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• Hardware types (“atomic groups”)
• instruction ≠ integer ≠ pointer

• Hardware tagging 
• atom = payload + atomic group + 

software-defined tag

• Hardware rule cache: tag propagation 
with every machine step
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This talk: formalizing SAFE’s hardware tags 
for information flow control

• Abstraction supported by HW tags

4

• labels over a IFC lattice

• dynamic non-interference

• (hardware + TMU manager) ≈ abstract machine

• deterministic, single-threaded, stack machine

• no downgrading, public labels, dynamic principal generation, ...

• no exception handling (security violation halts the machine)

• single-line rule cache

• We formally state and verify these properties

• Simplifications
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Symbolic IFC Rule Machine

• Alternative presentation of abstract machine
• Same machine states 

• Same step relation

• IFC side conditions factored out into a 
separate, explicit rule table
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expressions (genELab) and boolean-valued expressions (genBool).
These functions are (implicitly) parameterized by the definitions of
lattice-specific generators genBot, genJoin, and genFlows. To im-
plement these generators for a particular lattice, we first need to
choose how to represent abstract labels as integer tags, and then de-
termine a sequence of instructions that encodes each operation. We
call such an encoding scheme a concrete lattice. For example, the
abstract labels in the two-point lattice can be encoded like booleans,
representing ? by 0, > by non-0, and instantiating genBot, genJoin,
and genFlows with code for computing false, disjunction, and im-
plication, respectively. A simple concrete lattice like this can be for-
malized as a tuple CL = (Tag, Lab, genBot, genJoin, genFlows),
where the encoding and decoding functions Lab and Tag satisfy
Lab �Tag = id; to streamline the exposition, we assume this form
of concrete lattice for most of the paper. The more realistic encod-
ing in §11 will require a more complex treatment.

To raise the level of abstraction of the handler code, we make
heavy use of structured code generators; this makes it easier both
to understand the code and to prove it correct using a custom
Hoare logic that follows the structure of the generators (see §7).
As a typical example, the genIf function takes two code sequences,
representing the “then” and “else” branches of a conditional, and
generates code to test the top of the stack and dispatch control
appropriately.

genIf t f = genSkipIf (length f 0) ++ f 0
++ t

where f 0 = f ++ genSkip(length t)
genSkip n = genTrue ++ genSkipIf n
genSkipIf n = [Bnz (n+1)]

7. Correctness of the Fault Handler Generator
We now turn our attention to verification, beginning with the fault
handler. We must show that the generated fault handler emulates the
IFC enforcement judgment `R (Lpc, `1, `2, `3) ;

opcode

Lrpc, Lr

of the symbolic rule machine. The statement and proof of correct-
ness are parametric over the symbolic IFC rule table R and con-
crete lattice (and hence over correctness lemmas for the lattice op-
erations). (The rule table defined in Fig. 4 is only used to instantiate
the symbolic rule machine.)

Correctness statement Let R be an arbitrary rule table and �R ,
genFaultHandler R be the corresponding generated fault handler.
We specify how �R behaves as a whole—as a relation between
initial state on entry and final state on completion—using the rela-
tion � ` cs1 !

?
k cs2, defined as the reflexive transitive closure of

the concrete step relation, with the constraints that the fault handler
code is � and all intermediate states (i.e., strictly preceding cs2)
have privilege bit k.

The correctness statement is captured by the following two
lemmas. Intuitively, if the symbolic IFC enforcement judgment
allows some given user instruction, then executing �R (stored
at kernel mode location 0) updates the cache to contain the tag
encoding of the appropriate result labels and returns to user-mode;
otherwise, �R halts the machine (pc = -1).

Lemma 7.1 (Fault handler correctness, allowed case). Suppose
that `R (Lpc, `1, `2, `3) ;

opcode

Lrpc, Lr and

i = opcode Tag(Lpc) Tag(`1) Tag(`2) Tag(`3) .

Then �R ` hk [i,o] µ [(pc, u);�] 0@T i !

?
k

hu [i,
0
o] µ [�] pci

with output cache 0
o = Tag(Lrpc) Tag(Lr) .

Lemma 7.2 (Fault handler correctness, disallowed case). Suppose
that `R (Lpc, `1, `2, `3) 6;opcode, and

i = opcode Tag(Lpc) Tag(`1) Tag(`2) Tag(`3) .

genFaultHandler R = genComputeResults R ++

genStoreResults ++

genIf [Ret] [Push (-1); Jump]

genComputeResults R =
genIndexedCases genMatchOp (genApplyRule � RuleR) opcodes

genMatchOp op =
[Push op] ++ genLoadFrom addrOpLabel ++ genEqual

genEqual = [Sub] ++ genNot

genApplyRule hallow , erpc, eri = genBool allow ++

genIf (genSome (genELab erpc ++ genELab er)) genNone

genELab BOT = genBot
LABi = genLoadFrom addrTagi
LE1 t LE2 = genELab LE2 ++ genELab LE1 ++ genJoin

genBool TRUE = genTrue
LE1 v LE2 = genELab LE2 ++ genELab LE1 ++ genFlows

genStoreResults =
genIf (genStoreAt addrTagr ++ genStoreAt addrTagrpc ++ genTrue)

genFalse

genFalse = [Push 0]
genTrue = [Push 1]
genAnd = genIf [ ] (genPop ++ genFalse)
genOr = genIf (genPop ++ genTrue) [ ]
genNot = genIf genFalse genTrue
genImpl = genNot ++ genOr
genSome c = c ++ genTrue
genNone = genFalse

genIndexedCases genDefault genGuard genBody = g

where g nil = genDefault

g (n :: ns) = genGuard n ++ genIf (genBody n) (g ns)

genIf t f = genSkipIf (length f

0) ++ f

0 ++ t

where f

0 = f ++ genSkip(length t)
genSkip n = genTrue ++ genSkipIf n
genSkipIf n = [Bnz (n+1)]
genStoreAt p = [Push p; Store]
genLoadFrom p = [Push p; Load]
genPop = [Bnz 1]

opcodes = add :: output :: . . . :: ret :: nil

Figure 9. Generation of fault handler from IFC rule table.

Then, for some final stack �0,

�R ` hk [i,o] µ [(pc, u);�] 0@T i !

?
k

hk [i,o] µ [�0] -1@T i.

Proof methodology The fault handler is simple enough that a to-
tal structured language, with a few local control flow primitives,
global memory, and stack, but without subroutines or local vari-
ables, is enough. The fault handler is compiled by composing gen-
erators (Fig. 9); accordingly, the proofs of these two lemmas reduce
to correctness proofs for the generators. To specify the generators
themselves, we employ a custom Hoare logic comprising two no-
tions of Hoare triple.

The generated code mostly consists of self-contained instruction
sequences that terminate by “falling off the end”—i.e., that never
return or jumps outside themselves, although the may contain in-
ternal jumps (e.g., to implement conditionals). The only exception
is the final step of the handler (third line of genFaultHandler in
Fig. 9). We therefore define a standard Hoare triple {P} c {Q},
suitable for reasoning about self-contained code, and use it for the

Draft 8 2013/7/12

Match opcode

Update the cache

Compute results of rule



28

expressions (genELab) and boolean-valued expressions (genBool).
These functions are (implicitly) parameterized by the definitions of
lattice-specific generators genBot, genJoin, and genFlows. To im-
plement these generators for a particular lattice, we first need to
choose how to represent abstract labels as integer tags, and then de-
termine a sequence of instructions that encodes each operation. We
call such an encoding scheme a concrete lattice. For example, the
abstract labels in the two-point lattice can be encoded like booleans,
representing ? by 0, > by non-0, and instantiating genBot, genJoin,
and genFlows with code for computing false, disjunction, and im-
plication, respectively. A simple concrete lattice like this can be for-
malized as a tuple CL = (Tag, Lab, genBot, genJoin, genFlows),
where the encoding and decoding functions Lab and Tag satisfy
Lab �Tag = id; to streamline the exposition, we assume this form
of concrete lattice for most of the paper. The more realistic encod-
ing in §11 will require a more complex treatment.

To raise the level of abstraction of the handler code, we make
heavy use of structured code generators; this makes it easier both
to understand the code and to prove it correct using a custom
Hoare logic that follows the structure of the generators (see §7).
As a typical example, the genIf function takes two code sequences,
representing the “then” and “else” branches of a conditional, and
generates code to test the top of the stack and dispatch control
appropriately.

genIf t f = genSkipIf (length f 0) ++ f 0
++ t

where f 0 = f ++ genSkip(length t)
genSkip n = genTrue ++ genSkipIf n
genSkipIf n = [Bnz (n+1)]

7. Correctness of the Fault Handler Generator
We now turn our attention to verification, beginning with the fault
handler. We must show that the generated fault handler emulates the
IFC enforcement judgment `R (Lpc, `1, `2, `3) ;

opcode

Lrpc, Lr

of the symbolic rule machine. The statement and proof of correct-
ness are parametric over the symbolic IFC rule table R and con-
crete lattice (and hence over correctness lemmas for the lattice op-
erations). (The rule table defined in Fig. 4 is only used to instantiate
the symbolic rule machine.)

Correctness statement Let R be an arbitrary rule table and �R ,
genFaultHandler R be the corresponding generated fault handler.
We specify how �R behaves as a whole—as a relation between
initial state on entry and final state on completion—using the rela-
tion � ` cs1 !

?
k cs2, defined as the reflexive transitive closure of

the concrete step relation, with the constraints that the fault handler
code is � and all intermediate states (i.e., strictly preceding cs2)
have privilege bit k.

The correctness statement is captured by the following two
lemmas. Intuitively, if the symbolic IFC enforcement judgment
allows some given user instruction, then executing �R (stored
at kernel mode location 0) updates the cache to contain the tag
encoding of the appropriate result labels and returns to user-mode;
otherwise, �R halts the machine (pc = -1).

Lemma 7.1 (Fault handler correctness, allowed case). Suppose
that `R (Lpc, `1, `2, `3) ;

opcode

Lrpc, Lr and

i = opcode Tag(Lpc) Tag(`1) Tag(`2) Tag(`3) .

