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Mechanized semantics

Formal semantics of programming languages

Provide a mathematically-precise answer to the question

What does this program do, exactly?
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What does this program do, exactly?

#include <stdio.h>

int l;int main(int o,char **O,

int I){char c,*D=O[1];if(o>0){

for(l=0;D[l ];D[l

++]-=10){D [l++]-=120;D[l]-=

110;while (!main(0,O,l))D[l]

+= 20; putchar((D[l]+1032)

/20 ) ;}putchar(10);}else{

c=o+ (D[I]+82)%10-(I>l/2)*

(D[I-l+I]+72)/10-9;D[I]+=I<0?0

:!(o=main(c/10,O,I-1))*((c+999

)%10-(D[I]+92)%10);}return o;}

(Raymond Cheong, 2001)

(It computes arbitrary-precision square roots.)
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Mechanized semantics

Why indulge in formal semantics?

I An intellectually challenging issue.

I When English prose is not enough.
(e.g. language standardization documents.)

I A prerequisite to formal program verification.
(Program proof, model checking, static analysis, etc.)

I A prerequisite to building reliable “meta-programs”
(Programs that operate over programs: compilers, code
generators, program verifiers, type-checkers, . . . )
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Is this program transformation correct?

double dotproduct(int n, double * a, double * b)

{

double dp = 0.0;

int i;

for (i = 0; i < n; i++) dp += a[i] * b[i];

return dp;

}

Compiled for the Alpha processor with all optimizations and
manually decompiled back to C. . .
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double dotproduct(int n, double * a, double * b)

{ double dp, a0, a1, a2, a3, b0, b1, b2, b3;

double s0, s1, s2, s3, t0, t1, t2, t3;

int i, k;

dp = 0.0;

if (n <= 0) goto L5;

s0 = s1 = s2 = s3 = 0.0;

i = 0; k = n - 3;

if (k <= 0 || k > n) goto L19;

i = 4; if (k <= i) goto L14;

a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];

i = 8; if (k <= i) goto L16;

L17: a2 = a[2]; b2 = b[2]; t0 = a0 * b0;

a3 = a[3]; b3 = b[3]; t1 = a1 * b1;

a0 = a[4]; b0 = b[4]; t2 = a2 * b2; t3 = a3 * b3;

a1 = a[5]; b1 = b[5];

s0 += t0; s1 += t1; s2 += t2; s3 += t3;

a += 4; i += 4; b += 4;

prefetch(a + 20); prefetch(b + 20);

if (i < k) goto L17;

L16: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];

a += 4; b += 4;

a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];

L18: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];

a += 4; b += 4;

dp = s0 + s1 + s2 + s3;

if (i >= n) goto L5;

L19: dp += a[0] * b[0];

i += 1; a += 1; b += 1;

if (i < n) goto L19;

L5: return dp;

L14: a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1]; goto L18; }



Mechanized semantics

Part I

Operational and denotational semantics
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Operational and denotational semantics



Mechanized semantics

Warm-up: expressions and their denotational semantics

Warm-up: symbolic expressions

A language of expressions comprising

I variables x , y , . . .

I integer constants 0, 1, −5, . . . , n

I e1 + e2 and e1 − e2
where e1, e2 are themselves expressions.

Objective: mechanize the syntax and semantics of expressions.
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Warm-up: expressions and their denotational semantics

Syntax of expressions
Modeled as an inductive type.

Definition ident := nat.

Inductive expr : Type :=

| Evar: ident -> expr (* Evar (v:ident) *)

| Econst: Z -> expr (* Econst (i:Z) *)

| Eadd: expr -> expr -> expr (* Eadd (e1 e2: expr) *)

| Esub: expr -> expr -> expr (* Esub (e1 e2: expr) *).

Evar, Econst, etc. are functions that construct terms of type
expr.

All terms of type expr are finitely generated by these 4 functions.
Enables case analysis and induction.
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Warm-up: expressions and their denotational semantics

Denotational semantics of expressions

Define [[e]] s as the denotation of expression e (the integer it
evaluates to) in state s (a mapping from variable names to
integers).

