A Verified Information-Flow Architecture for SAFE

Arthur Azevedo de Amorim, Nathan Collins, André DeHon, **Delphine Demange**, Cătălin Hriţcu, David Pichardie, Benjamin C. Pierce, Randy Pollack, Andrew Tolmach

LTP - Bordeaux - 18 Nov. 2013

Crash/SAFE Penn

- <u>Clean-slate redesign</u> of entire system stack
 - Hardware, system software, programming languages
- <u>Critical security primitives at</u> all levels
 - Memory safety, strong dynamic typing, information flow and access control

<u>Verification of key mechanisms</u> Hardware

deeply integrated into design process

BAE SYSTEMS

Crash/SAFE Penn

- <u>Clean-slate redesign</u> of entire system stack
 - Hardware, system software, programming languages
- Critical security primitives at <u>all levels</u>
 - Memory safety, strong dynamic typing, information flow and access control

Verification of key mechanisms Hardware

 deeply integrated into design process

(BlueSpec)

BAE SYSTEMS

SAFE hardware (glimpse)

Hardware types ("atomic groups")

instruction ≠ integer ≠ pointer

- Hardware tagging
 - atom = payload + atomic group + software-defined tag

• Hardware *rule cache*: tag propagation with every machine step

SAFE hardware (glimpse)

This talk: formalizing SAFE's hardware tags for information flow control

- Abstraction supported by HW tags
 - labels over a IFC lattice
 - dynamic non-interference

We formally state and verify these properties

• (hardware + TMU manager) \approx abstract machine

Simplifications

- deterministic, single-threaded, stack machine
- no downgrading, public labels, dynamic principal generation, ...
- no exception handling (security violation halts the machine)
- single-line rule cache

This talk: formalizing SAFE's hardware tags for information flow control

- Abstraction supported by HW tags
 - labels over a IFC lattice
 - dynamic non-interference

We formally state and verify these properties

Minor

• (hardware + TMU manager) \approx abstract machine

Simplifications

- deterministic, single-threaded, stack machine
- no downgrading, public labels, dynamic principal generation, ...
- no exception handling (security violation halts the machine)
- single-line rule cache

This talk: formalizing SAFE's hardware tags for information flow control

- Abstraction supported by HW tags
 - labels over a IFC lattice
 - dynamic non-interference

We formally state and verify these properties

• (hardware + TMU manager) \approx abstract machine

Minor

- Simplifications
 - deterministic, single-threaded stack machine
 - no downgrading, public labels, dynamic principal generation, ...

Aaior

- no exception handling (security violation halts the machine)
- single-line rule cache

Concrete Machine

Instruction memory (user)

Machine state

Program counter	Stack	
Data memory (user)		

Output

Instruction memory (user)

Machine state

Program counter	Stack
Data memory (user)	

Atom				
	payload	label		
Written payload @ label				

Output

Instruction memory (user)

Output

$$\begin{split} \frac{\iota(n) = \operatorname{Sub}}{\mu \quad [n_1 \otimes L_1, n_2 \otimes L_2, \sigma] \quad n \otimes L_{pc} \quad \stackrel{\tau}{\to} \\ \mu \quad [(n_1 - n_2) \otimes (L_1 \vee L_2), \sigma] \quad n + 1 \otimes L_{pc}} \\ \frac{\iota(n) = \operatorname{Output}}{\mu \quad [m \otimes L_1, \sigma] \quad n \otimes L_{pc} \quad \stackrel{m \otimes L_1 \vee L_{pc}}{\to} \quad \mu \quad [\sigma] \quad n + 1 \otimes L_{pc}} \\ \frac{\iota(n) = \operatorname{Push} m}{\mu \quad [\sigma] \quad n \otimes L_{pc} \quad \stackrel{\tau}{\to} \quad \mu \quad [m \otimes \bot, \sigma] \quad n + 1 \otimes L_{pc}} \\ \frac{\iota(n) = \operatorname{Load} \quad \mu(p) = m \otimes L_2}{\mu \quad [p \otimes L_1, \sigma] \quad n \otimes L_{pc} \quad \stackrel{\tau}{\to} \quad \mu \quad [m \otimes L_1 \vee L_2, \sigma] \quad n + 1 \otimes L_{pc}} \\ \frac{\iota(n) = \operatorname{Store} \quad \mu(p) = k \otimes L_3 \quad L_1 \vee L_{pc} \leq L_3}{\mu(p) \leftarrow (m \otimes L_1 \vee L_2 \vee L_{pc}) = \mu'} \\ \mu \quad [p \otimes L_1, m \otimes L_2, \sigma] \quad n \otimes L_{pc} \quad \stackrel{\tau}{\to} \quad \mu \quad [\sigma] \quad n + 1 \otimes L_{pc}} \\ \frac{\iota(n) = \operatorname{Store} \quad \mu(p) = k \otimes L_3 \quad L_1 \vee L_{pc} \leq L_3}{\mu(p) \leftarrow (m \otimes L_1 \vee L_2 \vee L_{pc}) = \mu'} \\ \mu \quad [p \otimes L_1, m \otimes L_2, \sigma] \quad n \otimes L_{pc} \quad \stackrel{\tau}{\to} \quad \mu \quad [\sigma] \quad n + 1 \otimes L_{pc}} \\ \frac{\iota(n) = \operatorname{Jump}}{\mu \quad [n' \otimes L_1, \sigma] \quad n \otimes L_{pc} \quad \stackrel{\tau}{\to} \quad \mu \quad [\sigma] \quad n' \otimes (L_1 \vee L_{pc})} \\ \frac{\iota(n) = \operatorname{Bnz} k \quad n' = n + (m = 0)?1 : k}{\mu \quad [m \otimes L_1, \sigma] \quad n \otimes L_{pc} \quad \stackrel{\tau}{\to} \quad \mu \quad [\sigma] \quad n' \otimes (L_1 \vee L_{pc})} \\ \frac{\iota(n) = \operatorname{Call}}{\mu \quad [n' \otimes L_1, a, \sigma] \quad n \otimes L_{pc} \quad \stackrel{\tau}{\to} \quad \mu \quad [\sigma] \quad n' \otimes (L_1 \vee L_{pc})} \\ \frac{\iota(n) = \operatorname{Ret}}{\mu \quad [n' \otimes L_1; \sigma] \quad n \otimes L_{pc} \quad \stackrel{\tau}{\to} \quad \mu \quad [\sigma] \quad n' \otimes L_1} \\ \end{array}$$

$$\begin{array}{c} \begin{array}{c} \text{output} \\ \mu_{1}\left[\sigma_{1}\right]pc_{1} \xrightarrow{e} \mu_{2}\left[\sigma_{2}\right]pc_{2} \end{array}$$

$$\begin{array}{c} \mu_{1}\left[\sigma_{1}\right]pc_{1} \xrightarrow{e} \mu_{2}\left[\sigma_{2}\right]pc_{2} \end{array}$$

$$\begin{array}{c} \mu_{1}\left[\sigma_{1}\right]pc_{1} \xrightarrow{e} \mu_{2}\left[\sigma_{2}\right]pc_{2} \end{array}$$

$$\begin{array}{c} \mu_{1}\left[\sigma_{1}\right]pc_{1} \xrightarrow{e} \mu_{1}\left[ma_{1},\sigma\right]n+1aL_{pc} \end{array}$$

$$\begin{array}{c} \mu_{1}\left[\sigma_{1}\right]pc_{1} \xrightarrow{e} \mu_{1}\left[ma_{1},\sigma\right]n+1aL_{pc} \end{array}$$

$$\begin{array}{c} \mu_{1}\left[pa_{1},\sigma\right]naL_{pc} \xrightarrow{\tau} \mu_{1}\left[ma_{1},\forall L_{2},\sigma\right]n+1aL_{pc} \end{array}$$

$$\begin{array}{c} \mu_{1}\left[pa_{1},\sigma\right]naL_{pc} \xrightarrow{\tau} \mu_{1}\left[ma_{1},\forall L_{2},\sigma\right]n+1aL_{pc} \end{array}$$

$$\begin{array}{c} \mu_{1}\left[pa_{1},maL_{2},\sigma\right]naL_{pc} \xrightarrow{\tau} \mu_{1}\left[\sigma\right]n+1aL_{pc} \end{array}$$

$$\begin{array}{c} \mu_{1}\left[pa_{1},maL_{2},\sigma\right]naL_{pc} \xrightarrow{\tau} \mu_{1}\left[\sigma\right]n+1aL_{pc} \end{array}$$

$$\begin{array}{c} \mu_{1}\left[n^{\prime}aL_{1},\sigma\right]naL_{pc} \xrightarrow{\tau} \mu_{1}\left[\sigma\right]n^{\prime}a(L_{1}\vee L_{pc}) \end{array}$$

$$\begin{array}{c} \mu_{1}\left[maL_{1},\sigma\right]naL_{pc} \xrightarrow{\tau} \mu_{1}\left[\sigma\right]n^{\prime}a(L_{1}\vee L_{pc}) \end{array}$$

$$\begin{array}{c} \mu_{1}\left[n^{\prime}aL_{1},\sigma\right]naL_{pc} \xrightarrow{\tau} \mu_{1}\left[\sigma\right]n^{\prime}a(L_{1}\vee L_{pc}) \end{array}$$

$$\begin{array}{c} \mu_{1}\left[n^{\prime}aL_{1},\sigma\right]naL_{pc} \xrightarrow{\tau} \mu_{1}\left[\sigma\right]n^{\prime}a(L_{1}\vee L_{pc}) \end{array}$$

$$\begin{array}{c} \mu_{1}\left[n^{\prime}aL_{1},\sigma\right]naL_{pc} \xrightarrow{\tau} \mu_{1}\left[\sigma\right]n^{\prime}a(L_{1}\vee L_{pc}) \end{array}$$

$$\begin{array}{c} \text{output}\\ (n) = \text{Sub}\\ \mu_{1} \left[\sigma_{1}\right] pc_{1} \stackrel{e}{\rightarrow} \mu_{2} \left[\sigma_{2}\right] pc_{2}\\ \mu_{1} \left[\sigma_{1}\right] pc_{1} \stackrel{e}{\rightarrow} \mu_{2} \left[\sigma_{2}\right] pc_{2}\\ \mu_{1} \left[\sigma_{1}\right] pc_{1} \stackrel{e}{\rightarrow} \mu_{2} \left[\sigma_{2}\right] pc_{2}\\ next state\\ nemory stack(n) pc_{2} \stackrel{e}{\rightarrow} \mu_{2} \left[\sigma_{2}\right] pc_{2}\\ next state\\ \hline \mu_{1} \left[\sigma_{1}\right] neL_{1}, n_{2} eL_{2}, \sigma_{1} neL_{pc} \stackrel{\sigma}{\rightarrow} next state\\ \hline \left(\frac{\iota(n)}{\mu} = \text{Sub} \right) \stackrel{\sigma}{\rightarrow} next state\\ \frac{\iota(n)}{\mu} \left[n_{1} eL_{1}, n_{2} eL_{2}, \sigma_{1}\right] neL_{pc} \stackrel{\sigma}{\rightarrow} next state\\ \hline \left(\frac{\iota(n)}{\mu} \left[n_{1} eL_{1}, n_{2} eL_{2}, \sigma_{1}\right] neL_{pc} \stackrel{\sigma}{\rightarrow} next state\\ \hline \left(\frac{\iota(n)}{\mu} \left[n_{1} eL_{1}, \sigma_{2}\right] neL_{pc} \stackrel{\sigma}{\rightarrow} next state\\ \hline \left(\frac{\iota(n)}{\mu} \left[n_{1} eL_{1}, \sigma_{2}\right] neL_{pc} \stackrel{\sigma}{\rightarrow} \mu \left[\sigma\right] n' eL_{1} \lor L_{pc} \right] \\ \hline \left(\frac{\iota(n)}{\mu} \left[neL_{1}, \sigma\right] neL_{pc} \stackrel{met_{1} \lor L_{pc}}{\mu} \left[\sigma\right] n+1eL_{pc} \right] \end{array}$$

 We design the abstract machine so that it is easy to prove a non-interference property

- We design the abstract machine so that it is easy to prove a non-interference property
- Roughly: "high" inputs cannot affect "low" outputs.
 - If two executions of a program start with same "low" data, the "low" parts of output traces will be the same

- We design the abstract machine so that it is easy to prove a non-interference property
- Roughly: "high" inputs cannot affect "low" outputs.
 - If two executions of a program start with same "low" data, the "low" parts of output traces will be the same

$$\begin{cases} \forall obs, \\ & (P, in) \sim_{obs} (P, in') \\ \wedge & (P, in) \Downarrow_{obs} T \\ \wedge & (P, in') \Downarrow_{obs} T' \end{cases} \end{cases} \Rightarrow T \simeq T'$$

- We design the abstract machine so that it is easy to prove a non-interference property
- Roughly: "high" inputs cannot affect "low" outputs.
 - If two executions of a program start with same "low" data, the "low" parts of output traces will be the same

 $\forall obs,$

same instructions, but different starting secrets (unknown to observer)

$$\begin{cases} (P, in) \sim_{obs} (P, in') \\ (P, in) \Downarrow_{obs} T \\ (P, in') \Downarrow_{obs} T' \end{cases} \end{cases} \Rightarrow T \simeq T'$$

- We design the abstract machine so that it is easy to prove a non-interference property
- Roughly: "high" inputs cannot affect "low" outputs.
 - If two executions of a program start with same "low" data, the "low" parts of output traces will be the same

 $\forall obs,$

same instructions, but different starting secrets (unknown to observer)

$$(P, in) \sim_{obs} (P, in')$$

$$(P, in) \Downarrow_{obs} T$$

$$(P, in') \Downarrow_{obs} T'$$

pointwise equality cropping to shortest trace (termination insensitive) $\Rightarrow T \simeq T'$