Then �R ` hk [i,o] µ [(pc, u);�] 0@T i !

?
k

hu [i,
0
o] µ [�] pci

with output cache 0
o = Tag(Lrpc) Tag(Lr) .

Lemma 7.2 (Fault handler correctness, disallowed case). Suppose
that `R (Lpc, `1, `2, `3) 6;opcode, and

i = opcode Tag(Lpc) Tag(`1) Tag(`2) Tag(`3) .

genFaultHandler R = genComputeResults R ++

genStoreResults ++

genIf [Ret] [Push (-1); Jump]

genComputeResults R =
genIndexedCases genMatchOp (genApplyRule � RuleR) opcodes

genMatchOp op =
[Push op] ++ genLoadFrom addrOpLabel ++ genEqual

genEqual = [Sub] ++ genNot

genApplyRule hallow , erpc, eri = genBool allow ++

genIf (genSome (genELab erpc ++ genELab er)) genNone

genELab BOT = genBot
LABi = genLoadFrom addrTagi
LE1 t LE2 = genELab LE2 ++ genELab LE1 ++ genJoin

genBool TRUE = genTrue
LE1 v LE2 = genELab LE2 ++ genELab LE1 ++ genFlows

genStoreResults =
genIf (genStoreAt addrTagr ++ genStoreAt addrTagrpc ++ genTrue)

genFalse

genFalse = [Push 0]
genTrue = [Push 1]
genAnd = genIf [ ] (genPop ++ genFalse)
genOr = genIf (genPop ++ genTrue) [ ]
genNot = genIf genFalse genTrue
genImpl = genNot ++ genOr
genSome c = c ++ genTrue
genNone = genFalse

genIndexedCases genDefault genGuard genBody = g

where g nil = genDefault

g (n :: ns) = genGuard n ++ genIf (genBody n) (g ns)

genIf t f = genSkipIf (length f

0) ++ f

0 ++ t

where f

0 = f ++ genSkip(length t)
genSkip n = genTrue ++ genSkipIf n
genSkipIf n = [Bnz (n+1)]
genStoreAt p = [Push p; Store]
genLoadFrom p = [Push p; Load]
genPop = [Bnz 1]

opcodes = add :: output :: . . . :: ret :: nil

Figure 9. Generation of fault handler from IFC rule table.

Then, for some final stack �0,

�R ` hk [i,o] µ [(pc, u);�] 0@T i !

?
k

hk [i,o] µ [�0] -1@T i.

Proof methodology The fault handler is simple enough that a to-
tal structured language, with a few local control flow primitives,
global memory, and stack, but without subroutines or local vari-
ables, is enough. The fault handler is compiled by composing gen-
erators (Fig. 9); accordingly, the proofs of these two lemmas reduce
to correctness proofs for the generators. To specify the generators
themselves, we employ a custom Hoare logic comprising two no-
tions of Hoare triple.

The generated code mostly consists of self-contained instruction
sequences that terminate by “falling off the end”—i.e., that never
return or jumps outside themselves, although the may contain in-
ternal jumps (e.g., to implement conditionals). The only exception
is the final step of the handler (third line of genFaultHandler in
Fig. 9). We therefore define a standard Hoare triple {P} c {Q},
suitable for reasoning about self-contained code, and use it for the

Draft 8 2013/7/12

Match opcode

Update the cache

Compute results of rule



28
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allows some given user instruction, then executing �R (stored
at kernel mode location 0) updates the cache to contain the tag
encoding of the appropriate result labels and returns to user-mode;
otherwise, �R halts the machine (pc = -1).

Lemma 7.1 (Fault handler correctness, allowed case). Suppose
that `R (Lpc, `1, `2, `3) ;

opcode

Lrpc, Lr and

i = opcode Tag(Lpc) Tag(`1) Tag(`2) Tag(`3) .

Then �R ` hk [i,o] µ [(pc, u);�] 0@T i !

?
k

hu [i,
0
o] µ [�] pci

with output cache 0
o = Tag(Lrpc) Tag(Lr) .

Lemma 7.2 (Fault handler correctness, disallowed case). Suppose
that `R (Lpc, `1, `2, `3) 6;opcode, and

i = opcode Tag(Lpc) Tag(`1) Tag(`2) Tag(`3) .

genFaultHandler R = genComputeResults R ++

genStoreResults ++

genIf [Ret] [Push (-1); Jump]

genComputeResults R =
genIndexedCases genMatchOp (genApplyRule � RuleR) opcodes

genMatchOp op =
[Push op] ++ genLoadFrom addrOpLabel ++ genEqual

genEqual = [Sub] ++ genNot

genApplyRule hallow , erpc, eri = genBool allow ++

genIf (genSome (genELab erpc ++ genELab er)) genNone

genELab BOT = genBot
LABi = genLoadFrom addrTagi
LE1 t LE2 = genELab LE2 ++ genELab LE1 ++ genJoin

genBool TRUE = genTrue
LE1 v LE2 = genELab LE2 ++ genELab LE1 ++ genFlows

genStoreResults =
genIf (genStoreAt addrTagr ++ genStoreAt addrTagrpc ++ genTrue)

genFalse

genFalse = [Push 0]
genTrue = [Push 1]
genAnd = genIf [ ] (genPop ++ genFalse)
genOr = genIf (genPop ++ genTrue) [ ]
genNot = genIf genFalse genTrue
genImpl = genNot ++ genOr
genSome c = c ++ genTrue
genNone = genFalse

genIndexedCases genDefault genGuard genBody = g

where g nil = genDefault

g (n :: ns) = genGuard n ++ genIf (genBody n) (g ns)

genIf t f = genSkipIf (length f

0) ++ f

0 ++ t

where f

0 = f ++ genSkip(length t)
genSkip n = genTrue ++ genSkipIf n
genSkipIf n = [Bnz (n+1)]
genStoreAt p = [Push p; Store]
genLoadFrom p = [Push p; Load]
genPop = [Bnz 1]

opcodes = add :: output :: . . . :: ret :: nil

Figure 9. Generation of fault handler from IFC rule table.

Then, for some final stack �0,

�R ` hk [i,o] µ [(pc, u);�] 0@T i !

?
k

hk [i,o] µ [�0] -1@T i.

Proof methodology The fault handler is simple enough that a to-
tal structured language, with a few local control flow primitives,
global memory, and stack, but without subroutines or local vari-
ables, is enough. The fault handler is compiled by composing gen-
erators (Fig. 9); accordingly, the proofs of these two lemmas reduce
to correctness proofs for the generators. To specify the generators
themselves, we employ a custom Hoare logic comprising two no-
tions of Hoare triple.

The generated code mostly consists of self-contained instruction
sequences that terminate by “falling off the end”—i.e., that never
return or jumps outside themselves, although the may contain in-
ternal jumps (e.g., to implement conditionals). The only exception
is the final step of the handler (third line of genFaultHandler in
Fig. 9). We therefore define a standard Hoare triple {P} c {Q},
suitable for reasoning about self-contained code, and use it for the
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expressions (genELab) and boolean-valued expressions (genBool).
These functions are (implicitly) parameterized by the definitions of
lattice-specific generators genBot, genJoin, and genFlows. To im-
plement these generators for a particular lattice, we first need to
choose how to represent abstract labels as integer tags, and then de-
termine a sequence of instructions that encodes each operation. We
call such an encoding scheme a concrete lattice. For example, the
abstract labels in the two-point lattice can be encoded like booleans,
representing ? by 0, > by non-0, and instantiating genBot, genJoin,
and genFlows with code for computing false, disjunction, and im-
plication, respectively. A simple concrete lattice like this can be for-
malized as a tuple CL = (Tag, Lab, genBot, genJoin, genFlows),
where the encoding and decoding functions Lab and Tag satisfy
Lab �Tag = id; to streamline the exposition, we assume this form
of concrete lattice for most of the paper. The more realistic encod-
ing in §11 will require a more complex treatment.

To raise the level of abstraction of the handler code, we make
heavy use of structured code generators; this makes it easier both
to understand the code and to prove it correct using a custom
Hoare logic that follows the structure of the generators (see §7).
As a typical example, the genIf function takes two code sequences,
representing the “then” and “else” branches of a conditional, and
generates code to test the top of the stack and dispatch control
appropriately.

genIf t f = genSkipIf (length f 0) ++ f 0
++ t

where f 0 = f ++ genSkip(length t)
genSkip n = genTrue ++ genSkipIf n
genSkipIf n = [Bnz (n+1)]

7. Correctness of the Fault Handler Generator
We now turn our attention to verification, beginning with the fault
handler. We must show that the generated fault handler emulates the
IFC enforcement judgment `R (Lpc, `1, `2, `3) ;

opcode

Lrpc, Lr

of the symbolic rule machine. The statement and proof of correct-
ness are parametric over the symbolic IFC rule table R and con-
crete lattice (and hence over correctness lemmas for the lattice op-
erations). (The rule table defined in Fig. 4 is only used to instantiate
the symbolic rule machine.)

Correctness statement Let R be an arbitrary rule table and �R ,
genFaultHandler R be the corresponding generated fault handler.
We specify how �R behaves as a whole—as a relation between
initial state on entry and final state on completion—using the rela-
tion � ` cs1 !

?
k cs2, defined as the reflexive transitive closure of

the concrete step relation, with the constraints that the fault handler
code is � and all intermediate states (i.e., strictly preceding cs2)
have privilege bit k.

The correctness statement is captured by the following two
lemmas. Intuitively, if the symbolic IFC enforcement judgment
allows some given user instruction, then executing �R (stored
at kernel mode location 0) updates the cache to contain the tag
encoding of the appropriate result labels and returns to user-mode;
otherwise, �R halts the machine (pc = -1).

Lemma 7.1 (Fault handler correctness, allowed case). Suppose
that `R (Lpc, `1, `2, `3) ;

opcode

Lrpc, Lr and

i = opcode Tag(Lpc) Tag(`1) Tag(`2) Tag(`3) .

