Softwars Aty

Program Transformation for Non-interference
Verification on Programs with Pointers

Mounir Assaf (CEA LIST)
Julien Signoles (CEA LIST)
Frédéric Tronel (Supélec)
El’iC Totel (Supélec)

(long m1
{for (i=C

GDR GPL - LTP, 2013-11-18

[t umu . .
Information security

Softwars Aty

> Information security
» Confidentiality
> Integrity
» Availability
» Traditionally, dissemination of information is prevented
through access control

» What piece of information can be accessed? by whom?
> Yet, is this piece of information handled correctly when
accessed?

» Information Flow Control

» Tracks how information is propagated through a program
» Verifies that information flows are secure

(longm
(for i=C

Information Flow Control

> Static analyses:
» Seminal work [Denning & Denning,77]
» First formalization and soundness proof for a simple
imperative language [Volpano et al.,96]
» Jif: IFC extension to Java language [Myers et al.,01]
» Flow Caml : IFC extension to OCaml [Simonet et al.,03]
» Dynamic analyses:
» Operating system level [Enck et al.,10], [Andriatsimandefitra et al.]
» Application level [Hiet et al.,09], [Austin & Flanagan,09 & 10]
» Hybrid analyses:

> [Leguernic et al.,07], [Russo & Sabelfeld,10], [Chandra & Franz, 07], ! o
[Nair et al., 08], [Besson et al., 13] ,

(long m1
(for (1=(

Information Flow Control

» Provable secure information flow monitoring:
» A gap between theoretical toy languages and real life

languages [Leguernic et al,07], [Russo & Sabelfeld,10]

Previous monitoring approaches considering languages with
rich constructs do not consider proving soundness [Chandra &
Franz,07], [Nair et al.,08]

Pointer-induced flows not that much investigated [Moore &
Chong,11], [Austin & Flanagan,09]

No monitor inlining approach considering pointers [Chudnov &
Naumann,10], [Magazinius et al.,12]

» Our approach

» Sound hybrid information flow monitor
» Sound inlining approach

for a language with pointers and aliasing

Information flows

'rumu -
Explicit flows

Explicit flows
» produced whenever information is transfered directly from
source to destination

destination = source

> Explicit flow from source to destination T

(long m1
(for (1=(

'rumu -
Implicit flows

Implicit flows
» produced “whenever" an assignment is conditioned on the
value of an expression

public = false

I
if (secret)

T

public = true else skip

\/

print public

(longm
(for i=C

» |mplicit flow from variable secret to variable public

Softwars Aty

Pointer-induced flows

» produced whenever a pointer is dereferenced

Pointer-induced flows

if (secret)

T

x = &a

else x = &b

\/

print *x

(long m1
{for (i=C

Softwars Aty

Pointer-induced flows

» produced whenever a pointer is dereferenced

Pointer-induced flows

if (secret)

T

x = &a else x = &b
print *x
» Implicit flow from secret to pointer x |
» Pointer-induced flow from pointer x to *x .

(long m1
{for (i=C

» Information flow from secret to *x.

[r ama - -
Pointer-induced flows

Pointer-induced flows
» produced whenever a pointer is dereferenced
if (secret)
x = &a else x = &b
*x =1
1

print a .

5

(long m1
(for (i=(

[r ama - N
Pointer-induced flows

Pointer-induced flows
» produced whenever a pointer is dereferenced
if (secret)
x = &a else x = &b
*x =1
1

print a .

5

- » Assignment xx = 1 generates pointer-induced flows from

(for (1=(

pointer x to all variables that x may point to

[t ama N
Non-interference

Attacker model
» They know the program source code and public outputs

» They control public inputs

Security Levels :

Sinput Soutput S : secret
P : public
Pinput 'Doutput P—S

(longm1
(for (i=¢

T ama .
Non-interference

Attacker model
» They know the program source code and public outputs

» They control public inputs

Security Levels :

Sinput Soutput S : secret
P : public
Pinput 'Doutput P—S

(long m1
(for(i=C

T ama .
Non-interference

Attacker model
» They know the program source code and public outputs

» They control public inputs

» Roughly, non-interference is a security property stating
non-dependence of public outputs from secret inputs (in the
case of confidentiality)