- We design the abstract machine so that it is easy to prove a non-interference property
- Roughly: "high" inputs cannot affect "low" outputs.
 - If two executions of a program start with same "low" data, the "low" parts of output traces will be the same

 $\forall obs,$

same instructions, but different starting secrets (unknown to observer)

 $(P, in') \Downarrow_{obs} T'$

pointwise equality cropping to shortest trace

standard assumptions: attacker cannot distinguish successful termination, failing with an error, and unproductive infinite loop

Symbolic IFC Rule Machine

Symbolic IFC Rule Machine

• Alternative presentation of abstract machine

- Same machine states
- Same step relation
- IFC side conditions factored out into a separate, explicit *rule table*

$$\begin{array}{c|c} \underbrace{\iota(n) = \operatorname{Sub}}_{\mathbb{H}_{\mathcal{R}}} & \vdash_{\mathcal{R}} (L_{pc}, L_{1}, L_{2}, -) \rightsquigarrow_{\operatorname{sub}} L_{rpc}, L_{r}}{\mu & [n_{1} \otimes L_{1}, n_{1} \otimes L_{2}, \sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \\ \mu & [(n_{1} - n_{2}) \otimes L_{r}, \sigma] & (n+1) \otimes L_{rpc} \\ \hline \\ \mu & [m \otimes L_{1}, \sigma] & n \otimes L_{pc} & \underbrace{m \otimes L_{r}}{\mu & [\sigma] & (n+1) \otimes L_{rpc}, L_{r}} \\ \hline \\ \mu & [m \otimes L_{1}, \sigma] & n \otimes L_{pc} & \underbrace{m \otimes L_{r}}{\mu & [\sigma] & (n+1) \otimes L_{rpc}, L_{r}} \\ \hline \\ \mu & [\sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [m \otimes L_{r}, \sigma] & (n+1) \otimes L_{rpc} \\ \hline \\ \mu & [\sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [m \otimes L_{r}, \sigma] & (n+1) \otimes L_{rpc} \\ \hline \\ \mu & [\sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [m \otimes L_{r}, \sigma] & (n+1) \otimes L_{rpc} \\ \hline \\ \mu & [\rho \otimes L_{1}, \sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [m \otimes L_{r}, \sigma] & (n+1) \otimes L_{rpc} \\ \hline \\ \mu & [\rho \otimes L_{1}, \sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [\sigma] & (n+1) \otimes L_{rpc} \\ \hline \\ \mu & [\rho \otimes L_{1}, m \otimes L_{2}, \sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu' & [\sigma] & (n+1) \otimes L_{rpc} \\ \hline \\ \mu & [n' \otimes L_{1}, \sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [\sigma] & n' \otimes L_{rpc} \\ \hline \\ \mu & [n' \otimes L_{1}, \sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [\sigma] & n' \otimes L_{rpc} \\ \hline \\ \mu & [n' \otimes L_{1}, \sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [\sigma] & n' \otimes L_{rpc} \\ \hline \\ \mu & [n' \otimes L_{1}, \sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [\sigma] & n' \otimes L_{rpc} \\ \hline \\ \mu & [n' \otimes L_{1}, \alpha, \sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [\sigma] & n' \otimes L_{rpc} \\ \hline \\ \mu & [n' \otimes L_{1}, a, \sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [\sigma] & n' \otimes L_{rpc} \\ \hline \\ \hline \\ \mu & [n' \otimes L_{1}, a, \sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [\sigma] & n' \otimes L_{rpc} \\ \hline \\ \hline \\ \mu & [n' \otimes L_{1}, \sigma] & n \otimes L_{pc} & \xrightarrow{\tau} \mu & [\sigma] & n' \otimes L_{rpc} \\ \hline \\ \hline \end{array}$$

$$\frac{\iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1}, L_{2}, \cdot) \rightsquigarrow_{\operatorname{sub}} L_{rpc}, L_{r}}{\mu [(n_{1} \circ L_{1}, n_{1} \circ L_{2}, \sigma]} \underbrace{\operatorname{nd}_{L_{pc}} \xrightarrow{\tau}}{\mu (n+1) \circ L_{rpc}} \qquad \text{to obtain result tags...} \\ \underbrace{\iota(n) = \operatorname{Outpt}}{\mu [\operatorname{maL}_{1}, n] \circ \operatorname{optad} L_{rpc}} \underbrace{\operatorname{to obtain result tags...}}{\operatorname{lcpc}} \\ \underbrace{\iota(n) = \operatorname{Outpt}}{\mu [\operatorname{maL}_{1}, n] \circ \operatorname{optad} L_{rpc}, L_{r}} \\ \underbrace{\iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1}, L_{2}, -) \leadsto_{\operatorname{sub}} L_{rpc}, L_{r}}{\operatorname{nd}_{L_{rpc}}} \\ \underbrace{\iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1}, L_{2}, -) \leadsto_{\operatorname{sub}} L_{rpc}, L_{r}} \\ \mu [(n_{1} \circ L_{1}, n_{1} \circ L_{2}, \sigma] \quad n \circ L_{pc} \qquad \xrightarrow{\tau} \\ \mu [(n_{1} - n_{2}) \circ L_{r}, \sigma] \quad (n+1) \circ L_{rpc}} \\ \underbrace{\iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1, -1}) \cdots_{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu [(n_{1} - n_{2}) \circ L_{r}, \sigma] \quad (n+1) \circ L_{rpc}} \\ \underbrace{\iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1, -1}) \cdots_{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu [(n_{1} - n_{2}) \circ L_{r}, \sigma] \quad (n+1) \circ L_{rpc}} \\ \underbrace{\iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1, -1}) \cdots_{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu [(n_{1} - n_{2}) \circ L_{r}, \sigma] \quad (n+1) \circ L_{rpc}} \\ \underbrace{\iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1, -1}) \cdots_{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu [n' \circ L_{1}, \sigma] \operatorname{no} L_{pc} \xrightarrow{\tau} \mu [\sigma] \operatorname{n'} \circ L_{rpc}} \\ \underbrace{\iota(n) = \operatorname{Cal} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1, -1}) \cdots_{\operatorname{sub}} L_{rpc}, L_{r} \\ \underbrace{\iota(n) = \operatorname{Cal} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1, -1}) \cdots_{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu [n' \circ L_{1}, \sigma] \operatorname{no} L_{pc} \xrightarrow{\tau} \mu [\sigma] \operatorname{n'} \circ L_{rpc}} \\ \underbrace{\iota(n) = \operatorname{Ret} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1, -1}) \cdots_{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu [n' \circ L_{1}, \sigma] \operatorname{no} L_{pc} \xrightarrow{\tau} \mu [\sigma] \operatorname{n'} \circ L_{rpc}} \\ \underbrace{\iota(n) = \operatorname{Ret} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1, -1}) \cdots_{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu [n' \circ L_{1}, \sigma] \operatorname{no} L_{pc} \xrightarrow{\tau} \mu [\sigma] \operatorname{n'} \circ L_{rpc}} \\ \underbrace{\iota(n) = \operatorname{Ret} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1, -1}) \cdots_{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu [n' \circ L_{1}, \sigma] \operatorname{no} L_{pc} \xrightarrow{\tau} \mu [\sigma] \operatorname{n'} \circ L_{rpc}} \\ \underbrace{\iota(n) = \operatorname{Ret} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1, -1}) \cdots_{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu [n' \circ L_{1}, \sigma] \operatorname{no} L_{pc} \xrightarrow{\tau} \mu [\sigma] \operatorname{n'} \circ L_{rpc}} \\ \underbrace{\iota(n) = \operatorname{Ret} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1, -1}) \cdots_{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu [n' \circ L_{r}, \sigma] \operatorname{n'} \sqcup_{r} \\ \mu [n' \circ L_{r}, \sigma$$

$$\frac{\iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1}, L_{2}, \cdot) \rightsquigarrow_{\operatorname{sub}} L_{rpc}, L_{r}}{\mu [n_{1} a L_{1}, n_{1} a L_{2}, \sigma]} \underset{(n+1) \otimes L_{rpc}}{\operatorname{ind} L_{pc}} \xrightarrow{\tau}$$

$$\frac{\iota(n) = \operatorname{Outpt}}{\mu [m a L_{1}, \alpha]} \underset{(n+1) \otimes L_{rpc}}{\operatorname{and} \operatorname{opcode...}} \underset{(n+1) \otimes L_{rpc}}{\operatorname{trpc}, L_{r}}$$

$$\frac{\iota(n) = \operatorname{Outpt}}{\mu [m a L_{1}, \alpha]} \underset{(n+1) \otimes L_{rpc}}{\operatorname{and} r, \sigma]} \underset{(n+1) \otimes L_{rpc}}{\operatorname{ind} L_{rpc}} \underset{(n+1) \otimes L_{rpc}}{\operatorname{trpc}, L_{r}}$$

$$\frac{\iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pe}, L_{1}, L_{2}, -) \leadsto_{\operatorname{sub}} L_{rpc}, L_{r}}{\mu [(n_{1} - n_{2}) \otimes L_{r}, \sigma]} \underset{(n+1) \otimes L_{rpc}}{\operatorname{ind} L_{rpc}} \xrightarrow{\tau}$$

$$\frac{\iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pe}, L_{1}, -) \leadsto_{\operatorname{sub}} L_{rpc}, L_{r}}{\mu [(n_{1} - n_{2}) \otimes L_{r}, \sigma]} \underset{(n+1) \otimes L_{rpc}}{\operatorname{ind} L_{rpc}} \xrightarrow{\tau}$$
$$\frac{\iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1}, L_{2}, \cdot) \rightsquigarrow_{\operatorname{sub}} L_{rpc}, L_{r}}{\mu [(n_{1} \circ L_{1}, n_{1} \circ L_{2}, \sigma]} \underbrace{\operatorname{nel}_{pc}}_{(n+1) \circ L_{rpc}} \xrightarrow{\tau}$$

$$\frac{\iota(n) = \operatorname{Outpl}}{\mu [\operatorname{maL}_{1}, n]} \operatorname{and} \operatorname{opcode...} \qquad \underset{L_{rpc}}{\operatorname{to obtain result tags...}}$$

$$\frac{\iota(n) = \operatorname{Outpl}}{\mu [\operatorname{maL}_{1}, n]} \operatorname{and} \operatorname{opcode...} \qquad \underset{L_{rpc}}{\operatorname{to obtain}} \operatorname{tresult} \operatorname{tags...}$$

$$\frac{\iota(n)}{\operatorname{for tags...}} \underbrace{\frac{(L_{pc}, -\tau_{1}) \rightsquigarrow_{\operatorname{pubh}} L_{rpc}, L_{r}}{\operatorname{nel}_{L_{rpc}}}$$

$$\frac{\iota(n) = \operatorname{Sub}}{\operatorname{tresult}} \vdash_{\mathcal{R}} (L_{pc}, L_{1}, L_{2}, -) \rightsquigarrow_{\operatorname{sub}} L_{rpc}, L_{r}$$

$$\mu [n_{1} \circ L_{1}, n_{1} \circ L_{2}, \sigma] n \circ L_{pc} \xrightarrow{\tau} \\ \mu [(n_{1} - n_{2}) \circ L_{r}, \sigma] (n+1) \circ L_{rpc}$$

$$\frac{\vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \rightsquigarrow_{\operatorname{bul}} L_{rpc}, L_{r}}{\operatorname{tresult} \operatorname{tresult}}$$

IFC Rule Table

\mathcal{R} =

opcode	allow	e_{rpc}	e_r
sub	TRUE	LAB_{pc}	$LAB_1 \sqcup LAB_2$
output	TRUE	LAB_{pc}	$LAB_1 \sqcup LAB_{pc}$
push	TRUE	LAB_{pc}	BOT
load	TRUE	LAB_{pc}	$LAB_1 \sqcup LAB_2$
store	$LAB_1 \sqcup LAB_{pc} \sqsubseteq LAB_3$	LAB_{pc}	$LAB_1 \sqcup LAB_2 \sqcup LAB_{pc}$
jump	TRUE	$LAB_1 \sqcup LAB_{pc}$	
bnz	TRUE	$LAB_1 \sqcup LAB_{pc}$	
call	TRUE	$LAB_1 \sqcup LAB_{pc}$	LAB_{pc}
ret	TRUE	LAB ₁	

IFC Rule Table

is this operation allowed?

	ne	ew pc label	
\mathcal{R} =			label for result
opcode	allow	e_{rpc}	e_r
sub	TRUE	LAB_{pc}	$LAB_1 \sqcup LAB_2$
output	TRUE	LAB_{pc}	$LAB_1 \sqcup LAB_{pc}$
push	TRUE	LAB_{pc}	BOT
load	TRUE	LAB_{pc}	$LAB_1 \sqcup LAB_2$
store	$LAB_1 \sqcup LAB_{pc} \sqsubseteq LAB_3$	LAB_{pc}	$LAB_1 \sqcup LAB_2 \sqcup LAB_{pc}$
jump	TRUE	$LAB_1 \sqcup LAB_{pc}$	
bnz	TRUE	$LAB_1 \sqcup LAB_{pc}$	
call	TRUE	$LAB_1 \sqcup LAB_{pc}$	LAB_{pc}
ret	TRUE	LAB ₁	

IFC Rule Table

Concrete Machine

Concrete machine

Machine state

Output

Concrete machine

User mode (cache hit)