Then �R ` hk [i,o] µ [(pc, u);�] 0@T i !

?
k

hu [i,
0
o] µ [�] pci

with output cache 0
o = Tag(Lrpc) Tag(Lr) .

Lemma 7.2 (Fault handler correctness, disallowed case). Suppose
that `R (Lpc, `1, `2, `3) 6;opcode, and

i = opcode Tag(Lpc) Tag(`1) Tag(`2) Tag(`3) .

genFaultHandler R = genComputeResults R ++

genStoreResults ++

genIf [Ret] [Push (-1); Jump]

genComputeResults R =
genIndexedCases genMatchOp (genApplyRule � RuleR) opcodes

genMatchOp op =
[Push op] ++ genLoadFrom addrOpLabel ++ genEqual

genEqual = [Sub] ++ genNot

genApplyRule hallow , erpc, eri = genBool allow ++

genIf (genSome (genELab erpc ++ genELab er)) genNone

genELab BOT = genBot
LABi = genLoadFrom addrTagi
LE1 t LE2 = genELab LE2 ++ genELab LE1 ++ genJoin

genBool TRUE = genTrue
LE1 v LE2 = genELab LE2 ++ genELab LE1 ++ genFlows

genStoreResults =
genIf (genStoreAt addrTagr ++ genStoreAt addrTagrpc ++ genTrue)

genFalse

genFalse = [Push 0]
genTrue = [Push 1]
genAnd = genIf [ ] (genPop ++ genFalse)
genOr = genIf (genPop ++ genTrue) [ ]
genNot = genIf genFalse genTrue
genImpl = genNot ++ genOr
genSome c = c ++ genTrue
genNone = genFalse

genIndexedCases genDefault genGuard genBody = g

where g nil = genDefault

g (n :: ns) = genGuard n ++ genIf (genBody n) (g ns)

genIf t f = genSkipIf (length f

0) ++ f

0 ++ t

where f

0 = f ++ genSkip(length t)
genSkip n = genTrue ++ genSkipIf n
genSkipIf n = [Bnz (n+1)]
genStoreAt p = [Push p; Store]
genLoadFrom p = [Push p; Load]
genPop = [Bnz 1]

opcodes = add :: output :: . . . :: ret :: nil

Figure 9. Generation of fault handler from IFC rule table.

Then, for some final stack �0,

�R ` hk [i,o] µ [(pc, u);�] 0@T i !

?
k

hk [i,o] µ [�0] -1@T i.

Proof methodology The fault handler is simple enough that a to-
tal structured language, with a few local control flow primitives,
global memory, and stack, but without subroutines or local vari-
ables, is enough. The fault handler is compiled by composing gen-
erators (Fig. 9); accordingly, the proofs of these two lemmas reduce
to correctness proofs for the generators. To specify the generators
themselves, we employ a custom Hoare logic comprising two no-
tions of Hoare triple.

The generated code mostly consists of self-contained instruction
sequences that terminate by “falling off the end”—i.e., that never
return or jumps outside themselves, although the may contain in-
ternal jumps (e.g., to implement conditionals). The only exception
is the final step of the handler (third line of genFaultHandler in
Fig. 9). We therefore define a standard Hoare triple {P} c {Q},
suitable for reasoning about self-contained code, and use it for the
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expressions (genELab) and boolean-valued expressions (genBool).
These functions are (implicitly) parameterized by the definitions of
lattice-specific generators genBot, genJoin, and genFlows. To im-
plement these generators for a particular lattice, we first need to
choose how to represent abstract labels as integer tags, and then de-
termine a sequence of instructions that encodes each operation. We
call such an encoding scheme a concrete lattice. For example, the
abstract labels in the two-point lattice can be encoded like booleans,
representing ? by 0, > by non-0, and instantiating genBot, genJoin,
and genFlows with code for computing false, disjunction, and im-
plication, respectively. A simple concrete lattice like this can be for-
malized as a tuple CL = (Tag, Lab, genBot, genJoin, genFlows),
where the encoding and decoding functions Lab and Tag satisfy
Lab �Tag = id; to streamline the exposition, we assume this form
of concrete lattice for most of the paper. The more realistic encod-
ing in §11 will require a more complex treatment.

To raise the level of abstraction of the handler code, we make
heavy use of structured code generators; this makes it easier both
to understand the code and to prove it correct using a custom
Hoare logic that follows the structure of the generators (see §7).
As a typical example, the genIf function takes two code sequences,
representing the “then” and “else” branches of a conditional, and
generates code to test the top of the stack and dispatch control
appropriately.

genIf t f = genSkipIf (length f 0) ++ f 0
++ t

where f 0 = f ++ genSkip(length t)
genSkip n = genTrue ++ genSkipIf n
genSkipIf n = [Bnz (n+1)]

7. Correctness of the Fault Handler Generator
We now turn our attention to verification, beginning with the fault
handler. We must show that the generated fault handler emulates the
IFC enforcement judgment `R (Lpc, `1, `2, `3) ;

opcode

Lrpc, Lr

of the symbolic rule machine. The statement and proof of correct-
ness are parametric over the symbolic IFC rule table R and con-
crete lattice (and hence over correctness lemmas for the lattice op-
erations). (The rule table defined in Fig. 4 is only used to instantiate
the symbolic rule machine.)

Correctness statement Let R be an arbitrary rule table and �R ,
genFaultHandler R be the corresponding generated fault handler.
We specify how �R behaves as a whole—as a relation between
initial state on entry and final state on completion—using the rela-
tion � ` cs1 !

?
k cs2, defined as the reflexive transitive closure of

the concrete step relation, with the constraints that the fault handler
code is � and all intermediate states (i.e., strictly preceding cs2)
have privilege bit k.

The correctness statement is captured by the following two
lemmas. Intuitively, if the symbolic IFC enforcement judgment
allows some given user instruction, then executing �R (stored
at kernel mode location 0) updates the cache to contain the tag
encoding of the appropriate result labels and returns to user-mode;
otherwise, �R halts the machine (pc = -1).

Lemma 7.1 (Fault handler correctness, allowed case). Suppose
that `R (Lpc, `1, `2, `3) ;

opcode

Lrpc, Lr and

i = opcode Tag(Lpc) Tag(`1) Tag(`2) Tag(`3) .

Then �R ` hk [i,o] µ [(pc, u);�] 0@T i !

?
k

hu [i,
0
o] µ [�] pci

with output cache 0
o = Tag(Lrpc) Tag(Lr) .

Lemma 7.2 (Fault handler correctness, disallowed case). Suppose
that `R (Lpc, `1, `2, `3) 6;opcode, and

i = opcode Tag(Lpc) Tag(`1) Tag(`2) Tag(`3) .

genFaultHandler R = genComputeResults R ++

genStoreResults ++

genIf [Ret] [Push (-1); Jump]

genComputeResults R =
genIndexedCases genMatchOp (genApplyRule � RuleR) opcodes

genMatchOp op =
[Push op] ++ genLoadFrom addrOpLabel ++ genEqual

genEqual = [Sub] ++ genNot

genApplyRule hallow , erpc, eri = genBool allow ++

genIf (genSome (genELab erpc ++ genELab er)) genNone

genELab BOT = genBot
LABi = genLoadFrom addrTagi
LE1 t LE2 = genELab LE2 ++ genELab LE1 ++ genJoin

genBool TRUE = genTrue
LE1 v LE2 = genELab LE2 ++ genELab LE1 ++ genFlows

genStoreResults =
genIf (genStoreAt addrTagr ++ genStoreAt addrTagrpc ++ genTrue)

genFalse

genFalse = [Push 0]
genTrue = [Push 1]
genAnd = genIf [ ] (genPop ++ genFalse)
genOr = genIf (genPop ++ genTrue) [ ]
genNot = genIf genFalse genTrue
genImpl = genNot ++ genOr
genSome c = c ++ genTrue
genNone = genFalse

genIndexedCases genDefault genGuard genBody = g

where g nil = genDefault

g (n :: ns) = genGuard n ++ genIf (genBody n) (g ns)

genIf t f = genSkipIf (length f

0) ++ f

0 ++ t

where f

0 = f ++ genSkip(length t)
genSkip n = genTrue ++ genSkipIf n
genSkipIf n = [Bnz (n+1)]
genStoreAt p = [Push p; Store]
genLoadFrom p = [Push p; Load]
genPop = [Bnz 1]

opcodes = add :: output :: . . . :: ret :: nil

Figure 9. Generation of fault handler from IFC rule table.

Then, for some final stack �0,

�R ` hk [i,o] µ [(pc, u);�] 0@T i !

?
k

hk [i,o] µ [�0] -1@T i.

Proof methodology The fault handler is simple enough that a to-
tal structured language, with a few local control flow primitives,
global memory, and stack, but without subroutines or local vari-
ables, is enough. The fault handler is compiled by composing gen-
erators (Fig. 9); accordingly, the proofs of these two lemmas reduce
to correctness proofs for the generators. To specify the generators
themselves, we employ a custom Hoare logic comprising two no-
tions of Hoare triple.

The generated code mostly consists of self-contained instruction
sequences that terminate by “falling off the end”—i.e., that never
return or jumps outside themselves, although the may contain in-
ternal jumps (e.g., to implement conditionals). The only exception
is the final step of the handler (third line of genFaultHandler in
Fig. 9). We therefore define a standard Hoare triple {P} c {Q},
suitable for reasoning about self-contained code, and use it for the
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bulk of the proof. To specify the final handler step, we define a non-
standard triple {P} c {Q}

O
pc

for reasoning about escaping code (pc
and O describe how c escapes). .

Self-contained-code Hoare triples The triple {P} c {Q}, where
P and Q are predicates on ⇥�, says that, if the kernel instruction
memory � contains the code sequence c starting at the current PC,
and if the current memory and stack satisfy P , then the machine
will run (in kernel mode) until the PC points to the instruction
immediately following the sequence c, with a resulting memory
and stack satisfying Q . In symbols:

{P} c {Q} ,
c = �(n), . . . ,�(n0

� 1) ^ P(,�) =)
9 0 �0. Q(0,�0)

^ � ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] n 0

@T i

Note that the instruction memory � is unconstrained outside of c, so
if c is not self-contained, no triple about it will be provable; thus,
these triples obey the usual composition laws. Also, because the
concrete machine is deterministic, these triples express total, rather
than partial, correctness, which is essential for proving termination
in lemmas 7.1 and 7.2. To aid automation of proofs about code
sequences, we give triples in weakest-precondition style.

