Sandrine Blazy

IRISA - INRIA and University Rennes 1

4th Asian-Pacific summer school on formal methods, 2012-07-19

(many slides from Xavier Leroy)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Formal semantics of programming languages

Provide a mathematically-precise answer to the question

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What does this program do, exactly?

What does this program do, exactly?

```
#include <stdio.h>
int l;int main(int o,char **0,
int I){char c.*D=0[1]:if(o>0){
for(l=0:D[l
                        ]:D[1
++]-=10){D [1++]-=120;D[1]-=
110;while (!main(0,0,1))D[1]
+= 20; putchar((D[1]+1032)
/20 ) ;}putchar(10);}else{
c=0+
        (D[I]+82)%10-(I>1/2)*
(D[I-1+I]+72)/10-9:D[I]+=I<0?0
:!(o=main(c/10,0,I-1))*((c+999
)%10-(D[I]+92)%10);}return o;}
```

(Raymond Cheong, 2001)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What does this program do, exactly?

```
#include <stdio.h>
int l;int main(int o,char **0,
int I){char c,*D=0[1];if(o>0){
for(l=0:D[l
                        ]:D[1
++]-=10){D [1++]-=120;D[1]-=
110;while (!main(0,0,1))D[1]
+= 20; putchar((D[1]+1032)
/20 ) ;}putchar(10);}else{
c=0+
        (D[I]+82)%10-(I>1/2)*
(D[I-1+I]+72)/10-9:D[I]+=I<0?0
:!(o=main(c/10,0,I-1))*((c+999
)%10-(D[I]+92)%10);}return o;}
```

(Raymond Cheong, 2001)

(It computes arbitrary-precision square roots.)

Why indulge in formal semantics?

- An intellectually challenging issue.
- When English prose is not enough.
 (e.g. language standardization documents.)
- A prerequisite to formal program verification.
 (Program proof, model checking, static analysis, etc.)
- A prerequisite to building reliable "meta-programs" (Programs that operate over programs: compilers, code generators, program verifiers, type-checkers, ...)

Is this program transformation correct?

```
double dotproduct(int n, double * a, double * b)
{
    double dp = 0.0;
    int i;
    for (i = 0; i < n; i++) dp += a[i] * b[i];
    return dp;
}</pre>
```

Compiled for the Alpha processor with all optimizations and manually decompiled back to C...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
double dotproduct(int n. double * a. double * b)
ſ
    double dp, a0, a1, a2, a3, b0, b1, b2, b3;
    double s0, s1, s2, s3, t0, t1, t2, t3;
    int i. k:
    dp = 0.0:
    if (n <= 0) goto L5;
    s0 = s1 = s2 = s3 = 0.0;
    i = 0: k = n - 3:
    if (k \le 0 || k > n) goto L19;
    i = 4; if (k \le i) goto L14;
    a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];
    i = 8: if (k <= i) goto L16;
L17: a2 = a[2]; b2 = b[2]; t0 = a0 * b0;
    a3 = a[3]; b3 = b[3]; t1 = a1 * b1;
    a0 = a[4]; b0 = b[4]; t2 = a2 * b2; t3 = a3 * b3;
    a1 = a[5]; b1 = b[5];
    s0 += t0; s1 += t1; s2 += t2; s3 += t3;
    a += 4; i += 4; b += 4;
    prefetch(a + 20); prefetch(b + 20);
    if (i < k) goto L17;
L16: s0 += a0 * b0: s1 += a1 * b1: s2 += a[2] * b[2]: s3 += a[3] * b[3]:
    a += 4: b += 4:
    a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];
L18: s0 += a0 * b0: s1 += a1 * b1: s2 += a[2] * b[2]: s3 += a[3] * b[3]:
    a += 4: b += 4:
    dp = s0 + s1 + s2 + s3:
    if (i >= n) goto L5:
L19: dp += a[0] * b[0]:
    i += 1; a += 1; b += 1;
    if (i < n) goto L19;
L5: return dp:
L14: a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1]; goto L18;
                                                             ・ロト・4冊ト・4三ト・4三ト 三 のへで
```

Part I

Operational and denotational semantics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Warm-up: expressions and their denotational semantics

Operational and denotational semantics

Warm-up: expressions and their denotational semantics

Warm-up: symbolic expressions

A language of expressions comprising

- variables x, y, ...
- ▶ integer constants 0, 1, −5, ..., n
- ▶ e₁ + e₂ and e₁ e₂ where e₁, e₂ are themselves expressions.

Objective: mechanize the syntax and semantics of expressions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Warm-up: expressions and their denotational semantics