$\iota(n) = Sub$
$\kappa = \left sub \left T_{pc} \right T_{1} \left T_{2} \right - \left \left T_{rpc} \right T_{r} \right \right $
$ u \kappa \mu [n_1 \circ T_1, n_2 \circ T_2, \sigma] n \circ T_{pc} \xrightarrow{\tau} $
$\mathfrak{u} \kappa \mu [(n_1 - n_2)\mathfrak{a}_r, \sigma] n + 1\mathfrak{a}_{rpc}$
$\iota(n) = Output$
$\kappa = \left[\text{output} \mathbf{T}_{pc} \mathbf{T}_1 _{-} _{-} \mathbf{T}_{rpc} \mathbf{T}_r \right]$
$\begin{array}{c} u \ \kappa \ \mu \ [maT_1, \sigma] \ naT_{pc} \\ u \ \kappa \ \mu \ [\sigma] \ n+1aT_{rpc} \end{array} \xrightarrow{mut_r}$
$\iota(n) = Push\ m$
$\kappa = \left[push \big T_{pc} \big _ \big _ \left T_{rpc} \big T_{r} \right]$
$u \; \kappa \; \mu \left[\sigma \right] \; n eT_{pc} \xrightarrow{\tau} u \; \kappa \; \mu \; \left[m eT_{r}, \sigma \right] \; n + 1 eT_{rpc}$
$\iota(n) = Load$
$\mu(p) = m_0 T_2$
$\kappa = \begin{bmatrix} \log d & s_{pc} & 1 \end{bmatrix} \times 1 \begin{bmatrix} s_{2} & - \end{bmatrix} \times 1 \begin{bmatrix} s_{pc} & s_{1} \end{bmatrix}$
$\mathfrak{u} \kappa \mu \ [par_1, \sigma] \ nalpc \rightarrow \mathfrak{u} \kappa \mu \ [maT_r, \sigma] \ n+1aT_{rpc}$
$\iota(n) = \text{Store} \mu(p) = k \circ T_3$
$\kappa = \text{store} T_{pc} T_1 T_2 T_3 T_{rpc} T_r $ $\mu(p) \leftarrow (moT_r) = \mu'$
$\mu \kappa \mu \left[paT_1, maT_2, q \right] naT_{rec} \xrightarrow{\tau}$
$\mathbf{u} \kappa \mu'$ $[\sigma] n+1 \mathfrak{a} \mathbf{T}_{rpc}$
$\iota(n) = Jump$
$\kappa = \left[jump \mid T_{pc} \mid T_1 \mid - \mid \cdot \mid T_{rpc} \mid - \right]$
$ u \kappa \mu [n' aT_1, \sigma] n aT_{pc} \xrightarrow{\tau} $
$u \kappa \mu$ $[\sigma] n' aT_{rpc}$
$\iota(n) = Bnzk$
$\kappa = bnz T_{pc} T_1 - T_{rpc} - $
n' = n + (m = 0)?1:k
$\mu \kappa \mu [maT_1,\sigma] naT_{pc} \rightarrow \mu \kappa \mu [\sigma] n'aT_{pc}$
() C
$\kappa = \boxed{\operatorname{call} \mathbf{T}_{pc} \mathbf{T}_{1} _{-} \mathbf{T}_{rpc} \mathbf{T}_{r} }$
$u \kappa \mu \qquad [n' a T_1, a, \sigma] n a T_{pc} \xrightarrow{\tau} \to$
u $\kappa \mu [a, (n+1 \circ T_r, u); \sigma] n' \circ T_{rpc}$
$\iota(n) = Ret$
$\kappa = \operatorname{ret} T_{pc} T_1 - - T_{rpc} - $
$\mathfrak{u} \ltimes \mu [(n' \circ T_1, \mathfrak{u}); \sigma] n \circ T_{pc} \rightarrow \mathfrak{u} \ltimes \mu$
of the part of the warped

User-to-kernel mode (cache miss)

 $\iota(n) = Sub$ $\kappa_i \neq |\mathsf{sub}||\mathsf{T}_{\mathrm{pc}}||\mathsf{T}_1||\mathsf{T}_2||_- = \kappa_j$ $u [\kappa_i, \kappa_o] \mu$ $[n_1 \circ T_1, n_1 \circ T_2, \sigma] n \circ T_{pc} \xrightarrow{\tau}$ k $[\kappa_j, \kappa_.] \mu [(noT_{pc}, u); n_1 oT_1, n_1 oT_2, \sigma] 0 oT_.$ $\iota(n) = \mathsf{Output}$ $\kappa_i \neq \text{output } T_{pc} T_1 = = \kappa_i$ $u [\kappa_i, \kappa_o] \mu$ [moT₁, σ] noT_{pc} $\xrightarrow{\tau}$ k $[\kappa_j, \kappa_j] \mu [(noT_{pc}, u); moT_1, \sigma] 0oT_j$ $\iota(n) = \operatorname{Push} m$ $\kappa_i \neq | \text{push} | \mathbf{T}_{pc} | - - - = \kappa_j$ $u [\kappa_i, \kappa_o] \mu [\sigma] noT_{pc} \xrightarrow{\tau} k [\kappa_j, \kappa_c] \mu [(noT_{pc}, u); \sigma] 0oT_c$ $\iota(n) = Load$ $\mu(p) = maT_2$ $\kappa_i \neq |\text{load} | T_{pc} | T_1 | T_2 | = \kappa_i$ $u [\kappa_i, \kappa_o] \mu$ [poT₁, σ] noT_{pc} $\xrightarrow{\tau}$ k $[\kappa_j, \kappa_-] \mu [(noT_{pc}, u); poT_1, \sigma] 0oT_ \iota(n) = \text{Store} \quad \mu(p) = k \cdot a T_3$ $\kappa_i \neq \text{store} |\mathbf{T}_{pc}| |\mathbf{T}_1| |\mathbf{T}_2| |\mathbf{T}_3| = \kappa_j$ $\iota(n) = \mathsf{Jump}$ $\kappa_i \neq \text{jump} |\mathbf{T}_{pc}| |\mathbf{T}_1| = = \kappa_j$ $u [\kappa_i, \kappa_o] \mu$ $[n'aT_1, \sigma] naT_{pc} \xrightarrow{\tau}$ k $[\kappa_j, \kappa_j] \mu [(noT_{pc}, u); n'oT_1, \sigma]$ OoT. $\iota(n) = \operatorname{Bnz} k$ $\kappa_i \neq | \text{bnz} | T_{pc} | T_1 | - | - | = \kappa_j$ $\begin{array}{cccc} \mathsf{u} & [\kappa_i, \kappa_o] & \mu & [maT_1, \sigma] & naT_{pc} \xrightarrow{\tau} \\ \mathsf{k} & [\kappa_j, \kappa_c] & \mu & [(naT_{pc}, \mathsf{u}); maT_1, \sigma] & 0aT_c \end{array}$ $\iota(n) = Call$ $\kappa_i \neq \text{call } T_{pc} T_1 = = \kappa_i$ k $[\kappa_j, \kappa_.]$ μ $[(noT_{pc}, u); n'oT_1, a, \sigma]$ OoT. $\iota(n) = \operatorname{Ret}$ $\kappa_i \neq |\text{ret} | T_{pc} | T_1 | = | = \kappa_j$ $u [\kappa_i, \kappa_o] \mu$ $[(n'aT_1, \pi); \sigma] naT_{pc} \xrightarrow{\tau}$ k $[\kappa_j, \kappa_j] \mu [(n \otimes T_{pc}, u); (n' \otimes T_1, \pi); \sigma] 0 \otimes T_j$

Kernel mode

 $\phi(n) = Sub$ $\xrightarrow{\tau}$ $k \kappa \mu = [n_1 a_{-}, n_1 a_{-}, \sigma] n a_{-}$ $k \kappa \mu [(n_1 - n_2) \circ T_{,\sigma}] n + 1 \circ T_{,\sigma}$ $\phi(n) = \operatorname{Push} m$ $\mathbf{k} \kappa \mu [\sigma] \mathbf{n}_{0} \xrightarrow{\tau} \mathbf{k} \kappa \mu [m_{0}\mathbf{T}, \sigma] \mathbf{n} + \mathbf{1}_{0}\mathbf{T}$ $\phi(n) = \text{Load}$ $\kappa(p) = m \circ T_1$ $k \kappa \mu [po_{-}, \sigma] no_{-} \xrightarrow{\tau} k \kappa \mu [moT_{1}, \sigma] n+1oT_{-}$ $\phi(n) = \text{Store} \quad \text{store } \kappa p(maT_1) = \kappa'$ $k \kappa \mu [po_{-}, moT_{1}, \sigma] no_{-} \xrightarrow{\tau} k \kappa' \mu [\sigma] n+1oT_{-}$ $\phi(n) = \mathsf{Jump}$ $k \kappa \mu [n'a_{-}, \sigma] na_{-} \xrightarrow{\tau} k \kappa \mu [\sigma] n'aT_{-}$ $\phi(n) = \text{Bnz } k$ n' = n + (m = 0)?1: k $k \kappa \mu [ma_{-}, \sigma] na_{-} \xrightarrow{\tau} k \kappa \mu [\sigma] n'aT_{-}$ $\phi(n) = Call$ $k \kappa \mu [n'a_{-}, a, \sigma] na_{-} \xrightarrow{\tau} k \kappa \mu [a, (n+1aT_{-}, k); \sigma] n'aT_{-}$ $\phi(n) = \operatorname{Ret}$ $k \kappa \mu [(n' \circ T_1, \pi); \sigma] n \circ \rightarrow \pi \kappa \mu [\sigma] n' \circ T_1$

User mode (cache hit)

User-to-kernel mode (cache miss)

$$\begin{split} \iota(n) &= \mathsf{Sub}\\ \kappa_i \neq \boxed{\mathsf{sub} \mid \mathsf{T}_{pc} \mid \mathsf{T}_1 \mid \mathsf{T}_2 \mid _} = \kappa_j \\ \mathsf{u} \quad \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} n_1 \, \mathsf{oT}_1, \, n_1 \, \mathsf{oT}_2, \sigma \end{bmatrix} \, n \, \mathsf{oT}_{pc} \xrightarrow{\tau} \\ \mathsf{k} \quad \begin{bmatrix} \kappa_j, \kappa_c \end{bmatrix} \mu \quad \begin{bmatrix} (n \, \mathsf{oT}_{pc}, \, \mathsf{u}); \, n_1 \, \mathsf{oT}_1, \, n_1 \, \mathsf{oT}_2, \sigma \end{bmatrix} \, \mathsf{oT}_c \end{split}$$

$$\begin{split} \iota(n) &= \mathsf{Output}\\ \kappa_i \neq \boxed{\mathsf{output} \mid \mathsf{T}_{pc} \mid \mathsf{T}_1 \mid _ \mid _} = \kappa_j \\ \\ \mathsf{u} \mid [\kappa_i, \kappa_o] \mid \mu \qquad [m \circ \mathsf{T}_1, \sigma] \mid n \circ \mathsf{T}_{pc} \xrightarrow{\tau} \\ \mathsf{k} \mid [\kappa_j, \kappa_c] \mid \mu \mid [(n \circ \mathsf{T}_{pc}, \mathsf{u}); m \circ \mathsf{T}_1, \sigma] \mid 0 \circ \mathsf{T}_c \end{split}$$

 $\iota(n) = \operatorname{Push} m$ $\kappa_i \neq [\operatorname{push} | \operatorname{T}_{pc} | _ | _] = \kappa_j$

 $\mathsf{u} [\kappa_i, \kappa_o] \mu [\sigma] n \mathfrak{a} \mathsf{T}_{pc} \xrightarrow{\tau} \mathsf{k} [\kappa_j, \kappa_.] \mu [(n \mathfrak{a} \mathsf{T}_{pc}, \mathsf{u}); \sigma] \mathfrak{0} \mathfrak{a} \mathsf{T}_.$

Kernel mode

$$\begin{split} \frac{\phi(n) = \operatorname{Sub}}{\begin{smallmatrix} \mathsf{k} \ \kappa \ \mu & \begin{bmatrix} n_1 \mathfrak{a}_-, n_1 \mathfrak{a}_-, \sigma \end{bmatrix} \ n\mathfrak{a}_- & \xrightarrow{\tau} \\ \mathsf{k} \ \kappa \ \mu & \begin{bmatrix} (n_1 - n_2) \mathfrak{a} \mathsf{T}_-, \sigma \end{bmatrix} \ n + 1 \mathfrak{a} \mathsf{T}_-} \\ \frac{\phi(n) = \operatorname{Push} m}{\check{\mathsf{k}} \ \kappa \ \mu & [\sigma] \ n\mathfrak{a}_- & \xrightarrow{\tau} \ \mathsf{k} \ \kappa \ \mu & [m\mathfrak{a} \mathsf{T}_-, \sigma] \ n + 1 \mathfrak{a} \mathsf{T}_-} \\ \frac{\phi(n) = \operatorname{Load}}{\check{\mathsf{k}} \ \kappa \ \mu & [\mathfrak{p} \mathfrak{a}_-, \sigma] \ n \mathfrak{a}_- & \xrightarrow{\tau} \ \mathsf{k} \ \kappa \ \mu & [\mathfrak{m} \mathfrak{a} \mathsf{T}_1, \sigma] \ n + 1 \mathfrak{a} \mathsf{T}_-} \\ \frac{\phi(n) = \operatorname{Load}}{\check{\mathsf{k}} \ \kappa \ \mu & [\mathfrak{p} \mathfrak{a}_-, \sigma] \ n \mathfrak{a}_- & \xrightarrow{\tau} \ \mathsf{k} \ \kappa \ \mu & [\mathfrak{m} \mathfrak{a} \mathsf{T}_1, \sigma] \ n + 1 \mathfrak{a} \mathsf{T}_-} \\ \frac{\phi(n) = \operatorname{Store} \quad \operatorname{store} \ \kappa \ p \ (\mathfrak{m} \mathfrak{a} \mathsf{T}_1) = \kappa'}{\check{\mathsf{k}} \ \kappa \ \mu & [\mathfrak{p} \mathfrak{a}_-, \mathfrak{m} \mathfrak{a} \mathsf{T}_1, \sigma] \ n + 1 \mathfrak{a} \mathsf{T}_-} \end{split}$$