{P} [] {P}

8�. P 0(,�) =) P(,�)
8�. Q(,�) =) Q

0(,�)
{P} c {Q}

{P

0
} c {Q

0
}

{P1} c1 {P2} {P2} c2 {P3}

{P1} c1++c2 {P3}

We build proofs by composing atomic specifications of individ-
ual instructions, such as

P(,�) := 9n1 T1 n2 T2 �
0. � = n1@T1,n2@T2,�

0

^ Q(, ((n1+n2)@T ,�0))

{P} [Add] {Q}

,

with specifications for structured code generators, such as

P(,�) := 9n T�0. � = n@T,�0
^ (n 6= 0 =) P1(,�

0))
^(n = 0 =) P2(,�

0))
{P1} c1 {Q} {P2} c2 {Q}

{P} genIf c1 c2 {Q}

.

(We emphasize that all such specifications are verified, not axioma-
tized as the inference rule notation might suggest.) We also prove a
specification for the specialized case statement genIndexedCases.
Although this specification is quite complex when written in full
detail (and is thus omitted here), it is intuitively simple: given a list
of indices and functions for generating guards and branches from
the indices, genIndexedCases will run the guards in order until one
of them computes true (more precisely, its integer encoding 1), at
which point the corresponding branch is run.

The concrete implementations of the lattice operations are also
specified using triples in this style.

P(,�) := Q(, (Tag (?)@T ,�))

{P} genBot {Q}

P(,�) := 9LL

0 �0. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(,Tag (L_L0)@T ,�0)

{P} genJoin {Q}

P(,�) := 9LL

0 �. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(, (if L  L

0 then 1 else 0)@T ,�0)

{P} genFlows {Q}

For the two-point lattice, it is easy to prove that the implemented
operators satisfy these specifications; §11 describes an analogous
result for a lattice of sets of principals.

Going a bit further towards bridging the gap between the sym-
bolic rule and concrete machines, we prove specifications for the
generation of label expressions

⇢ ` LE # oL

P(,�) :=  = 0 ^ � = �0

Q(,�) :=  = 0 ^ � = Tag (oL)@T ,�0

{P} genELabLE {Q}

and for the code generated to implement the application of a sym-
bolic IFC symbolic rule. For instance, the case where the the in-
struction is allowed is described by the specification:

Escaping-code Hoare triples To be able to specify the entire code
of the generated fault handler, we also define a second form of
triple, {P} c {Q}

O
pc

, which specifies mostly self-contained, total
code c that either makes exactly one jump outside of c or returns
out of kernel mode. This non-locality is needed because the fault
handler checks whether an information flow violation is about to
occur, and returns to the user-mode caller if not (Success), or
jumps to an invalid address (Failure) otherwise. More precisely,
if P and Q are predicates on  ⇥ � and O is a function from
 ⇥ � to outcomes (the constants Success and Failure), then
{P} c {Q}

O
pc

holds if, whenever the kernel instruction memory �
contains the sequence c starting at the current PC, the current cache
and stack satisfy P , and

• if O computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.

• if O computes Failure then the machine runs (in kernel mode)
until it halts (pc = �1 in kernel mode), and Q is satisfied.

Or, in symbols,

{P} c {Q}

O
pc

,
c = �(n), . . . ,�(n+ |c|� 1) ^ P(,�) =)
9 0 �0.

Q(0,�0)

^

✓
O(,�) = Success =)
� ` hk  µ [�] n@T i !

?
k hu 0 µ [�0] pci

◆

^

✓
O(,�) = Failure =)
� ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] �1@T i

◆

These triples obey the natural extension of the familiar weaken-
ing law (omitted here) but their composition laws are non-standard:

{P1} c1 {P2} {P2} c2 {P3}
O
pc

{P1} c1++c2 {P3}
O
pc

{P} c1 {Q}

O
pc

{P} c1++c2 {Q}

O
pc

The law on the left allows for pre-composing with self-contained
code, specified by a standard triple, while the one on the right
allows for post-composing with arbitrary code: since the post-
composed code will never be reached, its behavior need not be
specified. Finally, we use these triples to specify the Ret and Jump
instructions, which could not be given useful specifications using
using the contained-code triples:

P(,�) := 9�0. Q(,�0) ^ � = (pc, u);�0

O(,�) := Success

{P} [Ret] {Q}

O
pc

P(,�) := 9�0. Q(,�0) ^ � = (�1)@ ,�0

O(,�) := Failure

{P} [Jump] {Q}

O
pc
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bulk of the proof. To specify the final handler step, we define a non-
standard triple {P} c {Q}

O
pc

for reasoning about escaping code (pc
and O describe how c escapes). .

Self-contained-code Hoare triples The triple {P} c {Q}, where
P and Q are predicates on ⇥�, says that, if the kernel instruction
memory � contains the code sequence c starting at the current PC,
and if the current memory and stack satisfy P , then the machine
will run (in kernel mode) until the PC points to the instruction
immediately following the sequence c, with a resulting memory
and stack satisfying Q . In symbols:

{P} c {Q} ,
c = �(n), . . . ,�(n0

� 1) ^ P(,�) =)
9 0 �0. Q(0,�0)

^ � ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] n 0

@T i

Note that the instruction memory � is unconstrained outside of c, so
if c is not self-contained, no triple about it will be provable; thus,
these triples obey the usual composition laws. Also, because the
concrete machine is deterministic, these triples express total, rather
than partial, correctness, which is essential for proving termination
in lemmas 7.1 and 7.2. To aid automation of proofs about code
sequences, we give triples in weakest-precondition style.

{P} [] {P}

8�. P 0(,�) =) P(,�)
8�. Q(,�) =) Q

0(,�)
{P} c {Q}

{P

0
} c {Q

0
}

{P1} c1 {P2} {P2} c2 {P3}

{P1} c1++c2 {P3}

We build proofs by composing atomic specifications of individ-
ual instructions, such as

P(,�) := 9n1 T1 n2 T2 �
0. � = n1@T1,n2@T2,�

0

^ Q(, ((n1+n2)@T ,�0))

{P} [Add] {Q}

,

with specifications for structured code generators, such as

P(,�) := 9n T�0. � = n@T,�0
^ (n 6= 0 =) P1(,�

0))
^(n = 0 =) P2(,�

0))
{P1} c1 {Q} {P2} c2 {Q}

{P} genIf c1 c2 {Q}

.

(We emphasize that all such specifications are verified, not axioma-
tized as the inference rule notation might suggest.) We also prove a
specification for the specialized case statement genIndexedCases.
Although this specification is quite complex when written in full
detail (and is thus omitted here), it is intuitively simple: given a list
of indices and functions for generating guards and branches from
the indices, genIndexedCases will run the guards in order until one
of them computes true (more precisely, its integer encoding 1), at
which point the corresponding branch is run.

The concrete implementations of the lattice operations are also
specified using triples in this style.

P(,�) := Q(, (Tag (?)@T ,�))

{P} genBot {Q}

P(,�) := 9LL

0 �0. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(,Tag (L_L0)@T ,�0)

{P} genJoin {Q}

P(,�) := 9LL

0 �. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(, (if L  L

0 then 1 else 0)@T ,�0)

{P} genFlows {Q}

For the two-point lattice, it is easy to prove that the implemented
operators satisfy these specifications; §11 describes an analogous
result for a lattice of sets of principals.

Going a bit further towards bridging the gap between the sym-
bolic rule and concrete machines, we prove specifications for the
generation of label expressions

⇢ ` LE # oL

P(,�) :=  = 0 ^ � = �0

Q(,�) :=  = 0 ^ � = Tag (oL)@T ,�0

{P} genELabLE {Q}

and for the code generated to implement the application of a sym-
bolic IFC symbolic rule. For instance, the case where the the in-
struction is allowed is described by the specification:

Escaping-code Hoare triples To be able to specify the entire code
of the generated fault handler, we also define a second form of
triple, {P} c {Q}

O
pc

, which specifies mostly self-contained, total
code c that either makes exactly one jump outside of c or returns
out of kernel mode. This non-locality is needed because the fault
handler checks whether an information flow violation is about to
occur, and returns to the user-mode caller if not (Success), or
jumps to an invalid address (Failure) otherwise. More precisely,
if P and Q are predicates on  ⇥ � and O is a function from
 ⇥ � to outcomes (the constants Success and Failure), then
{P} c {Q}

O
pc

holds if, whenever the kernel instruction memory �
contains the sequence c starting at the current PC, the current cache
and stack satisfy P , and

• if O computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.

• if O computes Failure then the machine runs (in kernel mode)
until it halts (pc = �1 in kernel mode), and Q is satisfied.

Or, in symbols,

{P} c {Q}

O
pc

,
c = �(n), . . . ,�(n+ |c|� 1) ^ P(,�) =)
9 0 �0.

Q(0,�0)

^

✓
O(,�) = Success =)
� ` hk  µ [�] n@T i !

?
k hu 0 µ [�0] pci

◆

^

✓
O(,�) = Failure =)
� ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] �1@T i

◆

These triples obey the natural extension of the familiar weaken-
ing law (omitted here) but their composition laws are non-standard:

{P1} c1 {P2} {P2} c2 {P3}
O
pc

{P1} c1++c2 {P3}
O
pc

{P} c1 {Q}

O
pc

{P} c1++c2 {Q}

O
pc

The law on the left allows for pre-composing with self-contained
code, specified by a standard triple, while the one on the right
allows for post-composing with arbitrary code: since the post-
composed code will never be reached, its behavior need not be
specified. Finally, we use these triples to specify the Ret and Jump
instructions, which could not be given useful specifications using
using the contained-code triples:

P(,�) := 9�0. Q(,�0) ^ � = (pc, u);�0

O(,�) := Success

{P} [Ret] {Q}

O
pc

P(,�) := 9�0. Q(,�0) ^ � = (�1)@ ,�0

O(,�) := Failure

{P} [Jump] {Q}

O
pc
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bulk of the proof. To specify the final handler step, we define a non-
standard triple {P} c {Q}

O
pc

for reasoning about escaping code (pc
and O describe how c escapes). .