```
Syntax of expressions
   Modeled as an inductive type.
   Definition ident := nat.
   Inductive expr : Type :=
     | Evar: ident -> expr
                                    (* Evar (v:ident) *)
                                    (* Econst (i:Z) *)
     Econst: Z -> expr
                                    (* Eadd (e1 e2: expr) *)
     Eadd: expr -> expr -> expr
     | Esub: expr -> expr -> expr
                                    (* Esub (e1 e2: expr) *).
```

Evar, Econst, etc. are functions that construct terms of type expr.

All terms of type expr are finitely generated by these 4 functions. ✓ Enables case analysis and induction. -Warm-up: expressions and their denotational semantics

Denotational semantics of expressions

Define [e] s as the denotation of expression e (the integer it evaluates to) in state s (a mapping from variable names to integers).

In ordinary mathematics, the denotational semantics is presented as a set of equations:

$$[x] s = s(x)$$
$$[n] s = n$$
$$[e_1 + e_2] s = [e_1] s + [e_2] s$$
$$[e_1 - e_2] s = [e_1] s - [e_2] s$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Warm-up: expressions and their denotational semantics

Mechanizing the denotational semantics

In Coq, the denotational semantics is presented as a recursive function

```
(\approx a definitional interpreter).
```

```
Definition state := ident -> Z.
```

```
Fixpoint eval_expr (s: state) (e: expr) {struct e} : Z :=
match e with
  | Evar x => s x
  | Econst n => n
  | Eadd e1 e2 => eval_expr s e1 + eval_expr s e2
  | Esub e1 e2 => eval_expr s e1 - eval_expr s e2
end.
```

Warm-up: expressions and their denotational semantics

Using the denotational semantics (1/3)

As an interpreter, to evaluate expressions.

Definition initial_state: state := fun (x: ident) => 0.

```
Definition update (s: state) (x: ident) (n: Z) : state :=
fun y => if eq_ident x y then n else s y.
```

```
Eval compute in (
   let x : ident := 0 in
   let s : state := update initial_state x 12 in
   eval_expr s (Eadd (Evar x) (Econst 1))).
```

```
Coq prints = 13 : Z.
```

Warm-up: expressions and their denotational semantics

Using the denotational semantics (1/3, cont'd)

Can also generate Caml code automatically (Coq's extraction mechanism).

Extraction eval_expr.

Warm-up: expressions and their denotational semantics

Using the denotational semantics (1/3, cont'd)

Can also generate Caml code automatically (Coq's extraction mechanism).

Recursive Extraction eval_expr.

```
. . .
type expr = Evar of ident | Econst of z
            | Eadd of expr * expr | Esub of expr * expr
. . .
let zplus x y = ...
. . .
(** val eval_expr : state -> expr -> z **)
let rec eval_expr s = function
  | Evar x -> s x
  | Econst n -> n
  | Eadd (e1, e2) -> zplus (eval_expr s e1) (eval_expr s e2)
  | Esub (e1, e2) -> zminus (eval_expr s e1) (eval_expr s e2)
                                         ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
```

Warm-up: expressions and their denotational semantics

```
Using the denotational semantics (2/3)
```

To reason symbolically over expressions.

```
Lemma expr_add_pos:
  forall s x,
  s x >= 0 -> eval_expr s (Eadd (Evar x) (Econst 1)) > 0.
Proof.
  simpl.
    (* goal becomes: forall s x, s x >= 0 -> s x + 1 > 0 *)
  intros. omega.
Qed.
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

-Warm-up: expressions and their denotational semantics

Using the denotational semantics (3/3)

To prove "meta" properties of the semantics. For example: the denotation of an expression is insensitive to values of variables not mentioned in the expression.

```
Lemma eval_expr_domain:
forall s1 s2 e,
  (forall x, occurs_in x e -> s1 x = s2 x) ->
  eval_expr s1 e = eval_expr s2 e.
```

(The predicate occurs_in was defined in the previous lecture.)