 $\phi(n) = \operatorname{Jump}$

 $\pi_1 \kappa_1 \mu_1 [\sigma_1] pc_1 \xrightarrow{ce} \pi_2 \kappa_2 \mu_2 [\sigma_2] pc_2$

User mode (cache hit)

$\iota(n) = Sub$
$\kappa = \left sub \left T_{pc} \right T_{1} \left T_{2} \right - \left \left T_{rpc} \right T_{r} \right \right $
$ u \kappa \mu [n_1 \circ T_1, n_2 \circ T_2, \sigma] n \circ T_{pc} \xrightarrow{\tau} $
$\mathfrak{u} \kappa \mu [(n_1 - n_2)\mathfrak{a}_r, \sigma] n + 1\mathfrak{a}_{rpc}$
$\iota(n) = Output$
$\kappa = \left[\text{output} \mathbf{T}_{pc} \mathbf{T}_1 _{-} _{-} \mathbf{T}_{rpc} \mathbf{T}_r \right]$
$\begin{array}{c} u \ \kappa \ \mu \ [maT_1, \sigma] \ naT_{pc} \\ u \ \kappa \ \mu \ [\sigma] \ n+1aT_{rpc} \end{array} \xrightarrow{mut_r}$
$\iota(n) = Push\ m$
$\kappa = \left[push \big T_{pc} \big _ \big _ \left T_{rpc} \big T_{r} \right]$
$u \; \kappa \; \mu \left[\sigma \right] \; n eT_{pc} \xrightarrow{\tau} u \; \kappa \; \mu \; \left[m eT_{r}, \sigma \right] \; n + 1 eT_{rpc}$
$\iota(n) = Load$
$\mu(p) = m_0 T_2$
$\kappa = \begin{bmatrix} \log d & s_{pc} & 1 \end{bmatrix} \times 1 \begin{bmatrix} s_{2} & - \end{bmatrix} \times 1 \begin{bmatrix} s_{pc} & s_{1} \end{bmatrix}$
$\mathfrak{u} \kappa \mu \ [par_1, \sigma] \ nalpc \rightarrow \mathfrak{u} \kappa \mu \ [maT_r, \sigma] \ n+1aT_{rpc}$
$\iota(n) = \text{Store} \mu(p) = k \circ T_3$
$\kappa = \text{store} T_{pc} T_1 T_2 T_3 T_{rpc} T_r $ $\mu(p) \leftarrow (moT_r) = \mu'$
$\mu \kappa \mu \left[paT_1, maT_2, q \right] naT_{rec} \xrightarrow{\tau}$
$\mathbf{u} \kappa \mu'$ $[\sigma] n+1 \mathfrak{a} \mathbf{T}_{rpc}$
$\iota(n) = Jump$
$\kappa = \left[jump \mid T_{pc} \mid T_1 \mid - \mid \cdot \mid T_{rpc} \mid - \right]$
$ u \kappa \mu [n' aT_1, \sigma] n aT_{pc} \xrightarrow{\tau} $
$u \kappa \mu$ $[\sigma] n' aT_{rpc}$
$\iota(n) = Bnzk$
$\kappa = bnz T_{pc} T_1 - T_{rpc} - $
n' = n + (m = 0)?1:k
$\mu \kappa \mu [maT_1,\sigma] naT_{pc} \rightarrow \mu \kappa \mu [\sigma] n'aT_{pc}$
() C
$\kappa = \boxed{\operatorname{call} \mathbf{T}_{pc} \mathbf{T}_{1} _{-} \mathbf{T}_{rpc} \mathbf{T}_{r} }$
$u \kappa \mu \qquad [n' a T_1, a, \sigma] n a T_{pc} \xrightarrow{\tau} \to$
u $\kappa \mu [a, (n+1 \circ T_r, u); \sigma] n' \circ T_{rpc}$
$\iota(n) = Ret$
$\kappa = \operatorname{ret} T_{pc} T_1 - - T_{rpc} - $
$\mathfrak{u} \ltimes \mu [(n' \circ T_1, \mathfrak{u}); \sigma] n \circ T_{pc} \rightarrow \mathfrak{u} \ltimes \mu$
of the part of the warped

User-to-kernel mode (cache miss)

 $\iota(n) = Sub$ $\kappa_i \neq |\mathsf{sub}||\mathsf{T}_{\mathrm{pc}}||\mathsf{T}_1||\mathsf{T}_2||_- = \kappa_j$ $u [\kappa_i, \kappa_o] \mu$ $[n_1 \circ T_1, n_1 \circ T_2, \sigma] n \circ T_{pc} \xrightarrow{\tau}$ k $[\kappa_j, \kappa_.] \mu [(noT_{pc}, u); n_1 oT_1, n_1 oT_2, \sigma] 0 oT_.$ $\iota(n) = \mathsf{Output}$ $\kappa_i \neq \text{output } T_{pc} T_1 = = \kappa_i$ $u [\kappa_i, \kappa_o] \mu$ [moT₁, σ] noT_{pc} $\xrightarrow{\tau}$ k $[\kappa_j, \kappa_j] \mu [(noT_{pc}, u); moT_1, \sigma] 0oT_j$ $\iota(n) = \operatorname{Push} m$ $\kappa_i \neq | \text{push} | \mathbf{T}_{pc} | - - - = \kappa_j$ $u [\kappa_i, \kappa_o] \mu [\sigma] noT_{pc} \xrightarrow{\tau} k [\kappa_j, \kappa_c] \mu [(noT_{pc}, u); \sigma] 0oT_c$ $\iota(n) = Load$ $\mu(p) = maT_2$ $\kappa_i \neq |\text{load} | T_{pc} | T_1 | T_2 | = \kappa_i$ $u [\kappa_i, \kappa_o] \mu$ [poT₁, σ] noT_{pc} $\xrightarrow{\tau}$ k $[\kappa_j, \kappa_-] \mu [(noT_{pc}, u); poT_1, \sigma] 0oT_ \iota(n) = \text{Store} \quad \mu(p) = k \cdot a T_3$ $\kappa_i \neq \text{store} |\mathbf{T}_{pc}| |\mathbf{T}_1| |\mathbf{T}_2| |\mathbf{T}_3| = \kappa_j$ $\iota(n) = \mathsf{Jump}$ $\kappa_i \neq \text{jump} |\mathbf{T}_{pc}| |\mathbf{T}_1| = = \kappa_j$ $u [\kappa_i, \kappa_o] \mu$ $[n'aT_1, \sigma] naT_{pc} \xrightarrow{\tau}$ k $[\kappa_j, \kappa_j]$ μ $[(noT_{pc}, u); n'oT_1, \sigma]$ OoT. $\iota(n) = \operatorname{Bnz} k$ $\kappa_i \neq | \text{bnz} | T_{pc} | T_1 | - | - | = \kappa_j$ $\begin{array}{cccc} \mathsf{u} & [\kappa_i, \kappa_o] & \mu & [maT_1, \sigma] & naT_{pc} \xrightarrow{\tau} \\ \mathsf{k} & [\kappa_j, \kappa_c] & \mu & [(naT_{pc}, \mathsf{u}); maT_1, \sigma] & 0aT_c \end{array}$ $\iota(n) = Call$ $\kappa_i \neq \text{call } T_{pc} T_1 = = \kappa_i$ k $[\kappa_j, \kappa_.]$ μ $[(noT_{pc}, u); n'oT_1, a, \sigma]$ OoT. $\iota(n) = \operatorname{Ret}$ $\kappa_i \neq |\text{ret} | T_{pc} | T_1 | = | = \kappa_j$ $u [\kappa_i, \kappa_o] \mu$ $[(n'aT_1, \pi); \sigma] naT_{pc} \xrightarrow{\tau}$ k $[\kappa_j, \kappa_j] \mu [(n \otimes T_{pc}, u); (n' \otimes T_1, \pi); \sigma] 0 \otimes T_j$

Kernel mode

 $\phi(n) = Sub$ $\xrightarrow{\tau}$ $k \kappa \mu = [n_1 a_{-}, n_1 a_{-}, \sigma] n a_{-}$ $k \kappa \mu [(n_1 - n_2) \circ T_{,\sigma}] n + 1 \circ T_{,\sigma}$ $\phi(n) = \operatorname{Push} m$ $\mathbf{k} \kappa \mu [\sigma] \mathbf{n}_{0} \xrightarrow{\tau} \mathbf{k} \kappa \mu [m_{0}\mathbf{T}, \sigma] \mathbf{n} + \mathbf{1}_{0}\mathbf{T}$ $\phi(n) = \text{Load}$ $\kappa(p) = m \circ T_1$ $k \kappa \mu [po_{-}, \sigma] no_{-} \xrightarrow{\tau} k \kappa \mu [moT_{1}, \sigma] n+1oT_{-}$ $\phi(n) = \text{Store} \quad \text{store } \kappa p(maT_1) = \kappa'$ $k \kappa \mu [po_{-}, moT_{1}, \sigma] no_{-} \xrightarrow{\tau} k \kappa' \mu [\sigma] n+1oT_{-}$ $\phi(n) = \mathsf{Jump}$ $k \kappa \mu [n'a_{-}, \sigma] na_{-} \xrightarrow{\tau} k \kappa \mu [\sigma] n'aT_{-}$ $\phi(n) = \text{Bnz } k$ n' = n + (m = 0)?1: k $k \kappa \mu [ma_{-}, \sigma] na_{-} \xrightarrow{\tau} k \kappa \mu [\sigma] n'aT_{-}$ $\phi(n) = Call$ $k \kappa \mu [n'a_{-}, a, \sigma] na_{-} \xrightarrow{\tau} k \kappa \mu [a, (n+1aT_{-}, k); \sigma] n'aT_{-}$ $\phi(n) = \operatorname{Ret}$ $k \kappa \mu [(n' \circ T_1, \pi); \sigma] n \circ \rightarrow \pi \kappa \mu [\sigma] n' \circ T_1$