Self-contained-code Hoare triples The triple {P} c {Q}, where
P and Q are predicates on ⇥�, says that, if the kernel instruction
memory � contains the code sequence c starting at the current PC,
and if the current memory and stack satisfy P , then the machine
will run (in kernel mode) until the PC points to the instruction
immediately following the sequence c, with a resulting memory
and stack satisfying Q . In symbols:

{P} c {Q} ,
c = �(n), . . . ,�(n0

� 1) ^ P(,�) =)
9 0 �0. Q(0,�0)

^ � ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] n 0

@T i

Note that the instruction memory � is unconstrained outside of c, so
if c is not self-contained, no triple about it will be provable; thus,
these triples obey the usual composition laws. Also, because the
concrete machine is deterministic, these triples express total, rather
than partial, correctness, which is essential for proving termination
in lemmas 7.1 and 7.2. To aid automation of proofs about code
sequences, we give triples in weakest-precondition style.

{P} [] {P}

8�. P 0(,�) =) P(,�)
8�. Q(,�) =) Q

0(,�)
{P} c {Q}

{P

0
} c {Q

0
}

{P1} c1 {P2} {P2} c2 {P3}

{P1} c1++c2 {P3}

We build proofs by composing atomic specifications of individ-
ual instructions, such as

P(,�) := 9n1 T1 n2 T2 �
0. � = n1@T1,n2@T2,�

0

^ Q(, ((n1+n2)@T ,�0))

{P} [Add] {Q}

,

with specifications for structured code generators, such as

P(,�) := 9n T�0. � = n@T,�0
^ (n 6= 0 =) P1(,�

0))
^(n = 0 =) P2(,�

0))
{P1} c1 {Q} {P2} c2 {Q}

{P} genIf c1 c2 {Q}

.

(We emphasize that all such specifications are verified, not axioma-
tized as the inference rule notation might suggest.) We also prove a
specification for the specialized case statement genIndexedCases.
Although this specification is quite complex when written in full
detail (and is thus omitted here), it is intuitively simple: given a list
of indices and functions for generating guards and branches from
the indices, genIndexedCases will run the guards in order until one
of them computes true (more precisely, its integer encoding 1), at
which point the corresponding branch is run.

The concrete implementations of the lattice operations are also
specified using triples in this style.

P(,�) := Q(, (Tag (?)@T ,�))

{P} genBot {Q}

P(,�) := 9LL

0 �0. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(,Tag (L_L0)@T ,�0)

{P} genJoin {Q}

P(,�) := 9LL

0 �. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(, (if L  L

0 then 1 else 0)@T ,�0)

{P} genFlows {Q}

For the two-point lattice, it is easy to prove that the implemented
operators satisfy these specifications; §11 describes an analogous
result for a lattice of sets of principals.

Going a bit further towards bridging the gap between the sym-
bolic rule and concrete machines, we prove specifications for the
generation of label expressions

⇢ ` LE # oL

P(,�) :=  = 0 ^ � = �0

Q(,�) :=  = 0 ^ � = Tag (oL)@T ,�0

{P} genELabLE {Q}

and for the code generated to implement the application of a sym-
bolic IFC symbolic rule. For instance, the case where the the in-
struction is allowed is described by the specification:

Escaping-code Hoare triples To be able to specify the entire code
of the generated fault handler, we also define a second form of
triple, {P} c {Q}

O
pc

, which specifies mostly self-contained, total
code c that either makes exactly one jump outside of c or returns
out of kernel mode. This non-locality is needed because the fault
handler checks whether an information flow violation is about to
occur, and returns to the user-mode caller if not (Success), or
jumps to an invalid address (Failure) otherwise. More precisely,
if P and Q are predicates on  ⇥ � and O is a function from
 ⇥ � to outcomes (the constants Success and Failure), then
{P} c {Q}

O
pc

holds if, whenever the kernel instruction memory �
contains the sequence c starting at the current PC, the current cache
and stack satisfy P , and

• if O computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.

• if O computes Failure then the machine runs (in kernel mode)
until it halts (pc = �1 in kernel mode), and Q is satisfied.

Or, in symbols,

{P} c {Q}

O
pc

,
c = �(n), . . . ,�(n+ |c|� 1) ^ P(,�) =)
9 0 �0.

Q(0,�0)

^

✓
O(,�) = Success =)
� ` hk  µ [�] n@T i !

?
k hu 0 µ [�0] pci

◆

^

✓
O(,�) = Failure =)
� ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] �1@T i

◆

These triples obey the natural extension of the familiar weaken-
ing law (omitted here) but their composition laws are non-standard:

{P1} c1 {P2} {P2} c2 {P3}
O
pc

{P1} c1++c2 {P3}
O
pc

{P} c1 {Q}

O
pc

{P} c1++c2 {Q}

O
pc

The law on the left allows for pre-composing with self-contained
code, specified by a standard triple, while the one on the right
allows for post-composing with arbitrary code: since the post-
composed code will never be reached, its behavior need not be
specified. Finally, we use these triples to specify the Ret and Jump
instructions, which could not be given useful specifications using
using the contained-code triples:

P(,�) := 9�0. Q(,�0) ^ � = (pc, u);�0

O(,�) := Success

{P} [Ret] {Q}

O
pc

P(,�) := 9�0. Q(,�0) ^ � = (�1)@ ,�0

O(,�) := Failure

{P} [Jump] {Q}

O
pc
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bulk of the proof. To specify the final handler step, we define a non-
standard triple {P} c {Q}

O
pc

for reasoning about escaping code (pc
and O describe how c escapes). .

Self-contained-code Hoare triples The triple {P} c {Q}, where
P and Q are predicates on ⇥�, says that, if the kernel instruction
memory � contains the code sequence c starting at the current PC,
and if the current memory and stack satisfy P , then the machine
will run (in kernel mode) until the PC points to the instruction
immediately following the sequence c, with a resulting memory
and stack satisfying Q . In symbols:

{P} c {Q} ,
c = �(n), . . . ,�(n0

� 1) ^ P(,�) =)
9 0 �0. Q(0,�0)

^ � ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] n 0

@T i

Note that the instruction memory � is unconstrained outside of c, so
if c is not self-contained, no triple about it will be provable; thus,
these triples obey the usual composition laws. Also, because the
concrete machine is deterministic, these triples express total, rather
than partial, correctness, which is essential for proving termination
in lemmas 7.1 and 7.2. To aid automation of proofs about code
sequences, we give triples in weakest-precondition style.

{P} [] {P}

8�. P 0(,�) =) P(,�)
8�. Q(,�) =) Q

0(,�)
{P} c {Q}

{P

0
} c {Q

0
}

{P1} c1 {P2} {P2} c2 {P3}

{P1} c1++c2 {P3}

We build proofs by composing atomic specifications of individ-
ual instructions, such as

P(,�) := 9n1 T1 n2 T2 �
0. � = n1@T1,n2@T2,�

0

^ Q(, ((n1+n2)@T ,�0))

{P} [Add] {Q}

,

with specifications for structured code generators, such as

P(,�) := 9n T�0. � = n@T,�0
^ (n 6= 0 =) P1(,�

0))
^(n = 0 =) P2(,�

0))
{P1} c1 {Q} {P2} c2 {Q}

{P} genIf c1 c2 {Q}

.

(We emphasize that all such specifications are verified, not axioma-
tized as the inference rule notation might suggest.) We also prove a
specification for the specialized case statement genIndexedCases.
Although this specification is quite complex when written in full
detail (and is thus omitted here), it is intuitively simple: given a list
of indices and functions for generating guards and branches from
the indices, genIndexedCases will run the guards in order until one
of them computes true (more precisely, its integer encoding 1), at
which point the corresponding branch is run.

The concrete implementations of the lattice operations are also
specified using triples in this style.

P(,�) := Q(, (Tag (?)@T ,�))

{P} genBot {Q}

P(,�) := 9LL

0 �0. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(,Tag (L_L0)@T ,�0)

{P} genJoin {Q}

P(,�) := 9LL

0 �. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(, (if L  L

0 then 1 else 0)@T ,�0)

{P} genFlows {Q}

For the two-point lattice, it is easy to prove that the implemented
operators satisfy these specifications; §11 describes an analogous
result for a lattice of sets of principals.

Going a bit further towards bridging the gap between the sym-
bolic rule and concrete machines, we prove specifications for the
generation of label expressions

⇢ ` LE # oL

P(,�) :=  = 0 ^ � = �0

Q(,�) :=  = 0 ^ � = Tag (oL)@T ,�0

{P} genELabLE {Q}

and for the code generated to implement the application of a sym-
bolic IFC symbolic rule. For instance, the case where the the in-
struction is allowed is described by the specification:

Escaping-code Hoare triples To be able to specify the entire code
of the generated fault handler, we also define a second form of
triple, {P} c {Q}

O
pc

, which specifies mostly self-contained, total
code c that either makes exactly one jump outside of c or returns
out of kernel mode. This non-locality is needed because the fault
handler checks whether an information flow violation is about to
occur, and returns to the user-mode caller if not (Success), or
jumps to an invalid address (Failure) otherwise. More precisely,
if P and Q are predicates on  ⇥ � and O is a function from
 ⇥ � to outcomes (the constants Success and Failure), then
{P} c {Q}

O
pc

holds if, whenever the kernel instruction memory �
contains the sequence c starting at the current PC, the current cache
and stack satisfy P , and

• if O computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.

• if O computes Failure then the machine runs (in kernel mode)
until it halts (pc = �1 in kernel mode), and Q is satisfied.