- ロ ト - 4 回 ト - 4 □

Warm-up: expressions and their denotational semantics

Variant 1: interpreting arithmetic differently Example: signed, modulo 2³² arithmetic (as in Java).

where normalize *n* is *n* reduced modulo 2^{32} to the interval $[-2^{31}, 2^{31})$.

```
Definition normalize (x : Z) : Z :=
  let y := x mod 4294967296 in
  if Z_lt_dec y 2147483648 then y else y - 4294967296.
```

-Warm-up: expressions and their denotational semantics

Variant 2: accounting for undefined expressions

In some languages, the value of an expression can be undefined:

- if it mentions an undefined variable;
- in case of arithmetic operation overflows (ANSI C);
- in case of division by zero;
- etc.

Recommended approach: use option types, with None meaning "undefined" and Some n meaning "defined and having value n". (see the previous lecture on data types)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
Mechanized semantics
```

Warm-up: expressions and their denotational semantics

```
Variant 2: accounting for undefined expressions
   Definition ostate := ident -> option Z.
   Fixpoint eval_expr2 (s: ostate) (e: expr) {struct e} : option Z
     match e with
      | Evar x \Rightarrow x
      | Econst n => Some n
      | Eadd e1 e2 =>
         match eval_expr2 s e1, eval_expr2 s e2 with
          Some n1, Some n2 => Some (n1 + n2)
          _, _ => None
         end
      | Esub e1 e2 =>
         match eval_expr2 s e1, eval_expr2 s e2 with
          | Some n1, Some n2 => Some (n1 - n2)
          | _, _ => None
         end
     end.
                                            ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
```

-Warm-up: expressions and their denotational semantics

Summary

The "denotational semantics as a Coq function" is natural and convenient. . .

... but limited by a fundamental aspect of Coq: all Coq functions must be total (= terminating).

X Cannot use this approach to give semantics to languages featuring general loops or general recursion.

✓ Use relational presentations "predicate state term result" instead of functional presentations "result = function state term".

The IMP language and its reduction semantics

Operational and denotational semantics

The IMP language

A prototypical imperative language with structured control.

Expressions:

$$e ::= x \mid n \mid e_1 + e_2 \mid e_1 - e_2$$

Boolean expressions (conditions):

$$b ::= e_1 = e_2 | e_1 < e_2$$

Commands (statements):

$$c ::= skip \qquad (do nothing) \\ | x := e \qquad (assignment) \\ | c_1; c_2 \qquad (sequence) \\ | if b then c_1 else c_2 \qquad (conditional) \\ | while b do c done \qquad (loop) \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The IMP language and its reduction semantics

Abstract syntax

```
Inductive expr : Type :=
  | Evar: ident -> expr
  | Econst: Z -> expr
  | Eadd: expr -> expr -> expr
  | Esub: expr -> expr -> expr.
Inductive bool_expr : Type :=
  | Bequal: expr -> expr -> bool_expr
  | Bless: expr -> expr -> bool_expr.
Inductive cmd : Type :=
  | Cskip: cmd
  | Cassign: ident -> expr -> cmd
  | Cseq: cmd \rightarrow cmd \rightarrow cmd
  | Cifthenelse: bool_expr -> cmd -> cmd -> cmd
  | Cwhile: bool_expr -> cmd -> cmd.
```

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Reduction semantics

Also called "structured operational semantics" (Plotkin) or "small-step semantics".

View computations as sequences of reductions

$$M \rightarrow M_1 \rightarrow M_2 \rightarrow \ldots$$

Each reduction $M \to M'$ represents an elementary computation. M' represents the residual computations that remain to be done later.

The IMP language and its reduction semantics

Reduction semantics for IMP

Reductions are defined on (command, state) pairs (to keep track of changes in the state during assignments).

Reduction rule for assignments:

$$(x := e, s) \rightarrow (\text{skip}, \text{update } s \times n)$$
 if $\llbracket e \rrbracket s = n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The IMP language and its reduction semantics

Reduction semantics for IMP

Reduction rules for sequences:

Example

$$\begin{array}{rcl} ((x:=x+1;x:=x-2),\ s) & \rightarrow & ((\texttt{skip};x:=x-2),\ s') \\ & \rightarrow & (x:=x-2,\ s') \\ & \rightarrow & (\texttt{skip},s'') \end{array}$$

where $s' = update \ s \ x \ (s(x) + 1)$ and $s'' = update \ s' \ x \ (s'(x) - 2)$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Reduction semantics for IMP

Reduction rules for conditionals and loops:

with

$$\llbracket e_1 = e_2 \rrbracket s = \begin{cases} \texttt{true} & \texttt{if} \llbracket e_1 \rrbracket s = \llbracket e_2 \rrbracket s; \\ \texttt{false} & \texttt{if} \llbracket e_1 \rrbracket s \neq \llbracket e_2 \rrbracket s \end{cases}$$

and likewise for $e_1 < e_2$.

Reduction semantics as inference rules

$$(x := e, s)
ightarrow (ext{skip}, s[x \leftarrow \llbracket e
rbracket s])$$
 $(c_1, s)
ightarrow (c_1', s')$
 $((c_1; c_2), s)
ightarrow ((c_1'; c_2), s')$
 $((skip; c), s)
ightarrow (c, s)$
 $[\llbracket b
rbracket] s = ext{true}$
 $((ext{if } b ext{ then } c_1 ext{ else } c_2), s)
ightarrow (c_1, s)$
 $[\llbracket b
rbracket] s = ext{false}$
 $((ext{if } b ext{ then } c_1 ext{ else } c_2), s)
ightarrow (c_2, s)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The IMP language and its reduction semantics

Reduction semantics as inference rules (cont'd)

 $\llbracket b \rrbracket s = \texttt{true}$

 $((\texttt{while } b \texttt{ do } c \texttt{ done}), s) \rightarrow ((c; \texttt{while } b \texttt{ do } c \texttt{ done}), s)$

 $\llbracket b \rrbracket \ s = \texttt{false}$

 $((\texttt{while} \ b \ \texttt{do} \ c \ \texttt{done}), s) \to (\texttt{skip}, s)$

The IMP language and its reduction semantics

Expressing inference rules in Coq

Step 1: write each rule as a proper logical formula