In ordinary mathematics, the denotational semantics is presented
as a set of equations:

[[x ]] s = s(x)

[[n]] s = n

[[e1 + e2]] s = [[e1]] s + [[e2]] s

[[e1 − e2]] s = [[e1]] s − [[e2]] s



Mechanized semantics

Warm-up: expressions and their denotational semantics

Mechanizing the denotational semantics

In Coq, the denotational semantics is presented as a recursive
function
(≈ a definitional interpreter).

Definition state := ident -> Z.

Fixpoint eval_expr (s: state) (e: expr) {struct e} : Z :=

match e with

| Evar x => s x

| Econst n => n

| Eadd e1 e2 => eval_expr s e1 + eval_expr s e2

| Esub e1 e2 => eval_expr s e1 - eval_expr s e2

end.
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Warm-up: expressions and their denotational semantics

Using the denotational semantics (1/3)

As an interpreter, to evaluate expressions.

Definition initial_state: state := fun (x: ident) => 0.

Definition update (s: state) (x: ident) (n: Z) : state :=

fun y => if eq_ident x y then n else s y.

Eval compute in (

let x : ident := O in

let s : state := update initial_state x 12 in

eval_expr s (Eadd (Evar x) (Econst 1))).

Coq prints = 13 : Z.
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Warm-up: expressions and their denotational semantics

Using the denotational semantics (1/3, cont’d)
Can also generate Caml code automatically (Coq’s extraction
mechanism).

Recursive

Extraction eval_expr.

...

type expr = Evar of ident | Econst of z

| Eadd of expr * expr | Esub of expr * expr

...

let zplus x y = ...

...

(** val eval_expr : state -> expr -> z **)

let rec eval_expr s = function

| Evar x -> s x

| Econst n -> n

| Eadd (e1, e2) -> zplus (eval_expr s e1) (eval_expr s e2)

| Esub (e1, e2) -> zminus (eval_expr s e1) (eval_expr s e2)
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Warm-up: expressions and their denotational semantics

Using the denotational semantics (2/3)

To reason symbolically over expressions.

Lemma expr_add_pos:

forall s x,

s x >= 0 -> eval_expr s (Eadd (Evar x) (Econst 1)) > 0.

Proof.

simpl.

(* goal becomes: forall s x, s x >= 0 -> s x + 1 > 0 *)

intros. omega.

Qed.
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Warm-up: expressions and their denotational semantics

Using the denotational semantics (3/3)

To prove “meta” properties of the semantics. For example: the
denotation of an expression is insensitive to values of variables not
mentioned in the expression.

Lemma eval_expr_domain:

forall s1 s2 e,

(forall x, occurs_in x e -> s1 x = s2 x) ->

eval_expr s1 e = eval_expr s2 e.

(The predicate occurs_in was defined in the previous lecture.)
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Warm-up: expressions and their denotational semantics

Variant 1: interpreting arithmetic differently
Example: signed, modulo 232 arithmetic (as in Java).

Fixpoint eval_expr1 (s: state) (e: expr) {struct e} : Z :=

match e with

| Evar x => s x

| Econst n => n

| Eadd e1 e2 => normalize(eval_expr1 s e1 + eval_expr1 s e2)

| Esub e1 e2 => normalize(eval_expr1 s e1 - eval_expr1 s e2)

end.

where normalize n is n reduced modulo 232 to the interval
[−231, 231).

Definition normalize (x : Z) : Z :=

let y := x mod 4294967296 in

if Z_lt_dec y 2147483648 then y else y - 4294967296.



Mechanized semantics

Warm-up: expressions and their denotational semantics

Variant 2: accounting for undefined expressions

In some languages, the value of an expression can be undefined:

I if it mentions an undefined variable;

I in case of arithmetic operation overflows (ANSI C);

I in case of division by zero;

I etc.

Recommended approach: use option types, with None meaning
“undefined” and Some n meaning “defined and having value n”.
(see the previous lecture on data types)
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Warm-up: expressions and their denotational semantics

Variant 2: accounting for undefined expressions

Definition ostate := ident -> option Z.