Or, in symbols,

{P} c {Q}

O
pc

,
c = �(n), . . . ,�(n+ |c|� 1) ^ P(,�) =)
9 0 �0.

Q(0,�0)

^

✓
O(,�) = Success =)
� ` hk  µ [�] n@T i !

?
k hu 0 µ [�0] pci

◆

^

✓
O(,�) = Failure =)
� ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] �1@T i

◆

These triples obey the natural extension of the familiar weaken-
ing law (omitted here) but their composition laws are non-standard:

{P1} c1 {P2} {P2} c2 {P3}
O
pc

{P1} c1++c2 {P3}
O
pc

{P} c1 {Q}

O
pc

{P} c1++c2 {Q}

O
pc

The law on the left allows for pre-composing with self-contained
code, specified by a standard triple, while the one on the right
allows for post-composing with arbitrary code: since the post-
composed code will never be reached, its behavior need not be
specified. Finally, we use these triples to specify the Ret and Jump
instructions, which could not be given useful specifications using
using the contained-code triples:

P(,�) := 9�0. Q(,�0) ^ � = (pc, u);�0

O(,�) := Success

{P} [Ret] {Q}

O
pc

P(,�) := 9�0. Q(,�0) ^ � = (�1)@ ,�0

O(,�) := Failure

{P} [Jump] {Q}

O
pc

Draft 9 2013/7/12

• Only apply to self-contained code that “falls off end”

• Usual composition law holds

• We use different form of triple to describe “escaping” code



Correctness proof 

• Based on custom Hoare logic

30

bulk of the proof. To specify the final handler step, we define a non-
standard triple {P} c {Q}

O
pc

for reasoning about escaping code (pc
and O describe how c escapes). .

Self-contained-code Hoare triples The triple {P} c {Q}, where
P and Q are predicates on ⇥�, says that, if the kernel instruction
memory � contains the code sequence c starting at the current PC,
and if the current memory and stack satisfy P , then the machine
will run (in kernel mode) until the PC points to the instruction
immediately following the sequence c, with a resulting memory
and stack satisfying Q . In symbols:

{P} c {Q} ,
c = �(n), . . . ,�(n0

� 1) ^ P(,�) =)
9 0 �0. Q(0,�0)

^ � ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] n 0

@T i

Note that the instruction memory � is unconstrained outside of c, so
if c is not self-contained, no triple about it will be provable; thus,
these triples obey the usual composition laws. Also, because the
concrete machine is deterministic, these triples express total, rather
than partial, correctness, which is essential for proving termination
in lemmas 7.1 and 7.2. To aid automation of proofs about code
sequences, we give triples in weakest-precondition style.

{P} [] {P}

8�. P 0(,�) =) P(,�)
8�. Q(,�) =) Q

0(,�)
{P} c {Q}

{P

0
} c {Q

0
}

{P1} c1 {P2} {P2} c2 {P3}

{P1} c1++c2 {P3}

We build proofs by composing atomic specifications of individ-
ual instructions, such as

P(,�) := 9n1 T1 n2 T2 �
0. � = n1@T1,n2@T2,�

0

^ Q(, ((n1+n2)@T ,�0))

{P} [Add] {Q}

,

with specifications for structured code generators, such as

P(,�) := 9n T�0. � = n@T,�0
^ (n 6= 0 =) P1(,�

0))
^(n = 0 =) P2(,�

0))
{P1} c1 {Q} {P2} c2 {Q}

{P} genIf c1 c2 {Q}

.

(We emphasize that all such specifications are verified, not axioma-
tized as the inference rule notation might suggest.) We also prove a
specification for the specialized case statement genIndexedCases.
Although this specification is quite complex when written in full
detail (and is thus omitted here), it is intuitively simple: given a list
of indices and functions for generating guards and branches from
the indices, genIndexedCases will run the guards in order until one
of them computes true (more precisely, its integer encoding 1), at
which point the corresponding branch is run.

The concrete implementations of the lattice operations are also
specified using triples in this style.

P(,�) := Q(, (Tag (?)@T ,�))

{P} genBot {Q}

P(,�) := 9LL

0 �0. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(,Tag (L_L0)@T ,�0)

{P} genJoin {Q}

P(,�) := 9LL

0 �. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(, (if L  L

0 then 1 else 0)@T ,�0)

{P} genFlows {Q}

For the two-point lattice, it is easy to prove that the implemented
operators satisfy these specifications; §11 describes an analogous
result for a lattice of sets of principals.

Going a bit further towards bridging the gap between the sym-
bolic rule and concrete machines, we prove specifications for the
generation of label expressions

⇢ ` LE # oL

P(,�) :=  = 0 ^ � = �0

Q(,�) :=  = 0 ^ � = Tag (oL)@T ,�0

{P} genELabLE {Q}

and for the code generated to implement the application of a sym-
bolic IFC symbolic rule. For instance, the case where the the in-
struction is allowed is described by the specification:

Escaping-code Hoare triples To be able to specify the entire code
of the generated fault handler, we also define a second form of
triple, {P} c {Q}

O
pc

, which specifies mostly self-contained, total
code c that either makes exactly one jump outside of c or returns
out of kernel mode. This non-locality is needed because the fault
handler checks whether an information flow violation is about to
occur, and returns to the user-mode caller if not (Success), or
jumps to an invalid address (Failure) otherwise. More precisely,
if P and Q are predicates on  ⇥ � and O is a function from
 ⇥ � to outcomes (the constants Success and Failure), then
{P} c {Q}

O
pc

holds if, whenever the kernel instruction memory �
contains the sequence c starting at the current PC, the current cache
and stack satisfy P , and

• if O computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.

• if O computes Failure then the machine runs (in kernel mode)
until it halts (pc = �1 in kernel mode), and Q is satisfied.

Or, in symbols,

{P} c {Q}

O
pc

,
c = �(n), . . . ,�(n+ |c|� 1) ^ P(,�) =)
9 0 �0.

Q(0,�0)

^

✓
O(,�) = Success =)
� ` hk  µ [�] n@T i !

?
k hu 0 µ [�0] pci

◆

^

✓
O(,�) = Failure =)
� ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] �1@T i

◆

These triples obey the natural extension of the familiar weaken-
ing law (omitted here) but their composition laws are non-standard:

{P1} c1 {P2} {P2} c2 {P3}
O
pc

{P1} c1++c2 {P3}
O
pc

{P} c1 {Q}

O
pc

{P} c1++c2 {Q}

O
pc

The law on the left allows for pre-composing with self-contained
code, specified by a standard triple, while the one on the right
allows for post-composing with arbitrary code: since the post-
composed code will never be reached, its behavior need not be
specified. Finally, we use these triples to specify the Ret and Jump
instructions, which could not be given useful specifications using
using the contained-code triples:

P(,�) := 9�0. Q(,�0) ^ � = (pc, u);�0

O(,�) := Success

{P} [Ret] {Q}

O
pc

P(,�) := 9�0. Q(,�0) ^ � = (�1)@ ,�0

O(,�) := Failure

{P} [Jump] {Q}

O
pc
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bulk of the proof. To specify the final handler step, we define a non-
standard triple {P} c {Q}

O
pc

for reasoning about escaping code (pc
and O describe how c escapes). .

Self-contained-code Hoare triples The triple {P} c {Q}, where
P and Q are predicates on ⇥�, says that, if the kernel instruction
memory � contains the code sequence c starting at the current PC,
and if the current memory and stack satisfy P , then the machine
will run (in kernel mode) until the PC points to the instruction
immediately following the sequence c, with a resulting memory
and stack satisfying Q . In symbols:

{P} c {Q} ,
c = �(n), . . . ,�(n0

� 1) ^ P(,�) =)
9 0 �0. Q(0,�0)

^ � ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] n 0

@T i

Note that the instruction memory � is unconstrained outside of c, so
if c is not self-contained, no triple about it will be provable; thus,
these triples obey the usual composition laws. Also, because the
concrete machine is deterministic, these triples express total, rather
than partial, correctness, which is essential for proving termination
in lemmas 7.1 and 7.2. To aid automation of proofs about code
sequences, we give triples in weakest-precondition style.

{P} [] {P}

8�. P 0(,�) =) P(,�)
8�. Q(,�) =) Q

0(,�)
{P} c {Q}

{P

0
} c {Q

0
}

{P1} c1 {P2} {P2} c2 {P3}

{P1} c1++c2 {P3}

We build proofs by composing atomic specifications of individ-
ual instructions, such as

P(,�) := 9n1 T1 n2 T2 �
0. � = n1@T1,n2@T2,�

0

^ Q(, ((n1+n2)@T ,�0))

{P} [Add] {Q}

,

with specifications for structured code generators, such as

P(,�) := 9n T�0. � = n@T,�0
^ (n 6= 0 =) P1(,�

0))
^(n = 0 =) P2(,�

0))
{P1} c1 {Q} {P2} c2 {Q}

{P} genIf c1 c2 {Q}

.

(We emphasize that all such specifications are verified, not axioma-
tized as the inference rule notation might suggest.) We also prove a
specification for the specialized case statement genIndexedCases.
Although this specification is quite complex when written in full
detail (and is thus omitted here), it is intuitively simple: given a list
of indices and functions for generating guards and branches from
the indices, genIndexedCases will run the guards in order until one
of them computes true (more precisely, its integer encoding 1), at
which point the corresponding branch is run.

The concrete implementations of the lattice operations are also
specified using triples in this style.

P(,�) := Q(, (Tag (?)@T ,�))

{P} genBot {Q}

P(,�) := 9LL

0 �0. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(,Tag (L_L0)@T ,�0)

{P} genJoin {Q}

P(,�) := 9LL

0 �. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(, (if L  L

0 then 1 else 0)@T ,�0)

{P} genFlows {Q}

For the two-point lattice, it is easy to prove that the implemented
operators satisfy these specifications; §11 describes an analogous
result for a lattice of sets of principals.