```
forall x e s,
    red (Cassign x e, s) (Cskip, update s x (eval_expr s e))
forall c1 c2 s c1' s',
    red (c1, s) (c1', s') ->
    red (Cseq c1 c2, s) (Cseq c1' c2, s')
```

Step 2: give a name to each rule and wrap them in an inductive predicate definition.

```
Inductive red: cmd * state -> cmd * state -> Prop :=
 | red_assign: forall x e s,
     red (Cassign x e, s) (Cskip, update s x (eval_expr s e))
  red_seq_left: forall c1 c2 s c1' s',
     red (c1, s) (c1', s') ->
     red (Cseq c1 c2, s) (Cseq c1' c2, s')
 | red_seq_skip: forall c s, red (Cseq Cskip c, s) (c, s)
  red_if_true: forall s b c1 c2,
     eval_bool_expr s b = true ->
     red (Cifthenelse b c1 c2, s) (c1, s)
  red_if_false: forall s b c1 c2,
     eval_bool_expr s b = false ->
     red (Cifthenelse b c1 c2, s) (c2, s)
  red_while_true: forall s b c,
     eval_bool_expr s b = true ->
     red (Cwhile b c, s) (Cseq c (Cwhile b c), s)
  red_while_false: forall b c s,
     eval_bool_expr s b = false ->
     red (Cwhile b c, s) (Cskip, s).
```

Using inductive definitions

Each case of the definition is a theorem that lets you conclude red (c, s) (c', s') appropriately.

Moreover, the proposition red(c, s)(c', s') holds only if it was derived by applying these theorems a finite number of times (smallest fixpoint).

Reasoning principles: by case analysis on the last rule used; by induction on a derivation.

Example

Lemma red_deterministic: forall cs cs1, red cs cs1 -> forall cs2, red cs cs2 ->cs1 = cs2.

Proved by induction on a derivation of red cs cs1 and a case analysis on the last rule used to prove red cs cs2, cs2,

Sequences of reductions

The behavior of a command c in an initial state s is obtained by forming sequences of reductions starting at (c, s):

► Termination with final state s' (c, s ↓ s'): finite sequence of reductions to skip.

$$(c,s) o \cdots o (ext{skip},s')$$

• Divergence $(c, s \uparrow)$: infinite sequence of reductions.

$$orall (c',s'), (c,s)
ightarrow \cdots
ightarrow (c',s') \Rightarrow \exists c'',s'', (c',s')
ightarrow (c'',s'')$$

Going wrong (c, s ↓ wrong): finite sequence of reductions to an irreducible state that is not skip.

$$(c,s) o \cdots o (c',s')
eq with c'
eq skip$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Sequences of reductions

The Coq presentation uses a generic library of closure operators over relations $R : A \rightarrow A \rightarrow \text{Prop}$:

- ▶ star $R : A \rightarrow A \rightarrow \text{Prop}$ (reflexive transitive closure)
- ▶ infseq R : A → Prop (infinite sequences)
- irred $R : A \rightarrow \text{Prop}$ (no reduction is possible)