User mode (cache hit)	User-to-kernel mode (cache miss)	Kernel mode
$\begin{split} \iota(n) &= \operatorname{Sub} \\ \kappa &= \boxed{\operatorname{sub} \operatorname{T}_{pc} \operatorname{T}_1 \operatorname{T}_2 \cdot \operatorname{T}_{r_p} \operatorname{T}_r } \\ \overline{u \ \kappa \ \mu \ [n_1 \operatorname{eT}_1, n_2 \operatorname{eT}_2, \sigma] \ n \operatorname{eT}_{pc}} \xrightarrow{\tau} \\ \mathfrak{u} \ \kappa \ \mu \ [(n_1 - n_2) \operatorname{eT}_r, \sigma] \ n + 1 \operatorname{eT}_{rpc}} \\ \underline{\iota(n) &= \operatorname{Output}} \\ \underbrace{\iota(n) &= \operatorname{Output} \\ \kappa &= \boxed{\operatorname{output} \operatorname{T}_{pc} \operatorname{T}_1 \cdot \cdot \operatorname{T}_{rpc} \operatorname{T}_r } \\ \overline{u \ \kappa \ \mu \ [maT_1, \sigma] \ n \operatorname{eT}_{pc}} \xrightarrow{m \operatorname{eT}_{rpc}} \\ \underbrace{u \ \kappa \ \mu \ [maT_1, \sigma] \ n \operatorname{eT}_{pc}}_{\operatorname{u} \ \kappa \ \mu \ [\sigma] \ n + 1 \operatorname{eT}_{rpc}} \end{split}}$	$\begin{split} \iota(n) &= \operatorname{Sub}_{\kappa_{i}} \neq \underbrace{\operatorname{sub} \operatorname{T}_{pc} \operatorname{T}_{1} \operatorname{T}_{2} }_{=} = \kappa_{j} \\ \hline \\ \overline{u} \begin{bmatrix} \kappa_{i}, \kappa_{o} \end{bmatrix} \mu & \begin{bmatrix} n_{1} \operatorname{oT}_{1}, n_{1} \operatorname{oT}_{2}, \sigma \end{bmatrix} \operatorname{neT}_{pc} \xrightarrow{\tau} \\ \kappa_{i} &= \begin{bmatrix} \kappa_{i}, \kappa_{o} \end{bmatrix} \mu \begin{bmatrix} (n \operatorname{oT}_{pc}, u); n_{1} \operatorname{oT}_{1}, n_{1} \operatorname{oT}_{2}, \sigma \end{bmatrix} \operatorname{neT}_{-} \\ \\ \frac{\iota(n) = \operatorname{Output}}{\kappa_{i} \neq \underbrace{\operatorname{Output}} \operatorname{T}_{pc} \operatorname{T}_{1} _{-} _{-}} = \kappa_{j} \\ \hline \\ \overline{u} \begin{bmatrix} \kappa_{i}, \kappa_{o} \end{bmatrix} \mu & \underbrace{[m \operatorname{oT}_{1}, \sigma]} \operatorname{neT}_{pc} \xrightarrow{\tau} \\ \kappa_{i} &= \underbrace{\iota(n)} \mu \\ (n \operatorname{oT}_{pc}, u); m \operatorname{oT}_{1}, \sigma \end{bmatrix} \operatorname{neT}_{pc} \xrightarrow{\tau} \\ \kappa_{i} &= \underbrace{\kappa_{i}, \kappa_{o}} \mu \\ \kappa_{i} &= \underbrace{\kappa_{i}, \kappa_{i}, \mu} \mu \\ \kappa_{i} &= \underbrace{\kappa_{i}, \mu} \mu \\ \kappa_{i} &= $	$\begin{aligned} \phi(n) &= Sub \\ \hline \mathbf{k} \ \kappa \ \mu \ \begin{bmatrix} n_1 \mathbf{u}_{-}, n_1 \mathbf{u}_{-}, \sigma \end{bmatrix} \ n \mathbf{u}_{-} & \xrightarrow{\tau} \\ \mathbf{k} \ \kappa \ \mu \ \begin{bmatrix} (n_1 - n_2) \mathbf{u} \mathbf{T}_{-}, \sigma \end{bmatrix} \ n + 1 \mathbf{u} \mathbf{T}_{-} \\ \hline \phi(n) &= Push \ m \\ \hline \mathbf{k} \ \kappa \ \mu \ \begin{bmatrix} \sigma \end{bmatrix} \ n \mathbf{u}_{-} \ \xrightarrow{\tau} \ \mathbf{k} \ \kappa \ \mu \ \begin{bmatrix} m \mathbf{u} \mathbf{T}_{-}, \sigma \end{bmatrix} \ n + 1 \mathbf{u} \mathbf{T}_{-} \\ \hline \phi(n) &= Load \qquad \kappa(p) = m \mathbf{u} \mathbf{T}_{1} \\ \hline \mathbf{k} \ \mathbf{k} \end{bmatrix} \end{aligned}$
$\iota(n) = \kappa = \mathbf{SI}$	Sub $Jb \mid T_{pc} \mid T_1 \mid T_2 \mid \mid T_2$	$\Gamma_{rpc} \mathbf{T}_{r} $
$\mathbf{u} \ \kappa \ \mu \ [n]$ $\mathbf{u} \ \kappa \ \mu \ [(r)$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$T_{pc} \xrightarrow{\tau} 1@T_{rpc}$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} n' = n + (m = 0)?1:k \\ \hline u \ \kappa \ \mu \ [maT_1, \sigma] \ naT_{pc} & \xrightarrow{\tau} \\ u \ \kappa \ \mu \ [\sigma] \ n'aT_{rpc} \end{array} \end{array} \\ \hline \begin{array}{c} \iota(n) = Call \\ \hline \kappa = \boxed{call \ T_{pc} \ T_1 \ - \ - \ T_{rpc} \ T_r} \end{array} \\ \hline \begin{array}{c} \iota(n) = Call \\ \hline \kappa = \boxed{call \ T_{pc} \ T_1 \ - \ - \ T_{rpc} \ T_r} \end{array} \\ \hline \begin{array}{c} \iota(n) = Call \\ \hline \kappa = \boxed{call \ T_{pc} \ T_1 \ - \ - \ T_{rpc} \ T_r} \end{array} \\ \hline \begin{array}{c} \iota(n) = Ret \\ \hline \iota(n) = Ret \\ \hline \kappa = \boxed{ret \ T_{pc} \ T_1 \ - \ - \ T_{rpc} \ - \ - \ T_{rpc} \end{array} \end{array} \\ \hline \begin{array}{c} \iota(n) = Ret \\ \hline \kappa = \boxed{ret \ T_{pc} \ T_1 \ - \ - \ T_{rpc} \ - \ T_{rpc} \end{array} \end{array} \\ \hline \begin{array}{c} \iota(n) = Ret \\ \hline \kappa = \boxed{ret \ T_{pc} \ T_1 \ - \ - \ T_{rpc} \ - \ T_{rpc} \end{array} \end{array} \\ \hline \begin{array}{c} \iota(n) = Ret \\ \hline \kappa = \boxed{ret \ T_{pc} \ T_1 \ - \ - \ T_{rpc} \ - \ T_{rpc} \end{array} \end{array} $ } \\ \hline \begin{array}{c} \iota(n) = Ret \\ \hline \kappa = \boxed{ret \ T_{pc} \ T_1 \ - \ - \ T_{rpc} \ - \ T_{rpc} \end{array} \end{array} } \\ \hline \begin{array}{c} \iota(n) = Ret \\ \hline \kappa = \boxed{ret \ T_{pc} \ T_1 \ - \ - \ T_{rpc} \ - \ T_{rpc} \end{array} \end{array} } \\ \hline \end{array}	$\frac{\iota(n) = \operatorname{Bnz} k}{\kappa_i \neq [\operatorname{bnz}] \operatorname{T_{pc}}[\operatorname{T_1}]_{-}]_{-}} = \kappa_j}{\operatorname{u} \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & [\operatorname{moT}_1, \sigma] \operatorname{noT_{pc}} \xrightarrow{\tau} \\ k \begin{bmatrix} \kappa_j, \kappa_c \end{bmatrix} \mu & [(\operatorname{noT_{pc}}, u); \operatorname{moT}_1, \sigma] \operatorname{0aT}_{-} \\ \\ \frac{\iota(n) = \operatorname{Call}}{\kappa_i \neq [\operatorname{call}] \operatorname{T_{pc}}[\operatorname{T_1}]_{-}]_{-}} = \kappa_j}{\operatorname{u} \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & [n' \operatorname{oT}_1, a, \sigma] \operatorname{noT_{pc}} \xrightarrow{\tau} \\ k \begin{bmatrix} \kappa_j, \kappa_c \end{bmatrix} \mu & [(n \operatorname{oT_{pc}}, u); n' \operatorname{aT}_1, a, \sigma] \operatorname{0aT}_{-} \\ \\ \frac{\iota(n) = \operatorname{Ret}}{\kappa_i \neq [\operatorname{ret}] \operatorname{T_{pc}}[\operatorname{T_1}]_{-}]_{-}} = \kappa_j}{\operatorname{u} \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & [(n \operatorname{oT_{pc}}, u); n' \operatorname{aT}_1, a, \sigma] \operatorname{0aT}_{-} \\ \\ \frac{\iota(n) = \operatorname{Ret}}{\kappa_i \neq [\operatorname{ret}] \operatorname{T_{pc}}[\operatorname{T_1}]_{-}]_{-}} = \kappa_j} \\ \\ \end{array}$	

User mode (cache hit)	User-to-kernel mode (cache miss)	Kernel mode
$\begin{split} \iota(n) &= \operatorname{Sub}_{\kappa} = \underbrace{\operatorname{Sub} \operatorname{T}_{pc} \operatorname{T}_{1} \operatorname{T}_{2} _{-} \operatorname{T}_{r}_{r} \operatorname{T}_{r} }_{\operatorname{U} \kappa \mu} \underbrace{\operatorname{[n_{1}\circ T_{1}, n_{2}\circ T_{2}, \sigma]}_{u \kappa \mu} \operatorname{noT}_{pc}}_{u \kappa \mu} \underbrace{\operatorname{[n_{1}\circ T_{1}, n_{2}\circ T_{2}, \sigma]}_{n+1\circ T_{rpc}} \operatorname{noT}_{rpc}}_{\iota(n) &= \operatorname{Output}_{r, \sigma} \operatorname{[n+1\circ T_{rpc} \operatorname{T}_{r}]}_{u \kappa \mu} \underbrace{\operatorname{[not_{1}, \sigma]}_{rpc} \operatorname{T}_{1} _{-} \operatorname{T}_{rpc} \operatorname{T}_{r}]}_{u \kappa \mu}}_{u \kappa \mu} \underbrace{\operatorname{[mot_{1}, \sigma]}_{n} \operatorname{noT}_{pc}}_{n + 1\circ T_{rpc}}$	$\begin{split} \iota(n) &= Sub\\ \kappa_i \neq \boxed{sub T_{pc} T_1 T_2 }_{=} = \kappa_j \\ \hline u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} n_1 o T_1, n_1 o T_2, \sigma \end{bmatrix} n o T_{pc} \xrightarrow{\tau} \\ k \begin{bmatrix} \kappa_j, \kappa_c \end{bmatrix} \mu & [(n o T_{pc}, u); n_1 o T_1, n_1 o T_2, \sigma] \ o o T_c \\ \hline \iota(n) &= Output \\ \kappa_i \neq \boxed{output T_{pc} T_1 }_{=} = \kappa_j \\ \hline u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & [m o T_1, \sigma] \ n o T_{pc} \xrightarrow{\tau} \\ k & \kappa_i, \kappa_i \end{bmatrix} \mu & [(n o T_{pc}, u); m o T_1, \sigma] \ o o T_c \\ \hline u & [\kappa_i, \kappa_o] \end{bmatrix} \mu & [(n o T_{pc}, u); m o T_1, \sigma] \ o o T_c \end{split}$	$\begin{split} \phi(n) &= Sub \\ \hline & k \; \kappa \; \mu \begin{bmatrix} n_1 @, \; n_1 @, \; \sigma \end{bmatrix} \; n @ & \xrightarrow{\tau} \\ & k \; \kappa \; \mu \; \begin{bmatrix} (n_1 - n_2) @ T, \; \sigma \end{bmatrix} \; n + 1 @ T \\ \hline & \phi(n) &= Push \; m \\ \hline & k \; \kappa \; \mu \; [\sigma] \; n @ \xrightarrow{\tau} \; k \; \kappa \; \mu \; [m @ T, \; \sigma] \; n + 1 @ T \\ \hline & \phi(n) &= Load \kappa(p) = m @ T_1 \\ \hline & k \; \kappa \; k \; $
$ \begin{aligned} \iota(n) &= \\ \kappa &= \begin{bmatrix} s \\ u \\ u \\ \kappa \\ \mu \\ \begin{bmatrix} n \\ l \\ $	$\begin{array}{c c} Sub \\ ub & T_{pc} & T_1 & T_2 & _ & T_2 \\ ub & T_{pc} & T_1 & T_2 & _ & T_2 \\ ub & T_1, n_2 @ T_2, \sigma & & n @ \\ u_1 & - n_2) @ T_r, \sigma & & n + \\ \end{array}$	$\begin{array}{c c} \mathbf{\Gamma}_{rpc} & \mathbf{T}_r \\ \mathbf{T}_{pc} & \xrightarrow{\tau} \\ 1 @ \mathbf{T}_{rpc} \end{array}$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} n' = n + (m = 0) & \text{TI: } k \end{array} \\ \hline u \ \kappa \ \mu \ [moT_1, \sigma] \ noT_{pc} & \xrightarrow{\tau} \\ u \ \kappa \ \mu \ [\sigma] \ n'oT_{rpc} \end{array} \\ \hline \\ \mu \ \kappa = \begin{bmatrix} call \\ T_{pc} \\ T_1 \\ - \\ \end{array} \\ \hline \\ \begin{array}{c} \kappa = \begin{bmatrix} call \\ T_{pc} \\ T_1 \\ - \\ \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{c} \kappa \\ \kappa \\ \end{array} \\ \hline \\ \hline \\ \hline \\ \\ u \ \kappa \ \mu \ [n'oT_1, a, \sigma] \ noT_{pc} \\ \xrightarrow{\tau} \\ \hline \\ u \ \kappa \ \mu \ [a, (n + 1oT_r, u); \sigma] \ n'oT_{rpc} \end{array} \\ \hline \\ \begin{array}{c} \iota(n) = \text{Ret} \\ \kappa = \begin{bmatrix} ret \\ T_{pc} \\ T_1 \\ - \\ \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \mu \ \kappa \ \mu \ [(n'oT_1, u); \sigma] \ noT_{pc} \\ \xrightarrow{\tau} \\ \hline \\ u \ \kappa \ \mu \ [\sigma] \ n'oT_{rpc} \end{array} \end{array} $	$\begin{split} \iota(n) &= \operatorname{Bnz} k \\ \kappa_i \neq \boxed{\operatorname{bnz} \operatorname{T}_{pc} \operatorname{T}_1 \operatorname{[]}_{-} \operatorname{]}_{-}} = \kappa_j \\ \hline u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} m \operatorname{oT}_1, \sigma \end{bmatrix} \operatorname{naT}_{pc} \xrightarrow{\tau} \\ k \begin{bmatrix} \kappa_j, \kappa_c \end{bmatrix} \mu \begin{bmatrix} (n \operatorname{oT}_{pc}, u); m \operatorname{oT}_1, \sigma \end{bmatrix} \operatorname{OaT}_{-} \\ \iota(n) &= \operatorname{Call} \\ \kappa_i \neq \boxed{\operatorname{call} \operatorname{T}_{pc} \operatorname{T}_1 \operatorname{]}_{-}} = \kappa_j \\ \hline u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} n' \operatorname{oT}_1, a, \sigma \end{bmatrix} \operatorname{naT}_{pc} \xrightarrow{\tau} \\ k \begin{bmatrix} \kappa_j, \kappa_c \end{bmatrix} \mu & \begin{bmatrix} (n \operatorname{oT}_{pc}, u); n' \operatorname{oT}_1, a, \sigma \end{bmatrix} \operatorname{OaT}_{-} \\ \iota(n) &= \operatorname{Ret} \\ \kappa_i \neq \boxed{\operatorname{ret} \operatorname{T}_{pc} \operatorname{T}_1 \operatorname{]}_{-}} = \kappa_j \\ \hline u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} (n' \operatorname{oT}_1, \pi); \sigma \end{bmatrix} \operatorname{naT}_{pc} \xrightarrow{\tau} \\ \iota(n) &= \operatorname{Ret} \\ \kappa_i \neq \boxed{\operatorname{ret} \operatorname{T}_{pc} \operatorname{T}_1 \operatorname{]}_{-}} = \kappa_j \\ \hline u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} (n' \operatorname{oT}_1, \pi); \sigma \end{bmatrix} \operatorname{naT}_{pc} \xrightarrow{\tau} \\ \kappa_i &= \operatorname{ret} \operatorname{T}_{pc} \operatorname{T}_1, \pi \\ \kappa_i &= \operatorname{ret} \operatorname{T}_{pc}, u \end{bmatrix}; \begin{pmatrix} n' \operatorname{oT}_1, \pi \\ \kappa_j, \kappa_j \end{bmatrix} \mu = \operatorname{ret}_{-} \\ \kappa_i &= \operatorname{ret}_{-} \\ \kappa_i &=$	