Fixpoint eval_expr2 (s: ostate) (e: expr) {struct e} : option Z :=

match e with

| Evar x => s x

| Econst n => Some n

| Eadd e1 e2 =>

match eval_expr2 s e1, eval_expr2 s e2 with

| Some n1, Some n2 => Some (n1 + n2)

| _, _ => None

end

| Esub e1 e2 =>

match eval_expr2 s e1, eval_expr2 s e2 with

| Some n1, Some n2 => Some (n1 - n2)

| _, _ => None

end

end.
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Warm-up: expressions and their denotational semantics

Summary

The “denotational semantics as a Coq function” is natural and
convenient. . .

. . . but limited by a fundamental aspect of Coq:
all Coq functions must be total (= terminating).

Cannot use this approach to give semantics to languages
featuring general loops or general recursion.

Use relational presentations “predicate state term result”
instead of functional presentations “result = function state term”.
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The IMP language and its reduction semantics

Operational and denotational semantics
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The IMP language and its reduction semantics

The IMP language

A prototypical imperative language with structured control.

Expressions:
e ::= x | n | e1 + e2 | e1 − e2

Boolean expressions (conditions):
b ::= e1 = e2 | e1 < e2

Commands (statements):
c ::= skip (do nothing)
| x := e (assignment)
| c1; c2 (sequence)
| if b then c1 else c2 (conditional)
| while b do c done (loop)
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The IMP language and its reduction semantics

Abstract syntax

Inductive expr : Type :=

| Evar: ident -> expr

| Econst: Z -> expr

| Eadd: expr -> expr -> expr

| Esub: expr -> expr -> expr.

Inductive bool_expr : Type :=

| Bequal: expr -> expr -> bool_expr

| Bless: expr -> expr -> bool_expr.

Inductive cmd : Type :=

| Cskip: cmd

| Cassign: ident -> expr -> cmd

| Cseq: cmd -> cmd -> cmd

| Cifthenelse: bool_expr -> cmd -> cmd -> cmd

| Cwhile: bool_expr -> cmd -> cmd.
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The IMP language and its reduction semantics

Reduction semantics

Also called “structured operational semantics” (Plotkin) or
“small-step semantics”.

View computations as sequences of reductions

M→M1→M2→ . . .

Each reduction M → M ′ represents an elementary computation.
M ′ represents the residual computations that remain to be done
later.
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The IMP language and its reduction semantics

Reduction semantics for IMP

Reductions are defined on (command, state) pairs
(to keep track of changes in the state during assignments).

Reduction rule for assignments:

(x := e, s)→ (skip, update s x n) if [[e]] s = n
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The IMP language and its reduction semantics

Reduction semantics for IMP
Reduction rules for sequences:

((skip; c), s) → (c, s)

((c1; c2), s) → ((c ′1; c2), s ′) if (c1, s)→ (c ′1, s
′)

Example

((x := x + 1; x := x − 2), s) → ((skip; x := x − 2), s ′)

→ (x := x − 2, s ′)

→ (skip, s ′′)

where s ′ = update s x (s(x) + 1) and
s ′′ = update s ′ x (s ′(x)− 2).
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The IMP language and its reduction semantics

Reduction semantics for IMP

Reduction rules for conditionals and loops:

(if b then c1 else c2, s) → (c1, s) if [[b]] s = true

(if b then c1 else c2, s) → (c2, s) if [[b]] s = false

(while b do c done, s) → (skip, s) if [[b]] s = false

(while b do c done, s) → ((c; while b do c done), s)

if [[s]] b = true

with

[[e1 = e2]] s =

{
true if [[e1]] s = [[e2]] s;

false if [[e1]] s 6= [[e2]] s

and likewise for e1 < e2.
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The IMP language and its reduction semantics

Reduction semantics as inference rules

(x := e, s)→ (skip, s[x ← [[e]] s])

(c1, s)→ (c ′1, s
′)

((c1; c2), s)→ ((c ′1; c2), s ′)
((skip; c), s)→ (c, s)

[[b]] s = true

((if b then c1 else c2), s)→ (c1, s)