```
Definition terminates (c: cmd) (s s': state) : Prop :=
   star red (c, s) (Cskip, s').
Definition diverges (c: cmd) (s: state) : Prop :=
   infseq red (c, s).
Definition goes_wrong (c: cmd) (s: state) : Prop :=
   exists c', exists s',
   star red (c, s) (c', s') /\ c' <> Cskip /\ irred red (c', s').
```

Pros and cons of operational semantics Pros:

- Clean, unquestionable characterization of program behaviors (termination, divergence, going wrong).
- Extends even to unstructured constructs (goto, concurrency).
- De facto standard in the type systems community and in the concurrency community.

Cons:

- Does not follow the structure of programs; lack of a powerful induction principle.
- This is not the way interpreters are written!
- Some extensions require unnatural extensions of the syntax of terms (e.g. with call contexts in the case of IMP + procedures).

Part II

Natural semantics

Natural semantics

Also called "big-step semantics".

An alternate presentation of operational semantics, closer to an interpreter.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Natural semantics: Intuitions

Consider a terminating reduction sequence for c; c':

$$((c; c'), s)
ightarrow ((c_1; c'), s_1)
ightarrow \cdots
ightarrow ((ext{skip}; c'), s_2) \
ightarrow (c', s_2)
ightarrow \cdots
ightarrow (ext{skip}, s_3)$$

It contains a terminating reduction sequence for c:

$$(c,s)
ightarrow (c_1,s_1)
ightarrow \cdots
ightarrow (extsf{skip},s_2)$$

followed by another for c'.

Idea: write inference rules that follow this structure and define a predicate $c, s \Rightarrow s'$, meaning "in initial state s, the command c terminates with final state s'".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Rules for natural semantics (terminating case)

$\texttt{skip}, \texttt{s} \Rightarrow \texttt{s}$	$x := e, s \Rightarrow s[x \leftarrow \llbracket e \rrbracket s]$					
$\frac{c_1, s \Rightarrow s_1 \qquad c_2, s_1 \Rightarrow s_2}{c_2, s_1 \Rightarrow s_2}$	$c_1, s \Rightarrow s' ext{ if } \llbracket b rbracket s = ext{true} \ c_2, s \Rightarrow s' ext{ if } \llbracket b rbracket s = ext{false}$					
c_1 ; c_2 , $s \Rightarrow s_2$	if b then c_1 else $c_2,s\Rightarrow s'$					
$\llbracket b rbracket s = {\tt false}$						
while $b \text{ do } c \text{ done}, s \Rightarrow s$						
$\llbracket b \rrbracket s = \texttt{true} c, s \Rightarrow s_1$	while b do c done, $s_1 \Rightarrow s_2$					
while b do c done, $s \Rightarrow s_2$						

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Their Coq transcription