User mode (cache hit)	User-to-kernel mode (cache miss)	Kernel mode		
$\begin{split} \iota(n) &= \operatorname{Sub} \\ \kappa &= \boxed{\operatorname{sub} \operatorname{T}_{pc} \operatorname{T}_1 \operatorname{T}_2 \cdot \operatorname{T}_{rpc} \operatorname{T}_r } \\ u & \kappa & \mu & [n_1 \operatorname{aT}_1, n_2 \operatorname{aT}_2, \sigma] & \operatorname{naT}_{pc} & \xrightarrow{\tau} \\ u & \kappa & \mu & [(n_1 - n_2) \operatorname{aT}_r, \sigma] & n + 1 \operatorname{aT}_{rpc} \\ \\ u & \kappa & \mu & [(n_1 - n_2) \operatorname{aT}_r, \sigma] & n + 1 \operatorname{aT}_{rpc} \\ \\ \underbrace{\iota(n) &= \operatorname{Output}}_{\kappa &= & \operatorname{Output} \operatorname{T}_{pc} \operatorname{T}_1 \cdot \cdot \operatorname{T}_{rpc} \operatorname{T}_r \\ u & \kappa & \mu & [m \operatorname{aT}_1, \sigma] & \operatorname{naT}_{pc} & \xrightarrow{m \operatorname{OT}_r} \\ \end{split}$	$\begin{split} \iota(n) &= Sub\\ \kappa_i \neq \boxed{sub T_{pc} } \boxed{T_2 _} = \kappa_j \\ \hline u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & [n_1 & T_1, n_1 \mathrm{eT}_2, \sigma] & n \mathrm{eT}_{pc} \xrightarrow{\tau} \\ k \begin{bmatrix} \kappa_j, \kappa \end{bmatrix} \mu & [(n \mathrm{eT}_{pc}, u); n_1 & T_1, n_1 \mathrm{eT}_2, \sigma] & 0 \mathrm{eT} \\ \hline \iota(n) &= Output \\ \kappa_i \neq \boxed{output T_{pc} !} \boxed{__]} = \kappa_j \\ \hline u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & [n & T_1, \sigma] & n \mathrm{eT}_{pc} \xrightarrow{\tau} \end{split}$	$\begin{split} \frac{\phi(n) = Sub}{\begin{matrix} k \ \kappa \ \mu & [n_1 @_, n_1 @_, \sigma] \ n @_ & \stackrel{\tau}{\to} \\ k \ \kappa \ \mu & [(n_1 - n_2) @T, \sigma] \ n + 1 @T \end{matrix}} \\ \frac{\phi(n) = Push \ m}{\lvert k \ \kappa \ \mu & [\sigma] \ n @_ & \stackrel{\tau}{\to} \ k \ \kappa \ \mu & [m @T, \sigma] \ n + 1 @T \end{matrix}} \\ \phi(n) = Load \qquad \kappa(p) = m @T_1 \end{split}$		
$ \begin{split} & \iota(n) = Sub \\ & \kappa_i \neq \boxed{sub \mid T_{pc} \mid T_1 \mid T_2 \mid_{-}} = \kappa_j \\ \hline u \ \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} n_1 @ T_1, n_2 @ T_2, \sigma \end{bmatrix} n @ T_{pc} \xrightarrow{\tau} \\ k \ \begin{bmatrix} \kappa_j, \kappa \end{bmatrix} \mu \ \begin{bmatrix} (n_0 T_{pc}, u); n_1 @ T_1, n_2 @ T_2, \sigma \end{bmatrix} 0 @ T \end{split} \end{split} $				
$ \begin{array}{c} \begin{array}{c} u & \kappa & \mu & [n^{i} \mathbf{u}^{T}_{1,\sigma}, \sigma] & \operatorname{naT}_{pc} \rightarrow \\ u & \kappa & \mu & [\sigma] & n^{i} \mathbf{u}^{T}_{rpc} \end{array} \\ u & \kappa & \mu & [\sigma] & n^{i} \mathbf{u}^{T}_{rpc} \end{array} \\ \begin{array}{c} \iota(n) = \operatorname{Bnz} k \\ \kappa & = \underline{\operatorname{bnz}} \underbrace{T_{pc}}_{1,1} \underbrace{T_{1,-}}_{1,rpc} \underbrace{T_{rpc}}_{1,2} \\ \hline u & \kappa & \mu & [m\sigmaT_{1,\sigma}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ u & \kappa & \mu & [\sigma] & n^{i} \operatorname{naT}_{pc} \end{array} \\ \hline \begin{array}{c} \iota(n) = \operatorname{Call} \\ \kappa & = \underline{\operatorname{call}} \underbrace{T_{rpc}}_{1,1} \underbrace{T_{1,-}}_{1,rpc} \underbrace{T_{rpc}}_{1,2} \\ \hline u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ \hline u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ \hline u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ \hline u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] & \operatorname{naT}_{pc} \xrightarrow{\tau} \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] \\ u & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] \\ u & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] \\ u & \kappa & \mu & [n^{i} aT_{1,a}, \sigma] \\ u & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \kappa & \kappa & \mu & [n^{i} aT_{1,c}, \sigma] \\ u & \kappa & \mu & [n$				

User mode (cache hit)	User-to-kernel mode (cache miss)	Kernel mode	
$\begin{split} \iota(n) &= Sub \\ \kappa &= \boxed{sub T_{pc} T_1 T_2 - T_{rpc} T_r } \\ \hline u & \kappa & \mu & [n_1 \mathfrak{a} T_1, n_2 \mathfrak{a} T_2, \sigma] & n \mathfrak{a} T_{pc} & \xrightarrow{\tau} \\ u & \kappa & \mu & [(n_1 - n_2) \mathfrak{a} T_r, \sigma] & n + 1 \mathfrak{a} T_{rpc} \\ \hline u & \kappa & \mu & [(n) = Output \\ \hline \kappa &= \boxed{output T_{pc} T_1 - - T_{rpc} T_r]} \\ \hline u & \kappa & \mu & [m \mathfrak{a} T_1, \sigma] & n \mathfrak{a} T_{pc} & \xrightarrow{m \mathfrak{a} T_r} \end{split}$	$\begin{split} \iota(n) &= \operatorname{Sub}_{\kappa_i \neq [\operatorname{sub} \operatorname{T}_{\mathrm{pc}}]_{-}} [\operatorname{T}_2]_{-} = \kappa_j \\ \hline u \ [\kappa_i, \kappa_o] \ \mu & [n_1 \ \operatorname{T}_1, n_1 \operatorname{oT}_2, \sigma] \ \operatorname{neT}_{\mathrm{pc}} \xrightarrow{\tau} \\ k \ [\kappa_j, \kappa] \ \mu \ [(n \operatorname{oT}_{\mathrm{pc}}, u); n_1 \ \operatorname{T}_1, n_1 \operatorname{oT}_2, \sigma] \ \operatorname{oeT}_{-} \\ \hline \iota(n) &= \operatorname{Output}_{\kappa_i \neq [\operatorname{output} \operatorname{T}_{\mathrm{pc}}]_{-} [-]_{-} = \kappa_j} \\ \hline u \ [\kappa_i, \kappa_o] \ \mu & [n \ \operatorname{nT}_1, \sigma] \ \operatorname{neT}_{\mathrm{pc}} \xrightarrow{\tau} \end{split}$	$\begin{split} \phi(n) &= Sub \\ \hline k \ \kappa \ \mu \ \begin{bmatrix} n_1 @_{-}, n_1 @_{-}, \sigma \end{bmatrix} \ n @_{-} & \xrightarrow{\tau} \\ k \ \kappa \ \mu \ \begin{bmatrix} (n_1 - n_2) @T_{-}, \sigma \end{bmatrix} \ n + 1 @T_{-} \\ \hline \phi(n) &= Push \ m \\ \hline k \ \kappa \ \mu \ \begin{bmatrix} \sigma \end{bmatrix} \ n @_{-} & \xrightarrow{\tau} \ k \ \kappa \ \mu \ \begin{bmatrix} m @T_{-}, \sigma \end{bmatrix} \ n + 1 @T_{-} \\ \phi(n) &= Load \\ \hline \kappa(p) &= m @T_{1} \end{split}$	
$ \begin{array}{c} \iota(n) \\ \kappa_{i} \end{array} \\ \hline \mathbf{u} \ \left[\kappa_{i}, \kappa_{o}\right] \ \mu \\ \mathbf{k} \ \left[\kappa_{j}, \kappa_{-}\right] \ \mu \ \left[\left(\frac{\kappa_{i}}{2}\right)\right] \end{array} \\ \end{array} $	$\begin{split} \iota(n) &= Sub \\ \kappa_i \neq \boxed{sub \mid T_{pc} \mid T_1 \mid T_2 \mid}_{-} = \kappa_j \\ \\ u \mid [\kappa_i, \kappa_o] \mid \mu \qquad [n_1 @ T_1, n_2 @ T_2, \sigma] \mid n @ T_{pc} \xrightarrow{\tau} \\ k \mid [\kappa_j, \kappa_c] \mid \mu \mid (n @ T_{pc}, u); n_1 @ T_1, n_2 @ T_2, \sigma] \mid 0 @ T_c \end{split}$		
$ \begin{array}{c} u \ltimes \mu & [n^{\alpha} \sigma_{1_{1}} \sigma_{1_{1}} \sigma_{1_{1}} \sigma_{1_{1}} \sigma_{1_{1}} \sigma_{1_{1}} \sigma_{1_{1}} \sigma_{1} \sigma_{$			

User mode (cache hit)	User-to-kernel mode (cache miss)	Kernel mode
$\begin{split} \iota(n) &= \operatorname{Sub} \\ \kappa &= \boxed{\operatorname{sub} \operatorname{T}_{pc} \operatorname{T}_1 \operatorname{T}_2 - \operatorname{T}_{rpc} \operatorname{T}_r } \\ \hline u \ \kappa \ \mu \ \begin{bmatrix} n_1 \operatorname{oT}_1, n_2 \operatorname{oT}_2, \sigma \end{bmatrix} \ n \operatorname{oT}_{pc} & \xrightarrow{\tau} \\ u \ \kappa \ \mu \ \begin{bmatrix} (n_1 - n_2) \operatorname{oT}_r, \sigma \end{bmatrix} \ n + 1 \operatorname{oT}_{rpc} \\ \hline \iota(n) &= \operatorname{Output} \\ \kappa &= \boxed{\operatorname{output} \operatorname{T}_{pc} \operatorname{T}_1 - \operatorname{T}_{rpc} \operatorname{T}_r } \\ \hline u \ \kappa \ \mu \ \begin{bmatrix} m \operatorname{oT}_1, \sigma \end{bmatrix} \ n \operatorname{oT}_{pc} & \xrightarrow{m \operatorname{oT}_r} \\ u \ \kappa \ \mu \ \begin{bmatrix} m \operatorname{oT}_1, \sigma \end{bmatrix} \ n \operatorname{oT}_{pc} & \xrightarrow{m \operatorname{oT}_r} \\ u \ \kappa \ \mu \ \begin{bmatrix} m \operatorname{oT}_1, \sigma \end{bmatrix} \ n \operatorname{oT}_{pc} & \xrightarrow{m \operatorname{oT}_r} \\ u \ \kappa \ \mu \ \begin{bmatrix} m \operatorname{oT}_1, \sigma \end{bmatrix} \ n \operatorname{oT}_{pc} & \xrightarrow{m \operatorname{oT}_r} \\ u \ \kappa \ \mu \ \begin{bmatrix} m \operatorname{oT}_1, \sigma \end{bmatrix} \ n \operatorname{oT}_{pc} & \xrightarrow{m \operatorname{oT}_r} \\ u \ \kappa \ \mu \ \begin{bmatrix} m \operatorname{oT}_1, \sigma \end{bmatrix} \ n \operatorname{oT}_{pc} & \xrightarrow{m \operatorname{oT}_r} \\ \end{array} \end{split}$	$\begin{split} \iota(n) &= Sub \\ \kappa_i \neq \boxed{sub T_{pc} T_1 T_2 }_{-} = \kappa_j \\ \hline u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} n_1 eT_1, n_1 eT_2, \sigma \end{bmatrix} n eT_{pc} \xrightarrow{\tau} \\ k \begin{bmatrix} \kappa_j, \kappa_c \end{bmatrix} \mu & \begin{bmatrix} (n eT_{pc}, u); n_1 eT_1, n_1 eT_2, \sigma \end{bmatrix} 0 eT_c \\ \hline \iota(n) &= Output \\ \overbrace{\kappa_i \neq \boxed{output T_{pc} T_1 }_{-} = \kappa_j \\ \hline \overbrace{u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu} & \begin{bmatrix} m eT_1, \sigma \end{bmatrix} \underset{\mu \in \tau}{}_{-} \\ \overbrace{v_i \in \kappa_i, \kappa_i \end{bmatrix} \mu} \begin{bmatrix} m eT_1, \sigma \end{bmatrix} \underset{\mu \in \tau}{}_{-} \\ v \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & [m eT_1, \sigma] \underset{\mu \in \tau}{}_{-} \\ v \begin{bmatrix} \kappa_i, \kappa_i \end{bmatrix} \mu} \end{bmatrix} \end{split}$	$\frac{\phi(n) = Sub}{\begin{matrix} k & \kappa & \mu & [n_1 @, n_1 @, \sigma] & n @ & \xrightarrow{\tau} \\ k & \kappa & \mu & [(n_1 - n_2) @T, \sigma] & n + 1 @T \end{matrix}} \\ \frac{\phi(n) = Push m}{\lvert k & \kappa & \mu & [\sigma] & n @ & \xrightarrow{\tau} & k & \kappa & \mu & [m @T, \sigma] & n + 1 @T \end{matrix}} \\ \frac{\phi(n) = Load}{\lvert k & (p) = m @T_1 \end{matrix}}$
kκμ	$\phi(n) = Sub$ $[n_1@_, n_2@_, \sigma] n$ $[(n_1@_, n_2@_, \sigma] \sigma]$	$l@_{-} \xrightarrow{\tau}$
$\mathbf{k} \mathbf{k} $	$\left[\left(\begin{array}{c} 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$	<i>t</i> +1@1_