[[b]] s = false

((if b then c1 else c2), s)→ (c2, s)
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The IMP language and its reduction semantics

Reduction semantics as inference rules (cont’d)

[[b]] s = true

((while b do c done), s)→ ((c; while b do c done), s)

[[b]] s = false

((while b do c done), s)→ (skip, s)
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The IMP language and its reduction semantics

Expressing inference rules in Coq
Step 1: write each rule as a proper logical formula

(x := e, s)→ (skip, s[x ← [[e]] s])

(c1, s)→ (c ′1, s)

((c1; c2), s)→ ((c ′1; c2), s ′)

forall x e s,

red (Cassign x e, s) (Cskip, update s x (eval_expr s e))

forall c1 c2 s c1’ s’,

red (c1, s) (c1’, s’) ->

red (Cseq c1 c2, s) (Cseq c1’ c2, s’)

Step 2: give a name to each rule and wrap them in an inductive
predicate definition.
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The IMP language and its reduction semantics

Inductive red: cmd * state -> cmd * state -> Prop :=

| red_assign: forall x e s,

red (Cassign x e, s) (Cskip, update s x (eval_expr s e))

| red_seq_left: forall c1 c2 s c1’ s’,

red (c1, s) (c1’, s’) ->

red (Cseq c1 c2, s) (Cseq c1’ c2, s’)

| red_seq_skip: forall c s, red (Cseq Cskip c, s) (c, s)

| red_if_true: forall s b c1 c2,

eval_bool_expr s b = true ->

red (Cifthenelse b c1 c2, s) (c1, s)

| red_if_false: forall s b c1 c2,

eval_bool_expr s b = false ->

red (Cifthenelse b c1 c2, s) (c2, s)

| red_while_true: forall s b c,

eval_bool_expr s b = true ->

red (Cwhile b c, s) (Cseq c (Cwhile b c), s)

| red_while_false: forall b c s,

eval_bool_expr s b = false ->

red (Cwhile b c, s) (Cskip, s).
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The IMP language and its reduction semantics

Using inductive definitions
Each case of the definition is a theorem that lets you conclude
red (c, s) (c ′, s ′) appropriately.

Moreover, the proposition red (c, s) (c ′, s ′) holds only if it was
derived by applying these theorems a finite number of times
(smallest fixpoint).

Reasoning principles: by case analysis on the last rule used;
by induction on a derivation.

Example

Lemma red_deterministic:

forall cs cs1, red cs cs1 -> forall cs2, red cs cs2 ->cs1 = cs2.

Proved by induction on a derivation of red cs cs1 and a case
analysis on the last rule used to prove red cs cs2.
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The IMP language and its reduction semantics

Sequences of reductions
The behavior of a command c in an initial state s is obtained by
forming sequences of reductions starting at (c, s):

I Termination with final state s ′ (c, s ⇓ s ′):
finite sequence of reductions to skip.

(c, s)→ · · · → (skip, s ′)

I Divergence (c, s ⇑ ): infinite sequence of reductions.

∀(c ′, s ′), (c, s)→ · · · → (c ′, s ′)⇒ ∃c ′′, s ′′, (c ′, s ′)→ (c ′′, s ′′)

I Going wrong (c, s ⇓ wrong): finite sequence of reductions to
an irreducible state that is not skip.

(c, s)→ · · · → (c ′, s ′) 6→ with c ′ 6= skip
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The IMP language and its reduction semantics

Sequences of reductions

The Coq presentation uses a generic library of closure operators
over relations R : A→ A→ Prop:

I star R : A→ A→ Prop (reflexive transitive closure)

I infseq R : A→ Prop (infinite sequences)

I irred R : A→ Prop (no reduction is possible)

Definition terminates (c: cmd) (s s’: state) : Prop :=

star red (c, s) (Cskip, s’).

Definition diverges (c: cmd) (s: state) : Prop :=

infseq red (c, s).

