
Program Transformation for Non-interference
Verification on Programs with Pointers

Mounir Assaf (CEA LIST)

Julien Signoles (CEA LIST)

Frédéric Tronel (Supélec)

Éric Totel (Supélec)

GDR GPL - LTP, 2013-11-18

Information security

I Information security
I Confidentiality
I Integrity
I Availability

I Traditionally, dissemination of information is prevented
through access control

I What piece of information can be accessed? by whom?
I Yet, is this piece of information handled correctly when

accessed?

I Information Flow Control
I Tracks how information is propagated through a program
I Verifies that information flows are secure

Information Flow Control

I Static analyses:
I Seminal work [Denning & Denning,77]

I First formalization and soundness proof for a simple
imperative language [Volpano et al.,96]

I Jif: IFC extension to Java language [Myers et al.,01]

I Flow Caml : IFC extension to OCaml [Simonet et al.,03]

I Dynamic analyses:
I Operating system level [Enck et al.,10], [Andriatsimandefitra et al.]

I Application level [Hiet et al.,09], [Austin & Flanagan,09 & 10]

I Hybrid analyses:
I [Leguernic et al.,07], [Russo & Sabelfeld,10], [Chandra & Franz, 07],

[Nair et al., 08], [Besson et al., 13]

Information Flow Control

I Provable secure information flow monitoring:
I A gap between theoretical toy languages and real life

languages [Leguernic et al,07], [Russo & Sabelfeld,10]

I Previous monitoring approaches considering languages with
rich constructs do not consider proving soundness [Chandra &

Franz,07], [Nair et al.,08]

I Pointer-induced flows not that much investigated [Moore &

Chong,11], [Austin & Flanagan,09]

I No monitor inlining approach considering pointers [Chudnov &

Naumann,10], [Magazinius et al.,12]

I Our approach
I Sound hybrid information flow monitor
I Sound inlining approach

for a language with pointers and aliasing

Information flows

Monitor Semantics

Monitor Inlining

Conclusion

Explicit flows

Explicit flows
I produced whenever information is transfered directly from

source to destination

destination = source

Assignments generate explicit flows

I Explicit flow from source to destination

Implicit flows

Implicit flows
I produced “whenever” an assignment is conditioned on the

value of an expression

print public

public = true else skip

if (secret)

public = false

ex
ec

u
ti

on
p

at
h

ex
ec

u
ti

on
p

at
h

I Implicit flow from variable secret to variable public

Pointer-induced flows

Pointer-induced flows
I produced whenever a pointer is dereferenced

print *x

x = &a else x = &b

if (secret)

I Implicit flow from secret to pointer x

I Pointer-induced flow from pointer x to ∗x
I Information flow from secret to ∗x .

Pointer-induced flows

Pointer-induced flows
I produced whenever a pointer is dereferenced

print *x

x = &a else x = &b

if (secret)

I Implicit flow from secret to pointer x

I Pointer-induced flow from pointer x to ∗x
I Information flow from secret to ∗x .

Pointer-induced flows

Pointer-induced flows
I produced whenever a pointer is dereferenced

*x = 1

x = &a else x = &b

if (secret)

print a

I Assignment ∗x = 1 generates pointer-induced flows from
pointer x to all variables that x may point to

Pointer-induced flows

Pointer-induced flows
I produced whenever a pointer is dereferenced

*x = 1

x = &a else x = &b

if (secret)

print a

I Assignment ∗x = 1 generates pointer-induced flows from
pointer x to all variables that x may point to

Non-interference

Attacker model
I They know the program source code and public outputs

I They control public inputs

I Roughly, non-interference is a security property stating
non-dependence of public outputs from secret inputs (in the
case of confidentiality)

Pinput

Sinput

Poutput

Soutput

Security Levels :

S : secret
P : public

P → S

X

Non-interference

Attacker model
I They know the program source code and public outputs

I They control public inputs

I Roughly, non-interference is a security property stating
non-dependence of public outputs from secret inputs (in the
case of confidentiality)

Pinput

Sinput

Poutput

Soutput

Security Levels :

S : secret
P : public

P → S

X

Non-interference

Attacker model
I They know the program source code and public outputs

I They control public inputs

I Roughly, non-interference is a security property stating
non-dependence of public outputs from secret inputs (in the
case of confidentiality)

Pinput

Sinput

Poutput

Soutput

Security Levels :

S : secret
P : public

P → S

X

Information flows

Monitor Semantics

Monitor Inlining

Conclusion

Monitor semantics

Extended

‘Clight’ semantics [Leroy & Blazy,09]