Security Levels :

Sinput Soutput S : secret
P : public
Pinput Poutput P—S

(long m1
{for (i=C

Monitor Semantics

[ramu . .
Monitor semantics

‘Clight’ semantics [Leroy & Blazy,09]

.|
Instruction semantics

Erce, M =M
| |
I-value evaluation r-value evaluation
(address) (contents)

Eta,M < loc EtaM = val 5

(long m1
(for (=0

[r ama . .
Monitor semantics

Extended ‘Clight’ semantics [Leroy & Blazy,09]
» Memory [: a memory mapping a location to a security label

» Tracking information flows by tainting security labels

.|
Instruction semantics

Etc,MT,pc= M,T'

| |
I-value evaluation r-value evaluation
(address) (contents)

Et a, M.T < loc, s EtFa,MT = val,s, .3

[r ama N N
Eg. Right value evaluations

Right value evaluations of an expression

M =& {I, ~ ptr(l,);], — v}

EFx,M = ptr(l,)
EFs«xx,M <« M(l,) =v

LVmEm

RV 3

fongm EFsx, M =v

[¢ umu . .
Eg. Right value evaluations

Right value evaluations of an expression
» The label associated to the I-value of a is propagated to the
one associated to its r-value

> “Program Transformation for Non-interference Verification on Programs with
Pointers” [Assaf et al., IFIP SEC 2013]

M =& {l, ~ ptr(l,);], — v}
FE {l— sl —s,}

EFx,M,T = ptr(l,), s«
EFsx,M, I <I,s, M(l,) =v
r(y)=s, s=s5, |_|5X

LVimEm

RV

(ong m1 EFsxx, M, = v,s

(for (1=(

[t ama N
Monitor Soundness

Theorem 1: Soundness with respect to termination insensitive
non-interference

» Two terminating executions differing only on secret inputs
deliver the same public outputs

SinPUt - SOUtPUt
Pinput Poutput
!/ !
- - o
Pin ut Pout ut o ',‘1‘
p p

(longm1
(for (i=¢

[T a mu -
Monitor Soundness

Softwars Aty

Theorem 1: Soundness with respect to termination insensitive
non-interference

» Two terminating executions differing only on secret inputs
deliver the same public outputs

Sinput Soutput

Pinput Poutput
/ !

Sinput output

Pinput Poutput e

(longm
(for i=0

Monitor Inlining

(long m1
(for (i=C

Softwars Aty

Encapsulating the semantics of the security memory [into

the program

pc = public LI secret
if (public = secret) {
auth =1
auth = pc U public
log _fail = log_fail U pc
1 else {
auth =0
auth = pc U public

log_fail =0

log _fail = log_fail Ll pc
I
assert auth C public
outputpuic auth

The intuition

[¢ umu .
i Pointers

Softwars Aty

int auth
label auth
int xleak
label leak
label* leak_pl
leak = &auth
leak = public

leak_pl = &auth
assert Jleak llxleak_pl C public
outputppic *leak

> Aliasing Lemma: two expressions are aliased iff their
ongm . _pe . .
“""“C respective auxiliary variables are aliased.

[r ama .
A Program Transformation

v

Instrumenting the program to track the security level of each
data handled by programs
A security analysis through

» Hybrid monitoring by running the transformed program T(P)
» Static analysis techniques using off-the-shelf tools such as
Value Analysis Frama-C's plugin

v

v

Theorem 2: soundness wrt. the initial program behavior

v

Theorem 3: soundness wrt. the monitor semantics (hence
wrt. non-interference)

(long m1
(for (1=(

Softwars Aty

Conclusion .

Conclusion

» A sound hybrid information flow monitor for a language
supporting pointers and aliasing

» A sound inlining approach for our monitor based on a
program transformation
» Future work:
» Completing the prototype implementation of our Frama-C
plug-in, case study
» Extending the formalization to richer C constructs

» Pointer arithmetics, declassification annotations, arrays
» Function calls, dynamic allocations, casts. ..

» Ongoing work on quantitative information flow

(long m1 o)
(for (1=(

	Information flows
	Monitor Semantics
	Monitor Inlining
	Conclusion