Definition goes_wrong (c: cmd) (s: state) : Prop :=

exists c’, exists s’,

star red (c, s) (c’, s’) /\ c’ <> Cskip /\ irred red (c’, s’).
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The IMP language and its reduction semantics

Pros and cons of operational semantics
Pros:

I Clean, unquestionable characterization of program behaviors
(termination, divergence, going wrong).

I Extends even to unstructured constructs
(goto, concurrency).

I De facto standard in the type systems community and in the
concurrency community.

Cons:

I Does not follow the structure of programs; lack of a powerful
induction principle.

I This is not the way interpreters are written!

I Some extensions require unnatural extensions of the syntax of
terms (e.g. with call contexts in the case of IMP +
procedures).



Mechanized semantics

Part II

Natural semantics



Mechanized semantics

Natural semantics

Also called “big-step semantics”.

An alternate presentation of operational semantics, closer to an
interpreter.



Mechanized semantics

Natural semantics: Intuitions

Consider a terminating reduction sequence for c; c ′:

((c; c ′), s)→ ((c1; c ′), s1)→ · · · → ((skip; c ′), s2)

→ (c ′, s2)→ · · · → (skip, s3)

It contains a terminating reduction sequence for c:

(c, s)→ (c1, s1)→ · · · → (skip, s2)

followed by another for c ′.

Idea: write inference rules that follow this structure and define a
predicate c, s ⇒ s ′, meaning “in initial state s, the command c
terminates with final state s ′ ”.
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Rules for natural semantics (terminating case)

skip, s⇒ s x := e, s ⇒ s[x ← [[e]] s]

c1, s ⇒ s1 c2, s1 ⇒ s2

c1; c2, s ⇒ s2

c1, s ⇒ s ′ if [[b]] s = true

c2, s ⇒ s ′ if [[b]] s = false

if b then c1 else c2, s ⇒ s ′

[[b]] s = false

while b do c done, s ⇒ s

[[b]] s = true c, s ⇒ s1 while b do c done, s1 ⇒ s2

while b do c done, s ⇒ s2
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Their Coq transcription

Inductive exec: state -> cmd -> state -> Prop :=

| exec_skip: forall s, exec s Cskip s

| exec_assign: forall s x e,

exec s (Cassign x e) (update s x (eval_expr s e))

| exec_seq: forall s c1 c2 s1 s2,

exec s c1 s1 -> exec s1 c2 s2 ->

exec s (Cseq c1 c2) s2

| exec_if: forall s be c1 c2 s’,

exec s (if eval_bool_expr s be then c1 else c2) s’ ->

exec s (Cifthenelse be c1 c2) s’

| exec_while_loop: forall s be c s1 s2,

eval_bool_expr s be = true ->

exec s c s1 -> exec s1 (Cwhile be c) s2 ->

exec s (Cwhile be c) s2

| exec_while_stop: forall s be c,

eval_bool_expr s be = false ->

exec s (Cwhile be c) s.
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Equivalence between natural and reduction semantics

Whenever we have two different semantics for the same language,
try to prove that they are equivalent:

Both semantics predict the same“terminates / diverges /
goes wrong”behaviors for any given program.

I Strengthens the confidence we have in both semantics.

I Justifies using whichever semantics is more convenient to
prove a given property.



Mechanized semantics

From natural to reduction semantics
Theorem exec_terminates If c, s ⇒ s ′, then (c, s)

∗→ (skip, s ′).
forall s c s’, exec s c s’-> terminates c s s’.

Proof: by induction on a derivation of c, s ⇒ s ′ and case analysis
on the last rule used. A representative case:

Hypothesis: c1; c2, s ⇒ s ′.

Inversion: c1, s ⇒ s1 and c2, s1 ⇒ s ′ for some intermediate state s1.

Induction hypothesis: (c1, s)
∗→ (skip, s1) and

(c2, s1)
∗→ (skip, s ′).

Context lemma (separate induction):

((c1; c2), s)
∗→ ((skip; c2), s1)

Assembling the pieces together, using the transitivity of
∗→:

((c1; c2), s)
∗→ ((skip; c2), s1)→ (c2, s1)

∗→ (skip, s ′)
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From reduction to natural semantics

Theorem (terminates_exec)

If (c, s)
∗→ (skip, s ′) then c, s ⇒ s ′.