Going a bit further towards bridging the gap between the sym-
bolic rule and concrete machines, we prove specifications for the
generation of label expressions

⇢ ` LE # oL

P(,�) :=  = 0 ^ � = �0

Q(,�) :=  = 0 ^ � = Tag (oL)@T ,�0

{P} genELabLE {Q}

and for the code generated to implement the application of a sym-
bolic IFC symbolic rule. For instance, the case where the the in-
struction is allowed is described by the specification:

Escaping-code Hoare triples To be able to specify the entire code
of the generated fault handler, we also define a second form of
triple, {P} c {Q}

O
pc

, which specifies mostly self-contained, total
code c that either makes exactly one jump outside of c or returns
out of kernel mode. This non-locality is needed because the fault
handler checks whether an information flow violation is about to
occur, and returns to the user-mode caller if not (Success), or
jumps to an invalid address (Failure) otherwise. More precisely,
if P and Q are predicates on  ⇥ � and O is a function from
 ⇥ � to outcomes (the constants Success and Failure), then
{P} c {Q}

O
pc

holds if, whenever the kernel instruction memory �
contains the sequence c starting at the current PC, the current cache
and stack satisfy P , and

• if O computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.

• if O computes Failure then the machine runs (in kernel mode)
until it halts (pc = �1 in kernel mode), and Q is satisfied.

Or, in symbols,

{P} c {Q}

O
pc

,
c = �(n), . . . ,�(n+ |c|� 1) ^ P(,�) =)
9 0 �0.

Q(0,�0)

^

✓
O(,�) = Success =)
� ` hk  µ [�] n@T i !

?
k hu 0 µ [�0] pci

◆

^

✓
O(,�) = Failure =)
� ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] �1@T i

◆

These triples obey the natural extension of the familiar weaken-
ing law (omitted here) but their composition laws are non-standard:

{P1} c1 {P2} {P2} c2 {P3}
O
pc

{P1} c1++c2 {P3}
O
pc

{P} c1 {Q}

O
pc

{P} c1++c2 {Q}

O
pc

The law on the left allows for pre-composing with self-contained
code, specified by a standard triple, while the one on the right
allows for post-composing with arbitrary code: since the post-
composed code will never be reached, its behavior need not be
specified. Finally, we use these triples to specify the Ret and Jump
instructions, which could not be given useful specifications using
using the contained-code triples:

P(,�) := 9�0. Q(,�0) ^ � = (pc, u);�0

O(,�) := Success

{P} [Ret] {Q}

O
pc

P(,�) := 9�0. Q(,�0) ^ � = (�1)@ ,�0

O(,�) := Failure

{P} [Jump] {Q}

O
pc
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bulk of the proof. To specify the final handler step, we define a non-
standard triple {P} c {Q}

O
pc

for reasoning about escaping code (pc
and O describe how c escapes). .

Self-contained-code Hoare triples The triple {P} c {Q}, where
P and Q are predicates on ⇥�, says that, if the kernel instruction
memory � contains the code sequence c starting at the current PC,
and if the current memory and stack satisfy P , then the machine
will run (in kernel mode) until the PC points to the instruction
immediately following the sequence c, with a resulting memory
and stack satisfying Q . In symbols:

{P} c {Q} ,
c = �(n), . . . ,�(n0

� 1) ^ P(,�) =)
9 0 �0. Q(0,�0)

^ � ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] n 0

@T i

Note that the instruction memory � is unconstrained outside of c, so
if c is not self-contained, no triple about it will be provable; thus,
these triples obey the usual composition laws. Also, because the
concrete machine is deterministic, these triples express total, rather
than partial, correctness, which is essential for proving termination
in lemmas 7.1 and 7.2. To aid automation of proofs about code
sequences, we give triples in weakest-precondition style.

{P} [] {P}

8�. P 0(,�) =) P(,�)
8�. Q(,�) =) Q

0(,�)
{P} c {Q}

{P

0
} c {Q

0
}

{P1} c1 {P2} {P2} c2 {P3}

{P1} c1++c2 {P3}

We build proofs by composing atomic specifications of individ-
ual instructions, such as

P(,�) := 9n1 T1 n2 T2 �
0. � = n1@T1,n2@T2,�

0

^ Q(, ((n1+n2)@T ,�0))

{P} [Add] {Q}

,

with specifications for structured code generators, such as

P(,�) := 9n T�0. � = n@T,�0
^ (n 6= 0 =) P1(,�

0))
^(n = 0 =) P2(,�

0))
{P1} c1 {Q} {P2} c2 {Q}

{P} genIf c1 c2 {Q}

.

(We emphasize that all such specifications are verified, not axioma-
tized as the inference rule notation might suggest.) We also prove a
specification for the specialized case statement genIndexedCases.
Although this specification is quite complex when written in full
detail (and is thus omitted here), it is intuitively simple: given a list
of indices and functions for generating guards and branches from
the indices, genIndexedCases will run the guards in order until one
of them computes true (more precisely, its integer encoding 1), at
which point the corresponding branch is run.

The concrete implementations of the lattice operations are also
specified using triples in this style.

P(,�) := Q(, (Tag (?)@T ,�))

{P} genBot {Q}

P(,�) := 9LL

0 �0. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(,Tag (L_L0)@T ,�0)

{P} genJoin {Q}

P(,�) := 9LL

0 �. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(, (if L  L

0 then 1 else 0)@T ,�0)

{P} genFlows {Q}

For the two-point lattice, it is easy to prove that the implemented
operators satisfy these specifications; §11 describes an analogous
result for a lattice of sets of principals.

Going a bit further towards bridging the gap between the sym-
bolic rule and concrete machines, we prove specifications for the
generation of label expressions

⇢ ` LE # oL

P(,�) :=  = 0 ^ � = �0

Q(,�) :=  = 0 ^ � = Tag (oL)@T ,�0

{P} genELabLE {Q}

and for the code generated to implement the application of a sym-
bolic IFC symbolic rule. For instance, the case where the the in-
struction is allowed is described by the specification:

Escaping-code Hoare triples To be able to specify the entire code
of the generated fault handler, we also define a second form of
triple, {P} c {Q}

O
pc

, which specifies mostly self-contained, total
code c that either makes exactly one jump outside of c or returns
out of kernel mode. This non-locality is needed because the fault
handler checks whether an information flow violation is about to
occur, and returns to the user-mode caller if not (Success), or
jumps to an invalid address (Failure) otherwise. More precisely,
if P and Q are predicates on  ⇥ � and O is a function from
 ⇥ � to outcomes (the constants Success and Failure), then
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O
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holds if, whenever the kernel instruction memory �
contains the sequence c starting at the current PC, the current cache
and stack satisfy P , and

• if O computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.
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until it halts (pc = �1 in kernel mode), and Q is satisfied.
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✓
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These triples obey the natural extension of the familiar weaken-
ing law (omitted here) but their composition laws are non-standard:
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{P} c1++c2 {Q}
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The law on the left allows for pre-composing with self-contained
code, specified by a standard triple, while the one on the right
allows for post-composing with arbitrary code: since the post-
composed code will never be reached, its behavior need not be
specified. Finally, we use these triples to specify the Ret and Jump
instructions, which could not be given useful specifications using
using the contained-code triples:

P(,�) := 9�0. Q(,�0) ^ � = (pc, u);�0
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Going a bit further towards bridging the gap between the sym-
bolic rule and concrete machines, we prove specifications for the
generation of label expressions
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and for the code generated to implement the application of a sym-
bolic IFC symbolic rule. For instance, the case where the the in-
struction is allowed is described by the specification:

Escaping-code Hoare triples To be able to specify the entire code
of the generated fault handler, we also define a second form of
triple, {P} c {Q}

O
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, which specifies mostly self-contained, total
code c that either makes exactly one jump outside of c or returns
out of kernel mode. This non-locality is needed because the fault
handler checks whether an information flow violation is about to
occur, and returns to the user-mode caller if not (Success), or
jumps to an invalid address (Failure) otherwise. More precisely,
if P and Q are predicates on  ⇥ � and O is a function from
 ⇥ � to outcomes (the constants Success and Failure), then
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holds if, whenever the kernel instruction memory �
contains the sequence c starting at the current PC, the current cache
and stack satisfy P , and

• if O computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.
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These triples obey the natural extension of the familiar weaken-
ing law (omitted here) but their composition laws are non-standard:
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{P1} c1++c2 {P3}
O
pc

{P} c1 {Q}

O
pc

{P} c1++c2 {Q}

O
pc

The law on the left allows for pre-composing with self-contained
code, specified by a standard triple, while the one on the right
allows for post-composing with arbitrary code: since the post-
composed code will never be reached, its behavior need not be
specified. Finally, we use these triples to specify the Ret and Jump
instructions, which could not be given useful specifications using
using the contained-code triples:
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bulk of the proof. To specify the final handler step, we define a non-
standard triple {P} c {Q}

O
pc

for reasoning about escaping code (pc
and O describe how c escapes). .

Self-contained-code Hoare triples The triple {P} c {Q}, where
P and Q are predicates on ⇥�, says that, if the kernel instruction
memory � contains the code sequence c starting at the current PC,
and if the current memory and stack satisfy P , then the machine
will run (in kernel mode) until the PC points to the instruction
immediately following the sequence c, with a resulting memory
and stack satisfying Q . In symbols:

{P} c {Q} ,
c = �(n), . . . ,�(n0

� 1) ^ P(,�) =)
9 0 �0. Q(0,�0)

^ � ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] n 0

@T i

Note that the instruction memory � is unconstrained outside of c, so
if c is not self-contained, no triple about it will be provable; thus,
these triples obey the usual composition laws. Also, because the
concrete machine is deterministic, these triples express total, rather
than partial, correctness, which is essential for proving termination
in lemmas 7.1 and 7.2. To aid automation of proofs about code
sequences, we give triples in weakest-precondition style.
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8�. Q(,�) =) Q

0(,�)
{P} c {Q}

{P

0
} c {Q

0
}

{P1} c1 {P2} {P2} c2 {P3}

{P1} c1++c2 {P3}

We build proofs by composing atomic specifications of individ-
ual instructions, such as
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,

with specifications for structured code generators, such as
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.