User mode (cache hit)	User-to-kernel mode (cache miss)	Kernel mode
$\begin{split} \iota(n) &= \operatorname{Sub} \\ \kappa &= \left[\operatorname{sub} \operatorname{T}_{pc} \operatorname{T}_1 \operatorname{T}_2 - \operatorname{T}_{rpc} \operatorname{T}_r \right] \\ \hline u \ \kappa \ \mu \ \left[n_1 \operatorname{oT}_1, n_2 \operatorname{oT}_2, \sigma \right] \ n \operatorname{oT}_{pc} \xrightarrow{\tau} \\ u \ \kappa \ \mu \ \left[(n_1 - n_2) \operatorname{oT}_r, \sigma \right] \ n + 1 \operatorname{oT}_{rpc} \\ \hline \iota(n) &= \operatorname{Output} \\ \kappa &= \left[\operatorname{Output} \operatorname{T}_{pc} \operatorname{T}_1 - \cdot \operatorname{T}_{rpc} \operatorname{T}_r \right] \\ \hline u \ \kappa \ \mu \ \left[\operatorname{moT}_1, \sigma \right] \ n \operatorname{oT}_{pc} \xrightarrow{\operatorname{mOT}_r} \\ \operatorname{u} \ \kappa \ \mu \ \left[m \operatorname{oT}_1, \sigma \right] \ n \operatorname{oT}_{rpc} \\ \operatorname{u} \ \kappa \ \mu \ \left[\sigma \right] \ n + 1 \operatorname{oT}_{rpc} \end{split}$	$\begin{split} \iota(n) &= Sub\\ \kappa_i \neq \underbrace{sub \mid T_{pc} \mid T_1 \mid T_2 \mid}_{=} = \kappa_j \\ \hline u \mid \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} n_1 oT_1, n_1 oT_2, \sigma \end{bmatrix} n oT_{pc} \xrightarrow{\tau} \\ k \mid \begin{bmatrix} \kappa_j, \kappa_c \end{bmatrix} \mu & \begin{bmatrix} (n oT_{pc}, u); n_1 oT_1, n_1 oT_2, \sigma \end{bmatrix} 0 oT_c \\ \hline \iota(n) &= Output \\ \kappa_i \neq \underbrace{output \mid T_{pc} \mid T_1 \mid}_{=} = \kappa_j \\ \hline u \mid \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} m oT_1, \sigma \end{bmatrix} output_{pc} \xrightarrow{\tau} \\ \mu \mid (n oT_{pc}, u); m oT_1, \sigma \end{bmatrix} output_{pc} \xrightarrow{\tau} \\ \hline v \mid \kappa_i, \kappa_i \end{bmatrix} \mu = \underbrace{output \mid T_{pc} \mid T_1 \mid}_{=} = \kappa_j \\ \hline u \mid \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & [m oT_1, \sigma] output_{pc} \xrightarrow{\tau} \\ \kappa \mid \kappa_i, \kappa_i \end{bmatrix} \mu = \underbrace{output \mid T_{pc} \mid T_1 \mid}_{=} \\ \hline output \mid v \mid output_{pc} \mid v \in Output_{pc} \end{bmatrix} \end{split}$	$ \begin{split} \frac{\phi(n) = Sub}{\begin{matrix} k \ \kappa \ \mu & [n_1 @_, n_1 @_, \sigma] \ n @_, & \stackrel{\tau}{\rightarrow} \\ k \ \kappa \ \mu & [(n_1 - n_2) @T, \sigma] \ n + 1 @T \end{matrix} \\ \hline \\ \frac{\phi(n) = Push \ m}{\scriptsize k \ \kappa \ \mu & [\sigma] \ n @_, & \stackrel{\tau}{\rightarrow} \ k \ \kappa \ \mu & [m @T, \sigma] \ n + 1 @T \end{matrix} \\ \hline \\ \frac{\phi(n) = Load}{\scriptsize k \ (p) = m @T_1} \end{split} $
k κ μ k κ μ [($\phi(n) = Sub$ $[n_1@_, n_2@_, \sigma]$ n_1 $[n_1 - n_2)@T_, \sigma]$ η	$n = \frac{\tau}{\rightarrow}$ $n + 1 = T_{-}$
$\begin{split} \iota(n) &= \operatorname{Bnz} k \\ \kappa &= \left[\operatorname{bnz} \operatorname{T_{pc}} \operatorname{T_{1}} \operatorname{-} \operatorname{-} \operatorname{ } \operatorname{T_{rpc}} \operatorname{-} \operatorname{-} \right] \\ n' &= n + (m = 0)?1: k \\ \hline u & \kappa & \mu & [m \circ T_{1}, \sigma] & n \circ T_{pc} & \xrightarrow{\tau} \\ u & \kappa & \mu & [\sigma] & n' \circ T_{rpc} \\ \hline \iota(n) &= \operatorname{Call} \\ \kappa &= \left[\operatorname{call} \operatorname{ } \operatorname{T_{pc}} \operatorname{ } \operatorname{T_{1}} \operatorname{-} \operatorname{-} \operatorname{ } \operatorname{T_{rpc}} \operatorname{ } \operatorname{T_{r}} \right] \\ \hline u & \kappa & \mu & [n' \circ T_{1}, a, \sigma] & n \circ T_{pc} & \xrightarrow{\tau} \\ u & \kappa & \mu & [a, (n + 1 \circ T_{r}, u); \sigma] & n' \circ T_{rpc} \\ \hline \iota(n) &= \operatorname{Ret} \\ \kappa &= \left[\operatorname{ret} \operatorname{ } \operatorname{T_{pc}} \operatorname{ } \operatorname{T_{1}} \operatorname{-} \operatorname{-} \operatorname{ } \operatorname{T_{rpc}} \operatorname{-} \operatorname{-} \right] \\ u & \kappa & \mu & [(n' \circ T_{1}, u); \sigma] & n \circ T_{pc} & \xrightarrow{\tau} \\ u & \kappa & \mu & [\sigma] & n' \circ T_{rpc} \\ \end{array}$	$ \begin{array}{c} \kappa \left[\kappa_{j},\kappa_{\cdot}\right] \ \mu \left[\left(n \circ T_{pc}, 0\right); n^{\cdot} \circ T_{1}, \sigma\right] \ 0 \circ T_{\cdot} \\ \\ \hline \\ \frac{\iota(n) = \operatorname{Bnz} k}{\kappa_{i} \neq \left[\operatorname{bnz} \left[T_{pc} \right] T_{1} \right]_{-} \right]_{-} = \kappa_{j}} \\ \hline \\ \frac{u \left[\kappa_{i}, \kappa_{o}\right] \ \mu \qquad \left[\operatorname{moT}_{1}, \sigma\right] \ n \circ T_{pc} \xrightarrow{\tau} \\ \kappa_{i} \neq \left[\operatorname{call} \left[T_{pc} \right] T_{1} \right]_{-} \right]_{-} = \kappa_{j} \\ \hline \\ \frac{\iota(n) = \operatorname{Call}}{\kappa_{i} \neq \left[\operatorname{call} \left[T_{pc} \right] T_{1} \right]_{-} \right]_{-} = \kappa_{j}} \\ \hline \\ \frac{\iota(n) = \operatorname{Call}}{u \left[\kappa_{i}, \kappa_{o}\right] \ \mu \qquad \left[\operatorname{n'} \circ T_{1}, a, \sigma\right] \ n \circ T_{pc} \xrightarrow{\tau} \\ \kappa_{i} \neq \left[\operatorname{call} \left[T_{pc} \right] T_{1} \right]_{-} \right]_{-} = \kappa_{j} \\ \hline \\ \frac{\iota(n) = \operatorname{Ret}}{\kappa_{i} \neq \left[\operatorname{ret} \left[T_{pc} \right] T_{1} \right]_{-} \right]_{-} = \kappa_{j}} \\ \hline \\ \hline \\ \frac{u \left[\kappa_{i}, \kappa_{o}\right] \ \mu \qquad \left[\left(\operatorname{noT}_{pc}, \mathbf{u}\right); \left(\operatorname{n'} \circ T_{1}, \pi\right); \sigma\right] \ \operatorname{noT}_{pc} \xrightarrow{\tau} \\ \kappa_{i} \neq \left[\kappa_{i}, \kappa_{o} \right] \ \mu \qquad \left[\left(\operatorname{noT}_{pc}, \mathbf{u}\right); \left(\operatorname{n'} \circ T_{1}, \pi\right); \sigma\right] \ \operatorname{noT}_{pc} \xrightarrow{\tau} \\ \end{array} \right] \end{array} $	25

Fault Handler

opcode	allow	erpc	e_r
sub	TRUE	LABpc	$LAB_1 \sqcup LAB_2$
output	TRUE	LABpc	$LAB_1 \sqcup LAB_{pc}$
push	TRUE	LABpc	BOT
load	TRUE	LABpc	$LAB_1 \sqcup LAB_2$
store	$LAB_1 \sqcup LAB_{pc} \sqsubseteq LAB_3$	LABpc	LAB1 LAB2 L LABpc
jump	TRUE	LAB1 LABpc	
bnz	TRUE	LAB1 LABpc	
call	TRUE	LAB1 LABpc	LABpc
ret	TRUE	LAB ₁	

IFC RULE TABLE	
	RULE
	Fault Handler

- IFC rule table entries form a small DSL for computing labels and booleans
 - parameterized over lattice \bot , \sqcup and \sqsubseteq

- IFC rule table entries form a small DSL for computing labels and booleans
 - parameterized over lattice \bot , \sqcup and \sqsubseteq
- The handler is constructed by compiling the DSL into concrete machine instructions

- IFC rule table entries form a small DSL for computing labels and booleans
 - parameterized over lattice \bot , \sqcup and \sqsubseteq
- The handler is constructed by compiling the DSL into concrete machine instructions
- Need to encode abstract label lattice into integer tags
 Tag: Label→Int Lab: Int→Label
 genBot, genJoin, genFlows : code sequence computing on integers

- IFC rule table entries form a small DSL for computing labels and booleans
 - parameterized over lattice \bot, \sqcup and \sqsubseteq
- The handler is constructed by compiling the DSL into concrete machine instructions
- Need to encode abstract label lattice into integer tags
 Tag: Label→Int Lab: Int→Label
 genBot, genJoin, genFlows : code sequence computing on integers
- We use structured code generators to simplify verification

genFaultHandler $\mathcal{R} = \text{genComputeResults } \mathcal{R} + +$ genStoreResults ++genIf [Ret] [Push (-1); Jump] genComputeResults $\mathcal{R} =$ genIndexedCases genMatchOp (genApplyRule $\circ Rule_{\mathcal{R}}$) opcodes genMatchOp op =Match opcode [Push op] ++ genLoadFrom addrOpLabel ++ genEqualgenEqual = [Sub] ++ genNotgenApplyRule $\langle allow, e_{rpc}, e_r \rangle = genBool \ allow ++$ Compute results of rule genIf (genSome (genELab e_{rpc} ++ genELab e_r)) genNone genELab BOT = genBot = genLoadFrom addrTag_i LAB_i $LE_1 \sqcup LE_2 = \text{genELab} LE_2 ++ \text{genELab} LE_1 ++ \text{genJoin}$ genBool TRUE = genTrue $LE_1 \sqsubset LE_2 = \text{genELab} LE_2 + \text{genELab} LE_1 + \text{genFlows}$ Update the cache genStoreResults =genIf (genStoreAt addrTag_r ++ genStoreAt addrTag_{rnc} ++ genTrue) genFalse genFalse [Push 0] =genTrue = [Push 1] genIf [] (genPop ++ genFalse) genAnd = = genIf (genPop ++ genTrue) [] genOr genNot genIf genFalse genTrue = = genNot ++ genOr genImpl genSome c = c + genTruegenNone = genFalse genIndexedCases genDefault genGuard genBody = gwhere q nil = qenDefaultg(n::ns) = genGuard n + genlf(genBody n)(g ns)= genSkiplf (length f') ++ f' ++ tgenlf t fwhere f' = f + genSkip(length t)genTrue ++ genSkiplf ngenSkip n= $[\operatorname{Bnz}(n+1)]$ genSkiplf n= genStoreAt p= [Push p; Store] genLoadFrom p[Push p; Load] = genPop [Bnz 1] =

genComputeResults $\mathcal{R} =$ genIndexedCases genMatchOp (genApplyRule $\circ Rule_{\mathcal{R}}$) opcodes

genFaultHandler $\mathcal{R} = \text{genComputeResults } \mathcal{R} + +$ genStoreResults ++genIf [Ret] [Push (-1); Jump] genComputeResults $\mathcal{R} =$ genIndexedCases genMatchOp (genApplyRule $\circ Rule_{\mathcal{R}}$) opcodes genMatchOp op =Match opcode [Push op] ++ genLoadFrom addrOpLabel ++ genEqualgenEqual = [Sub] ++ genNotgenApplyRule $\langle allow, e_{rpc}, e_r \rangle = genBool \ allow ++$ Compute results of rule genIf (genSome (genELab e_{rpc} ++ genELab e_r)) genNone genELab BOT = genBot = genLoadFrom addrTag_i LAB_i $LE_1 \sqcup LE_2 = \text{genELab} LE_2 ++ \text{genELab} LE_1 ++ \text{genJoin}$ genBool TRUE = genTrue $LE_1 \sqsubset LE_2 = \text{genELab} LE_2 + \text{genELab} LE_1 + \text{genFlows}$ Update the cache genStoreResults =genIf (genStoreAt addrTag_r ++ genStoreAt addrTag_{rnc} ++ genTrue) genFalse genFalse [Push 0] =genTrue = [Push 1] genIf [] (genPop ++ genFalse) genAnd = = genIf (genPop ++ genTrue) [] genOr genNot genIf genFalse genTrue = = genNot ++ genOr genImpl genSome c = c + genTruegenNone = genFalse genIndexedCases genDefault genGuard genBody = gwhere q nil = qenDefaultg(n::ns) = genGuard n + genlf(genBody n)(g ns)= genSkiplf (length f') ++ f' ++ tgenlf t fwhere f' = f + genSkip(length t)genTrue ++ genSkiplf ngenSkip n= $[\operatorname{Bnz}(n+1)]$ genSkiplf n= genStoreAt p= [Push p; Store] genLoadFrom p[Push p; Load] = genPop [Bnz 1] =