Lemma (red_preserves_exec)

If (c, s)→ (c ′, s ′) and c ′, s ′ ⇒ s ′′, then c, s ⇒ s ′′.

(c1, s1)→ · · · (ci , si )→ (ci+1, si+1)→ · · · (skip, sn)

(c1, s1)→ · · · (ci , si )→ (ci+1, si+1)→ · · · (skip, sn)⇒ sn
...

(c1, s1)→ · · · (ci , si )→ (ci+1, si+1)⇒ sn

(c1, s1)→ · · · (ci , si )⇒ sn
...

c1, s1 ⇒ sn



Mechanized semantics

Pros and cons of big-step semantics

Pros:

I Follows naturally the structure of programs.

I Close connection with interpreters.

I Powerful induction principle (on the structure of derivations).

I Easy to extend with various structured constructs
(functions and procedures, other forms of loops)

Cons:

I Fails to characterize diverging executions.
(More precisely: no distinction between divergence and going
wrong.)

I Concurrency, unstructured control (goto) nearly impossible to
handle.



Mechanized semantics

Part III

Proving a toy compiler



Mechanized semantics

The IMP virtual machine

Proving a toy compiler



Mechanized semantics

The IMP virtual machine

The IMP virtual machine

Components of the machine:

I The code C : a list of instructions.

I The program counter pc: an integer, giving the position of
the currently-executing instruction in C .

I The state s (a.k.a. store): a mapping from variable names to
integer values.

I The stack σ: a list of integer values
(used to store intermediate results temporarily).



Mechanized semantics

The IMP virtual machine

The instruction set

i ::= const(n) push n on stack
| var(x) push value of x
| setvar(x) pop value and assign it to x
| add pop two values, push their sum
| sub pop two values, push their difference
| branch(ofs) unconditional jump
| bne(ofs) pop two values, jump if 6=
| bge(ofs) pop two values, jump if ≥
| halt end of program

By default, each instruction increments pc by 1.

Exception: branch instructions increment it by 1 + ofs.
(ofs is a branch offset relative to the next instruction.)



Mechanized semantics

The IMP virtual machine

Example

stack ε 12
1

12 13 ε

state x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 13

p.c. 0 1 2 3 4

code var(x); const(1); add; setvar(x); branch(−5)



Mechanized semantics

The IMP virtual machine

Small-step semantics of the machine
A transition relation, representing the execution of one instruction.

Definition code := list instruction.

Definition stack := list Z.

Definition machine_state := (Z * stack * state).

Inductive transition (c: code):

machine_state -> machine_state -> Prop :=

| trans_const: forall pc stk s n,

code_at c pc = Some(Iconst n) ->

transition c (pc, stk, s) (pc + 1, n :: stk, s)

| trans_var: forall pc stk s x,

code_at c pc = Some(Ivar x) ->

transition c (pc, stk, s) (pc + 1, s x :: stk, s)

| trans_setvar: forall pc stk s x n,

code_at c pc = Some(Isetvar x) ->

transition c (pc, n :: stk, s) (pc + 1, stk, update s x n)



Mechanized semantics

The IMP virtual machine

Semantics of the machine
| trans_add: forall pc stk s n1 n2,

code_at c pc = Some(Iadd) ->

transition c (pc, n2 :: n1 :: stk, s) (pc+1, (n1+n2) :: stk, s)

| trans_sub: forall pc stk s n1 n2,

code_at c pc = Some(Isub) ->

transition c (pc, n2 :: n1 :: stk, s) (pc+1, (n1-n2) :: stk, s)

| trans_branch: forall pc stk s ofs pc’,

code_at c pc = Some(Ibranch ofs) ->

pc’ = pc + 1 + ofs ->

transition c (pc, stk, s) (pc’, stk, s)

| trans_bne: forall pc stk s ofs n1 n2 pc’,

code_at c pc = Some(Ibne ofs) ->

pc’ = (if Z_eq_dec n1 n2 then pc + 1 else pc + 1 + ofs) ->

transition c (pc, n2 :: n1 :: stk, s) (pc’, stk, s)

| trans_bge: forall pc stk s ofs n1 n2 pc’,

code_at c pc = Some(Ibge ofs) ->

pc’ = (if Z_lt_dec n1 n2 then pc + 1 else pc + 1 + ofs) ->

transition c (pc, n2 :: n1 :: stk, s) (pc’, stk, s).