```
Inductive exec: state -> cmd -> state -> Prop :=
  | exec_skip: forall s, exec s Cskip s
  | exec_assign: forall s x e,
     exec s (Cassign x e) (update s x (eval_expr s e))
  | exec_seq: forall s c1 c2 s1 s2,
     exec s c1 s1 -> exec s1 c2 s2 ->
     exec s (Cseq c1 c2) s2
  | exec_if: forall s be c1 c2 s',
     exec s (if eval_bool_expr s be then c1 else c2) s' ->
     exec s (Cifthenelse be c1 c2) s'
  | exec_while_loop: forall s be c s1 s2,
     eval_bool_expr s be = true ->
     exec s c s1 -> exec s1 (Cwhile be c) s2 ->
     exec s (Cwhile be c) s2
  | exec_while_stop: forall s be c,
     eval_bool_expr s be = false ->
     exec s (Cwhile be c) s.
                                       ▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ
```

Equivalence between natural and reduction semantics

Whenever we have two different semantics for the same language, try to prove that they are equivalent:

Both semantics predict the same "terminates / diverges / goes wrong" behaviors for any given program.

- Strengthens the confidence we have in both semantics.
- Justifies using whichever semantics is more convenient to prove a given property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

From natural to reduction semantics

Theorem exec_terminates If $c, s \Rightarrow s'$, then $(c, s) \stackrel{*}{\rightarrow} (\text{skip}, s')$. forall s c s', exec s c s'-> terminates c s s'. Proof: by induction on a derivation of $c, s \Rightarrow s'$ and case analysis on the last rule used. A representative case:

Hypothesis:
$$c_1$$
; c_2 , $s \Rightarrow s'$.

Inversion: $c_1, s \Rightarrow s_1$ and $c_2, s_1 \Rightarrow s'$ for some intermediate state s_1 . Induction hypothesis: $(c_1, s) \stackrel{*}{\rightarrow} (\text{skip}, s_1)$ and $(c_2, s_1) \stackrel{*}{\rightarrow} (\text{skip}, s')$.

Context lemma (separate induction):

 $((c_1; c_2), s) \stackrel{*}{
ightarrow} ((\texttt{skip}; c_2), s_1)$

Assembling the pieces together, using the transitivity of $\stackrel{*}{\rightarrow}$:

$$((c_1; c_2), s) \stackrel{*}{\rightarrow} ((\texttt{skip}; c_2), s_1) \rightarrow (c_2, s_1) \stackrel{*}{\rightarrow} (\texttt{skip}, s')$$

From reduction to natural semantics

Theorem (terminates_exec) If $(c, s) \stackrel{*}{\rightarrow} (skip, s')$ then $c, s \Rightarrow s'$. Lemma (red_preserves_exec) If $(c, s) \rightarrow (c', s')$ and $c', s' \Rightarrow s''$, then $c, s \Rightarrow s''$.

$$(c_{1}, s_{1}) \rightarrow \cdots (c_{i}, s_{i}) \rightarrow (c_{i+1}, s_{i+1}) \rightarrow \cdots (\operatorname{skip}, s_{n})$$

$$(c_{1}, s_{1}) \rightarrow \cdots (c_{i}, s_{i}) \rightarrow (c_{i+1}, s_{i+1}) \rightarrow \cdots (\operatorname{skip}, s_{n}) \Rightarrow s_{n}$$

$$\vdots$$

$$(c_{1}, s_{1}) \rightarrow \cdots (c_{i}, s_{i}) \rightarrow (c_{i+1}, s_{i+1}) \Rightarrow s_{n}$$

$$(c_{1}, s_{1}) \rightarrow \cdots (c_{i}, s_{i}) \Rightarrow s_{n}$$

$$\vdots$$

$$c_{1}, s_{1} \Rightarrow s_{n}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Pros and cons of big-step semantics

Pros:

- ► Follows naturally the structure of programs.
- Close connection with interpreters.
- Powerful induction principle (on the structure of derivations).
- Easy to extend with various structured constructs (functions and procedures, other forms of loops)

Cons:

- Fails to characterize diverging executions. (More precisely: no distinction between divergence and going wrong.)
- Concurrency, unstructured control (goto) nearly impossible to handle.

Part III

Proving a toy compiler

Proving a toy compiler

The IMP virtual machine

Components of the machine:

- ► The code *C*: a list of instructions.
- The program counter pc: an integer, giving the position of the currently-executing instruction in C.
- The state s (a.k.a. store): a mapping from variable names to integer values.

 The stack σ: a list of integer values (used to store intermediate results temporarily).

The instruction set

i ::= const(n)push *n* on stack var(x)push value of xsetvar(x)pop value and assign it to xpop two values, push their sum add sub pop two values, push their difference branch(*ofs*) unconditional jump bne(*ofs*) pop two values, jump if \neq pop two values, jump if >bge(*ofs*) end of program halt

By default, each instruction increments pc by 1.

Exception: branch instructions increment it by 1 + ofs. (*ofs* is a branch offset relative to the next instruction.)

Example

stack	ϵ	12	1 12	13	ϵ
state	$x \mapsto 12$	$x \mapsto 12$	$x \mapsto 12$	$x \mapsto 12$	$x \mapsto 13$
р.с.	0	1	2	3	4
code	var(x);	const(1);	add;	setvar(x);	branch(-5)

(ロ)、(型)、(E)、(E)、 E) の(()

Small-step semantics of the machine

A transition relation, representing the execution of one instruction.