Handler Correctness

Lemma 7.1 (Fault handler correctness, allowed case). Suppose that $\vdash_{\mathcal{R}} (L_{pc}, \ell_1, \ell_2, \ell_3) \rightsquigarrow_{opcode} L_{rpc}, L_r$ and

$$\kappa_{i} = \boxed{pcode | \operatorname{Tag}(L_{pc}) | \operatorname{Tag}(\ell_{1}) | \operatorname{Tag}(\ell_{2}) | \operatorname{Tag}(\ell_{3})}$$

Then $\phi_{\mathcal{R}} \vdash \langle \mathsf{k} [\kappa_{i}, \kappa_{o}] \mu [(pc, \mathsf{u}); \sigma] \ 0 @ \mathsf{T}_{\mathcal{A}} \rightarrow^{\star}_{\mathsf{k}}$
 $\langle \mathsf{u} [\kappa_{i}, \kappa_{o}'] \mu [\sigma] \qquad pc \rangle$
with output cache $\kappa_{o}' = \boxed{\operatorname{Tag}(L_{rpc}) | \operatorname{Tag}(L_{r})}.$

and similarly for disallowed case

$$\begin{array}{l} \{P\} \ c \ \{Q\} \triangleq \\ c = \phi(n), \dots, \phi(n'-1) \land P(\kappa, \sigma) \Longrightarrow \\ \exists \ \kappa' \ \sigma'. \quad Q(\kappa', \sigma') \\ \land \phi \vdash \langle \mathsf{k} \ \kappa \ \mu \ [\sigma] \ n @\mathsf{T}_{} \rangle \rightarrow^{\star}_{\mathsf{k}} \langle \mathsf{k} \ \kappa' \ \mu \ [\sigma'] \ n' @\mathsf{T}_{} \rangle \end{array}$$

• Based on custom Hoare logic

$$\begin{array}{l} \{P\} \ c \ \{Q\} \triangleq \\ c = \phi(n), \dots, \phi(n'-1) \land P(\kappa, \sigma) \Longrightarrow \\ \exists \ \kappa' \ \sigma'. \quad Q(\kappa', \sigma') \\ \land \phi \vdash \langle \mathsf{k} \ \kappa \ \mu \ [\sigma] \ n @\mathsf{T}_{} \rangle \rightarrow^{\star}_{\mathsf{k}} \langle \mathsf{k} \ \kappa' \ \mu \ [\sigma'] \ n' @\mathsf{T}_{} \rangle \end{array}$$

• Only apply to self-contained code that "falls off end"

$$\begin{array}{l} \{P\} \ c \ \{Q\} \triangleq \\ c = \phi(n), \dots, \phi(n'-1) \land P(\kappa, \sigma) \Longrightarrow \\ \exists \ \kappa' \ \sigma'. \quad Q(\kappa', \sigma') \\ \land \phi \vdash \langle \mathsf{k} \ \kappa \ \mu \ [\sigma] \ n @\mathsf{T}_{} \rangle \rightarrow^{\star}_{\mathsf{k}} \langle \mathsf{k} \ \kappa' \ \mu \ [\sigma'] \ n' @\mathsf{T}_{} \rangle \end{array}$$

- Only apply to self-contained code that "falls off end"
 - Usual composition law holds

$$\begin{array}{l} \{P\} \ c \ \{Q\} \triangleq \\ c = \phi(n), \dots, \phi(n'-1) \land P(\kappa, \sigma) \Longrightarrow \\ \exists \ \kappa' \ \sigma'. \quad Q(\kappa', \sigma') \\ \land \phi \vdash \langle \mathsf{k} \ \kappa \ \mu \ [\sigma] \ n @\mathsf{T}_{} \rangle \rightarrow^{\star}_{\mathsf{k}} \langle \mathsf{k} \ \kappa' \ \mu \ [\sigma'] \ n' @\mathsf{T}_{} \rangle \end{array}$$

- Only apply to self-contained code that "falls off end"
 - Usual composition law holds
 - We use different form of triple to describe "escaping" code

$$\begin{array}{l} \{P\} \ c \ \{Q\} \triangleq \\ c = \phi(n), \dots, \phi(n'-1) \land P(\kappa, \sigma) \Longrightarrow \\ \exists \ \kappa' \ \sigma'. \quad Q(\kappa', \sigma') \\ \land \phi \vdash \langle \mathsf{k} \ \kappa \ \mu \ [\sigma] \ n @\mathsf{T}_{} \rangle \rightarrow^{\star}_{\mathsf{k}} \langle \mathsf{k} \ \kappa' \ \mu \ [\sigma'] \ n' @\mathsf{T}_{} \rangle \end{array}$$

- Only apply to self-contained code that "falls off end"
 - Usual composition law holds
 - We use different form of triple to describe "escaping" code
- Imply total correctness, because deterministic

Proof style

• Triples for each instruction, each generator, e.g.

 $P(\kappa, \sigma) := \exists n_1 \operatorname{T}_1 n_2 \operatorname{T}_2 \sigma'. \quad \sigma = n_1 @\operatorname{T}_1, n_2 @\operatorname{T}_2, \sigma' \\ \wedge Q(\kappa, ((n_1 + n_2) @\operatorname{T}_-, \sigma')) \\ \{P\} [\mathsf{Add}] \{Q\}$

Proof style

• Triples for each instruction, each generator, e.g.

$$P(\kappa, \sigma) := \exists n_1 \operatorname{T}_1 n_2 \operatorname{T}_2 \sigma'. \quad \sigma = n_1 \operatorname{@T}_1, n_2 \operatorname{@T}_2, \sigma' \\ \land Q(\kappa, ((n_1+n_2) \operatorname{@T}_-, \sigma')) \\ \{P\} \ [\mathsf{Add}] \ \{Q\} \\ P(\kappa, \sigma) := \exists n \operatorname{T} \sigma'. \ \sigma = n \operatorname{@T}, \sigma' \land (n \neq 0 \Longrightarrow P_1(\kappa, \sigma')) \\ \land (n = 0 \Longrightarrow P_2(\kappa, \sigma')) \\ \land (n = 0 \Longrightarrow P_2(\kappa, \sigma')) \\ \{P_1\} \ c_1 \ \{Q\} \qquad \{P_2\} \ c_2 \ \{Q\} \\ \{P\} \ \mathsf{genlf} \ c_1 \ c_2 \ \{Q\} \end{cases}$$
Proof style

• Triples for each instruction, each generator, e.g.

$$P(\kappa, \sigma) := \exists n_1 \operatorname{T}_1 n_2 \operatorname{T}_2 \sigma'. \quad \sigma = n_1 \operatorname{@T}_1, n_2 \operatorname{@T}_2, \sigma' \\ \land Q(\kappa, ((n_1+n_2) \operatorname{@T}_-, \sigma')) \\ \{P\} \ [\mathsf{Add}] \ \{Q\} \\ P(\kappa, \sigma) := \exists n \operatorname{T} \sigma'. \ \sigma = n \operatorname{@T}, \sigma' \land (n \neq 0 \Longrightarrow P_1(\kappa, \sigma')) \\ \land (n = 0 \Longrightarrow P_2(\kappa, \sigma')) \\ \land (n = 0 \Longrightarrow P_2(\kappa, \sigma')) \\ \{P_1\} \ c_1 \ \{Q\} \qquad \{P_2\} \ c_2 \ \{Q\} \\ \{P\} \ \mathsf{genlf} \ c_1 \ c_2 \ \{Q\} \end{cases}$$

Triples for concrete lattice operations (genBot, genJoin, genFlows)

Proof style

• Triples for each instruction, each generator, e.g.

$$P(\kappa, \sigma) := \exists n_1 \operatorname{T}_1 n_2 \operatorname{T}_2 \sigma'. \quad \sigma = n_1 \operatorname{@T}_1, n_2 \operatorname{@T}_2, \sigma' \\ \land Q(\kappa, ((n_1+n_2) \operatorname{@T}_-, \sigma')) \\ \{P\} \ [\mathsf{Add}] \ \{Q\} \\ P(\kappa, \sigma) := \exists n \operatorname{T} \sigma'. \ \sigma = n \operatorname{@T}, \sigma' \land (n \neq 0 \Longrightarrow P_1(\kappa, \sigma')) \\ \land (n = 0 \Longrightarrow P_2(\kappa, \sigma')) \\ \land (n = 0 \Longrightarrow P_2(\kappa, \sigma')) \\ \{P_1\} \ c_1 \ \{Q\} \qquad \{P_2\} \ c_2 \ \{Q\} \\ \{P\} \ \mathsf{genlf} \ c_1 \ c_2 \ \{Q\} \end{cases}$$

- Triples for concrete lattice operations (genBot, genJoin, genFlows)
- WP style helps automate proofs (straight-line code)

Non-interference for concrete machine

- Running this <u>particular</u> fault handler
- Together with <u>arbitrary</u> user code

Points to note

Points to note

- Refinement framework very useful for reasoning
 - start with concrete object
 - propose abstracted version
 - incorporate convenient structure and annotations
 - prove refinement
 - prove interesting property of abstract object
 - automatically follows for concrete object

Points to note

- Refinement framework very useful for reasoning
 - start with concrete object
 - propose abstracted version
 - incorporate convenient structure and annotations
 - prove refinement
 - prove interesting property of abstract object
 - automatically follows for concrete object
- Need a generic notion of noninterference that makes sense for all machines
 - Includes a notion of abstracting concrete tags (and associated memory states) into labels

Not presented here : richer IFC tag model

Not presented here : richer IFC tag model

• Sets of statically known principals

Not presented here : richer IFC tag model

- Sets of statically known principals
- Memory allocation, and tags are pointers to data structures dynamically allocated in kernel memory

Not presented here : richer IFC tag model

- Sets of statically known principals
- Memory allocation, and tags are pointers to data structures dynamically allocated in kernel memory

- SAFE architecture is quite generic
 - Can be used to implement a range of IFC label models just by varying the rule table [Montagu CSF '13]

Not presented here : richer IFC tag model

- Sets of statically known principals
- Memory allocation, and tags are pointers to data structures dynamically allocated in kernel memory

- SAFE architecture is quite generic
 - Can be used to implement a range of IFC label models just by varying the rule table [Montagu CSF '13]
- Other potential uses
 - access control (clearance), memory protection, linearity, dynamic typing

Machine state

opcode	allow	erpc	er	
sub	TRUE	LABpc	$LAB_1 \sqcup LAB_2$	
output	TRUE	LABpc	LAB1 LABpc	
push	TRUE	LABpc	BOT	
load	TRUE	LABpc	LAB1 LAB2	
store	$LAB_1 \sqcup LAB_{pc} \sqsubseteq LAB_3$	LABpc	LAB1 LAB2 LABpc	
jump	TRUE	LAB1 LABpc		
bnz	TRUE	LAB1 LABpc		
call	TRUE	LAB1 LABpc	LABpc	
ret	TRUE	LAB1		

Output

Thank you!

Questions??

		$\iota(n) = Sub$		
μ	$[n_1 \\ [(n_1 - n_2)]$	$aL_1, n_2aL_2)a(L_1 \lor L_2)a(L_1 \lor L_2)a($	L_{2}, σ no n_{2}, σ n n_{2}, σ n n_{2}	$10L_{pc} \xrightarrow{\tau} 10L_{pc}$
		$\iota(n) = 0$	Output	
μ [mo	$[L_1,\sigma]$ no	L_{pc} - max	$\xrightarrow{L_1 \vee L_{pc}}$	$\mu [\sigma] n + 1 a L_{pc}$
		$\iota(n) = F$	Push m	
P	$[\sigma] n a L_{i}$	$_{\rm pc} \xrightarrow{\tau} \mu [$	$ma \perp, \sigma]$	$n+1aL_{pc}$
	$\iota(n) =$	Load	$\mu(p) =$	maL_2
μ [pol	$[1,\sigma]$ neL	$p_{pc} \xrightarrow{\tau} \mu$	$[maL_1 \vee$	L_2, σ] $n+1@L_{pc}$
$\iota(n) =$ $\mu(p) \in$	Store (maL1)	$\mu(p) = \\ \vee L_2 \vee L_{pc})$	$k a L_3 = \mu'$	$L_1 \lor L_{pc} \le L_3$
$\mu [po$	$L_1, m \circ L_2$	$[2,\sigma]$ neL	$_{\rm pc} \xrightarrow{\tau} \mu$	$\sigma [\sigma] n + 1 a L_{pc}$
		$\iota(n) =$	Jump	
μ[1	$n' a L_1, \sigma]$	$n a L_{pc} - \frac{\tau}{2}$	+ μ [σ] 1	$n'a(L_1 \vee L_{pc})$