Mechanized semantics

The IMP virtual machine

Executing machine programs
By iterating the transition relation:

I Initial (machine) states: pc = 0, initial state, empty stack.

I Final (machine) states: pc points to a halt instruction,
empty stack.

Definition mach_terminates (c: code) (s_init s_fin: state) :=

exists pc,

code_at c pc = Some Ihalt /\

star (transition c) (0, nil, s_init) (pc, nil, s_fin).

Definition mach_diverges (c: code) (s_init: state) :=

infseq (transition c) (0, nil, s_init).

Definition mach_goes_wrong (c: code) (s_init: state) :=

(* otherwise *)
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Proving a toy compiler



Mechanized semantics

Compiling IMP programs to virtual machine code

Compilation scheme for expressions

The code comp e(e) for an expression should:

I evaluate e and push its value on top of the stack;

I execute linearly (no branches);

I leave the state unchanged.

comp e(x) = var(x)

comp e(n) = const(n)

comp e(e1 + e2) = comp e(e1); comp e(e2); add

comp e(e1 − e2) = comp e(e1); comp e(e2); sub

(= translation to “reverse Polish notation”.)



Mechanized semantics

Compiling IMP programs to virtual machine code

Compilation scheme for conditions
The code comp b(b, ofs) for a boolean expression should:

I evaluate b;

I fall through (continue in sequence) if b is true;

I branch to relative offset ofs if b is false;

I leave the stack and the state unchanged.

comp b(e1 = e2, ofs) = comp e(e1); comp e(e2); bne(ofs)

comp b(e1 < e2, ofs) = comp e(e1); comp e(e2); bge(ofs)

Example

comp b(x + 1 < y − 2, ofs) =
var(x); const(1); add; (compute x + 1)
var(y); const(2); sub; (compute y − 2)
bge(ofs) (branch if ≥)
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Compiling IMP programs to virtual machine code

Compilation scheme for commands

The code comp(c) for a command c updates the state according to
the semantics of c, while leaving the stack unchanged.

comp(skip) = ε

comp(x := e) = comp e(e); setvar(x)

comp(c1; c2) = comp(c1); comp(c2)



Mechanized semantics

Compiling IMP programs to virtual machine code

Compilation scheme for commands

code for e1
code for e2
bne/bge(•)
code for c1
branch(•)
code for c2

code for e1
code for e2
bne/bge(•)
code for c
branch(•)

comp(if b then c1 else c2) = comp b(b, |C1|+ 1);C1; branch(|C2|);C2

where C1 = comp(c1) and C2 = comp(c2)

comp(while b do c done) = B;C ; branch(−(|B|+ |C |+ 1))

where C = comp(c)

and B = comp b(b, |C |+ 1)



Mechanized semantics

Compiling IMP programs to virtual machine code

Compiling whole program

The compilation of a program c is the code

compile(c) = comp(c); halt

Example

The compiled code for while x < 10 do y := y + x done is

var(x); const(10); bge(5); skip over loop if x ≥ 10
var(y); var(x); add; setvar(y); do y := y + x
branch(−8); branch back to beginning of loop
halt finished



Mechanized semantics

Compiling IMP programs to virtual machine code

Coq mechanization of the compiler

As recursive functions:

Fixpoint comp_e (e: expr): code :=

match e with ... end.

Definition comp_b (b: bool_expr) (ofs: Z): code :=

match b with ... end.

Fixpoint comp (c: cmd): code :=

match c with ... end.

Definition compile_program (c: cmd) : code :=

comp c ++ Ihalt :: nil.

These functions can be executed from within Coq, or extracted to
executable Caml code.