```
Definition code := list instruction.
Definition stack := list Z.
Definition machine_state := (Z * stack * state).
Inductive transition (c: code):
                 machine_state -> machine_state -> Prop :=
  | trans_const: forall pc stk s n,
      code_at c pc = Some(Iconst n) ->
      transition c (pc, stk, s) (pc + 1, n :: stk, s)
  trans_var: forall pc stk s x,
      code_at c pc = Some(Ivar x) ->
      transition c (pc, stk, s) (pc + 1, s x :: stk, s)
  | trans_setvar: forall pc stk s x n,
      code_at c pc = Some(Isetvar x) \rightarrow
      transition c (pc, n :: stk, s) (pc + 1, stk, update s x n)
                                         ◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○
```

Semantics of the machine

```
| trans_add: forall pc stk s n1 n2,
   code_at c pc = Some(Iadd) ->
   transition c (pc, n2 :: n1 :: stk, s) (pc+1, (n1+n2) :: stk, s)
trans_sub: forall pc stk s n1 n2,
   code_at c pc = Some(Isub) ->
   transition c (pc, n2 :: n1 :: stk, s) (pc+1, (n1-n2) :: stk, s)
trans_branch: forall pc stk s ofs pc',
   code_at c pc = Some(Ibranch ofs) ->
   pc' = pc + 1 + ofs \rightarrow
   transition c (pc, stk, s) (pc', stk, s)
| trans_bne: forall pc stk s ofs n1 n2 pc',
   code_at c pc = Some(Ibne ofs) ->
   pc' = (if Z_eq_dec n1 n2 then pc + 1 else pc + 1 + ofs) \rightarrow
   transition c (pc, n2 :: n1 :: stk, s) (pc', stk, s)
trans_bge: forall pc stk s ofs n1 n2 pc',
   code_at c pc = Some(Ibge ofs) ->
   pc' = (if Z_{t_dec} n1 n2 then pc + 1 else pc + 1 + ofs) ->
   transition c (pc, n2 :: n1 :: stk, s) (pc', stk, s).
```

Executing machine programs

By iterating the transition relation:

- lnitial (machine) states: pc = 0, initial state, empty stack.
- Final (machine) states: pc points to a halt instruction, empty stack.

```
Definition mach_terminates (c: code) (s_init s_fin: state) :=
  exists pc,
  code_at c pc = Some Ihalt /\
  star (transition c) (0, nil, s_init) (pc, nil, s_fin).
```

```
Definition mach_diverges (c: code) (s_init: state) :=
    infseq (transition c) (0, nil, s_init).
```

Definition mach_goes_wrong (c: code) (s_init: state) :=
 (* otherwise *)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Compiling IMP programs to virtual machine code

Proving a toy compiler

- Compiling IMP programs to virtual machine code

Compilation scheme for expressions

The code $comp_e(e)$ for an expression should:

- evaluate e and push its value on top of the stack;
- execute linearly (no branches);
- leave the state unchanged.

(= translation to "reverse Polish notation".)

-Compiling IMP programs to virtual machine code

Compilation scheme for conditions

The code $comp_b(b, ofs)$ for a boolean expression should:

- evaluate b;
- ▶ fall through (continue in sequence) if *b* is true;
- branch to relative offset ofs if b is false;
- leave the stack and the state unchanged.

Example

$$comp_b(x + 1 < y - 2, ofs) =$$

 $var(x); const(1); add;$
 $var(y); const(2); sub;$
 $bge(ofs)$

 $\begin{array}{c} (\text{compute } x+1) \\ (\text{compute } y-2) \\ & (\text{branch if } \geq) \end{array}$

200

- Compiling IMP programs to virtual machine code

Compilation scheme for commands

The code comp(c) for a command c updates the state according to the semantics of c, while leaving the stack unchanged.

$$comp(skip) = \epsilon$$

 $comp(x := e) = comp_e(e); setvar(x)$
 $comp(c_1; c_2) = comp(c_1); comp(c_2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Compiling IMP programs to virtual machine code

Compilation scheme for commands

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

-Compiling IMP programs to virtual machine code

Compiling whole program

The compilation of a program c is the code

$$compile(c) = comp(c); halt$$

Example

The compiled code for while x < 10 do y := y + x done is

```
var(x); const(10); bge(5); skip over loop if x \ge 10
var(y); var(x); add; setvar(y); do y := y + x
branch(-8); branch back to beginning of loop
halt finished
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Compiling IMP programs to virtual machine code

Coq mechanization of the compiler

```
As recursive functions:
```

```
Fixpoint comp_e (e: expr): code :=
  match e with ... end.
```

```
Definition comp_b (b: bool_expr) (ofs: Z): code :=
  match b with ... end.
```

```
Fixpoint comp (c: cmd): code :=
  match c with ... end.
```

```
Definition compile_program (c: cmd) : code :=
  comp c ++ Ihalt :: nil.
```

These functions can be executed from within Coq, or extracted to executable Caml code.