I Memory Γ: a memory mapping a location to a security label

I Tracking information flows by tainting security labels

Instruction semantics

E ` c ,M

, Γ, pc

⇒ M ′

, Γ′

l-value evaluation
(address)

E ` a,M

, Γ

⇐ loc

, sloc

r-value evaluation
(contents)

E ` a,M

, Γ

⇒ val

, sval

Monitor semantics

Extended ‘Clight’ semantics [Leroy & Blazy,09]

I Memory Γ: a memory mapping a location to a security label

I Tracking information flows by tainting security labels

Instruction semantics

E ` c ,M, Γ, pc ⇒ M ′, Γ′

l-value evaluation
(address)

E ` a,M, Γ⇐ loc, sloc

r-value evaluation
(contents)

E ` a,M, Γ⇒ val , sval

Eg. Right value evaluations

Right value evaluations of an expression

I The label associated to the l-value of a is propagated to the
one associated to its r-value

I “Program Transformation for Non-interference Verification on Programs with

Pointers” [Assaf et al., IFIP SEC 2013]

M , {lx 7→ ptr(ly); ly 7→ v}

Γ , {lx 7→ sx ; ly 7→ sy}

RV

LVMEM

E ` x ,M

, Γ

⇒ ptr(ly)

, sx

E ` ∗x ,M

, Γ

⇐ ly

, sx

M(ly) = v

Γ(ly) = sy s = sy
⊔

sx

E ` ∗x ,M

, Γ

⇒ v

, s

Eg. Right value evaluations

Right value evaluations of an expression
I The label associated to the l-value of a is propagated to the

one associated to its r-value

I “Program Transformation for Non-interference Verification on Programs with

Pointers” [Assaf et al., IFIP SEC 2013]

M , {lx 7→ ptr(ly); ly 7→ v}

Γ , {lx 7→ sx ; ly 7→ sy}

RV

LVMEM

E ` x ,M, Γ⇒ ptr(ly), sx

E ` ∗x ,M, Γ⇐ ly , sx M(ly) = v

Γ(ly) = sy s = sy
⊔

sx

E ` ∗x ,M, Γ⇒ v , s

Monitor Soundness

Theorem 1: Soundness with respect to termination insensitive
non-interference

I Two terminating executions differing only on secret inputs
deliver the same public outputs

Pinput

Sinput

Poutput

Soutput

Pinput

S ′
input

Poutput

S ′
output

Monitor Soundness

Theorem 1: Soundness with respect to termination insensitive
non-interference

I Two terminating executions differing only on secret inputs
deliver the same public outputs

Pinput

Sinput �
 �	Poutput

Soutput

Pinput

S ′
input �
 �	Poutput

S ′
output

Information flows

Monitor Semantics

Monitor Inlining

Conclusion

The intuition

Encapsulating the semantics of the security memory Γ into
the program

pc = public t secret

i f (p u b l i c == s e c r e t) {
auth = 1
auth = pc t public

log fail = log fail t pc

} e l s e {
auth = 0
auth = pc t public

l o g f a i l = 0
log fail = log fail t pc

}
assert auth v public
output public auth

Pointers

i n t auth
l a b e l auth
i n t ∗ l e a k
l a b e l leak
l a b e l ∗ leak p1

l e a k = &auth
leak = public
leak p1 = &auth

a s s e r t leak t ∗leak p1 v public

outputpublic ∗ l e a k

I Aliasing Lemma: two expressions are aliased iff their
respective auxiliary variables are aliased.

A Program Transformation

I Instrumenting the program to track the security level of each
data handled by programs

I A security analysis through
I Hybrid monitoring by running the transformed program T(P)
I Static analysis techniques using off-the-shelf tools such as

Value Analysis Frama-C’s plugin

I Theorem 2: soundness wrt. the initial program behavior

I Theorem 3: soundness wrt. the monitor semantics (hence
wrt. non-interference)

Information flows

Monitor Semantics

Monitor Inlining

Conclusion

Conclusion

I A sound hybrid information flow monitor for a language
supporting pointers and aliasing

I A sound inlining approach for our monitor based on a
program transformation

I Future work:
I Completing the prototype implementation of our Frama-C

plug-in, case study
I Extending the formalization to richer C constructs

I Pointer arithmetics, declassification annotations, arrays
I Function calls, dynamic allocations, casts. . .

I Ongoing work on quantitative information flow

	Information flows
	Monitor Semantics
	Monitor Inlining
	Conclusion