Mechanized semantics

Compiling IMP programs to virtual machine code

Compiler verification

To run a program, we compile it, then run the generated virtual
machine code.
We now have two ways to run a program:

I Interpret it using e.g. the definitional interpreter of part I.

I Compile it, then run the generated virtual machine code.

Will we get the same results either way?

The compiler verification problem

Verify that a compiler is semantics-preserving:
the generated code behaves as prescribed by the semantics of the
source program.
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Mechanized semantics

Semantic preservation for our compiler

Verifying the compilation of expressions
Remember the “contract” for the code comp e(e): it should

I evaluate e and push its value on top of the stack;

I execute linearly (no branches);

I leave the state unchanged.

forall st a pc stk,

star (transition (comp_e a))

(0, stk, st)

(length (comp_e a), eval_expr st a :: stk, st).

For this statement to be provable by induction over the structure
of the expression a, we need to generalize it so that

I the start PC is not necessarily 0,

I the code comp_e a appears as a fragment of a larger code.



Mechanized semantics

Semantic preservation for our compiler

Verifying the compilation of expressions

Lemma compile_expr_correct:

forall st a pc stk c1 c2,

pc = length c1 ->

star (transition (c1 ++ comp_e a ++ c2))

(pc, stk, st)

(pc + length (comp_e a), eval_expr st a :: stk, st).

Proof: a simple induction on the structure of a, using the
associativity of ++ and +.

The base cases are trivial.

I a = n: a single Iconst transition.

I a = x : a single Ivar transition.
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Semantic preservation for our compiler

An inductive case: a = a1 + a2

Write v1 = [[a1]] s and v2 = [[a2]] s. By induction hypothesis (2),

C1; comp e(a1); (comp e(a2); add;C2) :

(|C1|, stk, s)
∗→ (|C1|+ |comp e(a1)|, v1.stk, s)

(C1; comp e(a1)); comp e(a2); (add;C2) :

(|C1; comp e(a1)|, v1.stk, s)
∗→ (|C1; comp e(a1)|+ |comp e(a2)|,

v2.v1.stk, s)

Combining with an add transition, we obtain:

C1; (comp e(a1); comp e(a2); add);C2 :

(|C1|, stk, s)
∗→ (|C1; comp e(a1); comp e(a2)|+ 1, (v1 + v2).stk, s)

which is the desired result since
comp e(a1 + a2) = comp e(a1); comp e(a2); add.



Mechanized semantics

Semantic preservation for our compiler

Historical note

As simple as this proof looks, it is of historical importance:

I First published proof of compiler correctness.
McCarthy & Painter, 1967,
Correctness of a compiler for arithmetic expressions.

I First mechanized proof of compiler correctness.
Milner and Weyrauch, 1972, using Stanford LCF,
Proving compiler correctness in a mechanized logic.
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Semantic preservation for our compiler

Other verifications

I Boolean expressions: similar approach
Proof: induction on the structure of b, plus copious case
analysis.

I Commands, terminating case
An induction on the structure of c fails because of the WHILE
case. An induction on a derivation tree representing the
execution of c works perfectly.

I Commands, diverging case
If command c diverges when started in state st, then in the
virtual machine, execution code (comp c) from initial state
st, makes infinitely many transitions.

This completes the proof of safe forward simulation.



Mechanized semantics

Semantic preservation for our compiler

Application: The CompCert project
X.Leroy, S.Blazy et. al - compcert.inria.fr

Develop and prove correct a realistic compiler, targeted to critical
embedded software.

I Source language: a subset of C.

I Target languages: PowerPC and ARM assembly.

I Generates reasonably compact and fast code
⇒ some optimizations.

This is“software-proof codesign”(as opposed to proving an existing
compiler).

Used Coq to mechanize the proof of semantic preservation and
also to implement most of the compiler.

compcert.inria.fr
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Semantic preservation for our compiler

Verified in Coq

Theorem transf_c_program_correct:

forall prog tprog behavior,

transf_c_program prog = OK tprog ->

not_wrong behavior ->

Csem.exec_program prog behavior ->

Asm.exec_program tprog behavior.

A composition of 14 proofs.
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Performances of the generated code
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