described earlier.

Theorem abstract i sound:
∀ i e i’ e’ g, abstract i i e = (i’, e’) → i lc m g (vcg i’ (to a’ e’))).

This theorem is proved by induction on i. We need to establish a few facts:
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1. the order of variables does not change in successive abstract environments,

2. abstract execution is actually monotonic: given wider approximations, execution yields
wider results (given reasonable assumptions for intersect env)

3. the fp function (which handles loop bodies) either yields an abstract environment that
is an over approximation of its input or detects non-termination of the loop body,

4. the verification condition generator is monotonic with respect to implication: if the
conditions generated for i and a post-condition p hold and p → q is valid, then the
conditions generated for i and q also hold and pc i p → pc i q is also valid. This
property is needed because abstract interpreters and condition generators work in
reverse directions.

This abstract interpreter was developed in a modular fashion, where the domain of abstract
values is described using a module interface. We implemented an instance of this domain
for intervals.

7 Conclusion

This overview of formalized programming language semantics is elementary in its choice
of a very limited programming language. Because of this, some important aspects of pro-
gramming languages are overlooked: binding, which appears as soon as local variables or
procedures and functions are allowed, typing, which is a useful programming concept for
the early detection of programming errors, concurrency, which is useful to exploit modern
computing architectures, etc. Even for this simplistic programming language, we could also
have covered two more aspects: program transformations [7] and compilation [4].

Three aspects of this work are original: we obtain tools that can be executed inside
the Coq prover for proof by reflection; our work on denotational semantics shows that
the conventional extraction facility of the Coq system can also be used for potentially non
terminating functions, thanks to well chosen extraction for Tarski’s fixpoint theorem; last,
our description of an abstract interpreter is the first to rely on axiomatic semantics to prove
the correctness of an abstract interpreter.

Concerning reflection, we find it exciting that the theorem prover can be used to execute
programs in the object language (in work not reported here we show how to construct
an incomplete interpreter from a structural operational semantics), to generate condition
verifications about programs (thanks to the verification condition generator), and to prove
the conditions using the normal mode of operation of theorem prover. More interestingly, the
abstract interpreter can be run on programs to generate simultaneously annotated programs
and the proof that these annotated programs are consistent.

Formal verification techniques based on verification condition generators suffer from the
burden of explicitely writing the loop invariants. Chaieb already suggested that the loop
invariants could be obtained through abstract interpretation [10], generating proof traces
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that can be verified in theorem provers. Our partial correctness theorem for the abstract
interpreter suggests a similar approach here, except that we also proved the abstract inter-
preter correct. An interesting improvement would be to make manually written assertions
collaborate with automatically generated ones. First there should be a way to assume that
all assertions computed by an abstract interpreter are implicitly present in assertions; second
abstract interpreters could take manual annotations as clues to improve the quality of the
abstract environments they compute.
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