- Compiling IMP programs to virtual machine code

Compiler verification

To run a program, we compile it, then run the generated virtual machine code.

We now have two ways to run a program:

Interpret it using e.g. the definitional interpreter of part I.

Compile it, then run the generated virtual machine code.Will we get the same results either way?

The compiler verification problem

Verify that a compiler is semantics-preserving: the generated code behaves as prescribed by the semantics of the source program.

Semantic preservation for our compiler

Proving a toy compiler

Verifying the compilation of expressions

Remember the "contract" for the code $comp_e(e)$: it should

- evaluate e and push its value on top of the stack;
- execute linearly (no branches);
- leave the state unchanged.

```
forall st a pc stk,
star (transition (comp_e a))
        (0, stk, st)
        (length (comp_e a), eval_expr st a :: stk, st).
```

For this statement to be provable by induction over the structure of the expression *a*, we need to generalize it so that

- the start PC is not necessarily 0,
- ▶ the code comp_e a appears as a fragment of a larger code.

Verifying the compilation of expressions

```
Lemma compile_expr_correct:
forall st a pc stk c1 c2,
pc = length c1 ->
star (transition (c1 ++ comp_e a ++ c2))
        (pc, stk, st)
        (pc + length (comp_e a), eval_expr st a :: stk, st).
```

Proof: a simple induction on the structure of a, using the associativity of ++ and +.

The base cases are trivial.

- ▶ a = n: a single Iconst transition.
- ▶ a = x: a single Ivar transition.

An inductive case: $a = a_1 + a_2$ Write $v_1 = [\![a_1]\!] s$ and $v_2 = [\![a_2]\!] s$. By induction hypothesis (2), C_1 ; comp_e(a_1); (comp_e(a_2); add; C_2): $(|C_1|, stk, s) \stackrel{*}{\to} (|C_1| + |comp_e(a_1)|, v_1.stk, s)$ $(C_1$; comp_e(a_1)); comp_e(a_2); (add; C_2): $(|C_1; comp_e(a_1)|, v_1.stk, s) \stackrel{*}{\to} (|C_1; comp_e(a_1)| + |comp_e(a_2)|, v_2.v_1.stk, s)$

Combining with an add transition, we obtain:

$$C_1; (\operatorname{comp}_{e}(a_1); \operatorname{comp}_{e}(a_2); \operatorname{add}); C_2 :$$
$$(|C_1|, stk, s) \stackrel{*}{\rightarrow} (|C_1; \operatorname{comp}_{e}(a_1); \operatorname{comp}_{e}(a_2)| + 1, (v_1 + v_2).stk, s)$$

which is the desired result since $\operatorname{comp}_e(a_1 + a_2) = \operatorname{comp}_e(a_1); \operatorname{comp}_e(a_2); \operatorname{add}, \quad \text{add}, \quad \text{add$

Historical note

As simple as this proof looks, it is of historical importance:

- First published proof of compiler correctness.
 McCarthy & Painter, 1967,
 Correctness of a compiler for arithmetic expressions.
- First mechanized proof of compiler correctness.
 Milner and Weyrauch, 1972, using Stanford LCF, Proving compiler correctness in a mechanized logic.

Other verifications

- Boolean expressions: similar approach
 Proof: induction on the structure of b, plus copious case analysis.
- Commands, terminating case An induction on the structure of c fails because of the WHILE case. An induction on a derivation tree representing the execution of c works perfectly.
- Commands, diverging case If command c diverges when started in state st, then in the virtual machine, execution code (comp c) from initial state st, makes infinitely many transitions.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

This completes the proof of safe forward simulation.

Application: The CompCert project X.Leroy, S.Blazy et. al - compcert.inria.fr

Develop and prove correct a realistic compiler, targeted to critical embedded software.

- ► Source language: a subset of C.
- ► Target languages: PowerPC and ARM assembly.
- ► Generates reasonably compact and fast code ⇒ some optimizations.

This is "software-proof codesign" (as opposed to proving an existing compiler).

Used Coq to mechanize the proof of semantic preservation and also to implement most of the compiler.

-Semantic preservation for our compiler

Verified in Coq

```
Theorem transf_c_program_correct:
    forall prog tprog behavior,
    transf_c_program prog = OK tprog ->
    not_wrong behavior ->
    Csem.exec_program prog behavior ->
    Asm.exec_program tprog behavior.
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A composition of 14 proofs.

Performances of the generated code