(We emphasize that all such specifications are verified, not axioma-
tized as the inference rule notation might suggest.) We also prove a
specification for the specialized case statement genIndexedCases.
Although this specification is quite complex when written in full
detail (and is thus omitted here), it is intuitively simple: given a list
of indices and functions for generating guards and branches from
the indices, genIndexedCases will run the guards in order until one
of them computes true (more precisely, its integer encoding 1), at
which point the corresponding branch is run.

The concrete implementations of the lattice operations are also
specified using triples in this style.

P(,�) := Q(, (Tag (?)@T ,�))
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For the two-point lattice, it is easy to prove that the implemented
operators satisfy these specifications; §11 describes an analogous
result for a lattice of sets of principals.

Going a bit further towards bridging the gap between the sym-
bolic rule and concrete machines, we prove specifications for the
generation of label expressions
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and for the code generated to implement the application of a sym-
bolic IFC symbolic rule. For instance, the case where the the in-
struction is allowed is described by the specification:

Escaping-code Hoare triples To be able to specify the entire code
of the generated fault handler, we also define a second form of
triple, {P} c {Q}

O
pc

, which specifies mostly self-contained, total
code c that either makes exactly one jump outside of c or returns
out of kernel mode. This non-locality is needed because the fault
handler checks whether an information flow violation is about to
occur, and returns to the user-mode caller if not (Success), or
jumps to an invalid address (Failure) otherwise. More precisely,
if P and Q are predicates on  ⇥ � and O is a function from
 ⇥ � to outcomes (the constants Success and Failure), then
{P} c {Q}

O
pc

holds if, whenever the kernel instruction memory �
contains the sequence c starting at the current PC, the current cache
and stack satisfy P , and

• if O computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.

• if O computes Failure then the machine runs (in kernel mode)
until it halts (pc = �1 in kernel mode), and Q is satisfied.

Or, in symbols,

{P} c {Q}

O
pc

,
c = �(n), . . . ,�(n+ |c|� 1) ^ P(,�) =)
9 0 �0.

Q(0,�0)

^

✓
O(,�) = Success =)
� ` hk  µ [�] n@T i !

?
k hu 0 µ [�0] pci

◆

^

✓
O(,�) = Failure =)
� ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] �1@T i

◆

These triples obey the natural extension of the familiar weaken-
ing law (omitted here) but their composition laws are non-standard:
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The law on the left allows for pre-composing with self-contained
code, specified by a standard triple, while the one on the right
allows for post-composing with arbitrary code: since the post-
composed code will never be reached, its behavior need not be
specified. Finally, we use these triples to specify the Ret and Jump
instructions, which could not be given useful specifications using
using the contained-code triples:
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• if O computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.

• if O computes Failure then the machine runs (in kernel mode)
until it halts (pc = �1 in kernel mode), and Q is satisfied.

Or, in symbols,

{P} c {Q}

O
pc

,
c = �(n), . . . ,�(n+ |c|� 1) ^ P(,�) =)
9 0 �0.

Q(0,�0)

^

✓
O(,�) = Success =)
� ` hk  µ [�] n@T i !

?
k hu 0 µ [�0] pci

◆

^

✓
O(,�) = Failure =)
� ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] �1@T i

◆

These triples obey the natural extension of the familiar weaken-
ing law (omitted here) but their composition laws are non-standard:

{P1} c1 {P2} {P2} c2 {P3}
O
pc

{P1} c1++c2 {P3}
O
pc

{P} c1 {Q}

O
pc

{P} c1++c2 {Q}

O
pc

The law on the left allows for pre-composing with self-contained
code, specified by a standard triple, while the one on the right
allows for post-composing with arbitrary code: since the post-
composed code will never be reached, its behavior need not be
specified. Finally, we use these triples to specify the Ret and Jump
instructions, which could not be given useful specifications using
using the contained-code triples:

P(,�) := 9�0. Q(,�0) ^ � = (pc, u);�0

O(,�) := Success

{P} [Ret] {Q}

O
pc

P(,�) := 9�0. Q(,�0) ^ � = (�1)@ ,�0

O(,�) := Failure

{P} [Jump] {Q}

O
pc
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bulk of the proof. To specify the final handler step, we define a non-
standard triple {P} c {Q}

O
pc

for reasoning about escaping code (pc
and O describe how c escapes). .

Self-contained-code Hoare triples The triple {P} c {Q}, where
P and Q are predicates on ⇥�, says that, if the kernel instruction
memory � contains the code sequence c starting at the current PC,
and if the current memory and stack satisfy P , then the machine
will run (in kernel mode) until the PC points to the instruction
immediately following the sequence c, with a resulting memory
and stack satisfying Q . In symbols:

{P} c {Q} ,
c = �(n), . . . ,�(n0

� 1) ^ P(,�) =)
9 0 �0. Q(0,�0)

^ � ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] n 0

@T i

Note that the instruction memory � is unconstrained outside of c, so
if c is not self-contained, no triple about it will be provable; thus,
these triples obey the usual composition laws. Also, because the
concrete machine is deterministic, these triples express total, rather
than partial, correctness, which is essential for proving termination
in lemmas 7.1 and 7.2. To aid automation of proofs about code
sequences, we give triples in weakest-precondition style.

{P} [] {P}

8�. P 0(,�) =) P(,�)
8�. Q(,�) =) Q

0(,�)
{P} c {Q}

{P

0
} c {Q

0
}

{P1} c1 {P2} {P2} c2 {P3}

{P1} c1++c2 {P3}

We build proofs by composing atomic specifications of individ-
ual instructions, such as

P(,�) := 9n1 T1 n2 T2 �
0. � = n1@T1,n2@T2,�

0

^ Q(, ((n1+n2)@T ,�0))

{P} [Add] {Q}

,

with specifications for structured code generators, such as

P(,�) := 9n T�0. � = n@T,�0
^ (n 6= 0 =) P1(,�

0))
^(n = 0 =) P2(,�

0))
{P1} c1 {Q} {P2} c2 {Q}

{P} genIf c1 c2 {Q}

.

(We emphasize that all such specifications are verified, not axioma-
tized as the inference rule notation might suggest.) We also prove a
specification for the specialized case statement genIndexedCases.
Although this specification is quite complex when written in full
detail (and is thus omitted here), it is intuitively simple: given a list
of indices and functions for generating guards and branches from
the indices, genIndexedCases will run the guards in order until one
of them computes true (more precisely, its integer encoding 1), at
which point the corresponding branch is run.

The concrete implementations of the lattice operations are also
specified using triples in this style.

P(,�) := Q(, (Tag (?)@T ,�))

{P} genBot {Q}

P(,�) := 9LL

0 �0. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(,Tag (L_L0)@T ,�0)

{P} genJoin {Q}

P(,�) := 9LL

0 �. � = Tag (L)@T ,Tag (L0)@T ,�0

^ Q(, (if L  L

0 then 1 else 0)@T ,�0)

{P} genFlows {Q}

For the two-point lattice, it is easy to prove that the implemented
operators satisfy these specifications; §11 describes an analogous
result for a lattice of sets of principals.

Going a bit further towards bridging the gap between the sym-
bolic rule and concrete machines, we prove specifications for the
generation of label expressions

⇢ ` LE # oL

P(,�) :=  = 0 ^ � = �0

Q(,�) :=  = 0 ^ � = Tag (oL)@T ,�0

{P} genELabLE {Q}

and for the code generated to implement the application of a sym-
bolic IFC symbolic rule. For instance, the case where the the in-
struction is allowed is described by the specification:

Escaping-code Hoare triples To be able to specify the entire code
of the generated fault handler, we also define a second form of
triple, {P} c {Q}

O
pc

, which specifies mostly self-contained, total
code c that either makes exactly one jump outside of c or returns
out of kernel mode. This non-locality is needed because the fault
handler checks whether an information flow violation is about to
occur, and returns to the user-mode caller if not (Success), or
jumps to an invalid address (Failure) otherwise. More precisely,
if P and Q are predicates on  ⇥ � and O is a function from
 ⇥ � to outcomes (the constants Success and Failure), then
{P} c {Q}

O
pc

holds if, whenever the kernel instruction memory �
contains the sequence c starting at the current PC, the current cache
and stack satisfy P , and

• if O computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.

• if O computes Failure then the machine runs (in kernel mode)
until it halts (pc = �1 in kernel mode), and Q is satisfied.

Or, in symbols,

{P} c {Q}

O
pc

,
c = �(n), . . . ,�(n+ |c|� 1) ^ P(,�) =)
9 0 �0.

Q(0,�0)

^

✓
O(,�) = Success =)
� ` hk  µ [�] n@T i !

?
k hu 0 µ [�0] pci

◆

^

✓
O(,�) = Failure =)
� ` hk  µ [�] n@T i !

?
k hk 0 µ [�0] �1@T i

◆

These triples obey the natural extension of the familiar weaken-
ing law (omitted here) but their composition laws are non-standard:

{P1} c1 {P2} {P2} c2 {P3}
O
pc

{P1} c1++c2 {P3}
O
pc

{P} c1 {Q}

O
pc

{P} c1++c2 {Q}

O
pc

The law on the left allows for pre-composing with self-contained
code, specified by a standard triple, while the one on the right
allows for post-composing with arbitrary code: since the post-
composed code will never be reached, its behavior need not be
specified. Finally, we use these triples to specify the Ret and Jump
instructions, which could not be given useful specifications using
using the contained-code triples:

P(,�) := 9�0. Q(,�0) ^ � = (pc, u);�0

O(,�) := Success

{P} [Ret] {Q}

O
pc

P(,�) := 9�0. Q(,�0) ^ � = (�1)@ ,�0

O(,�) := Failure

{P} [Jump] {Q}

O
pc
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(We emphasize that all such specifications are verified, not axioma-
tized as the inference rule notation might suggest.) We also prove a
specification for the specialized case statement genIndexedCases.
Although this specification is quite complex when written in full
detail (and is thus omitted here), it is intuitively simple: given a list
of indices and functions for generating guards and branches from
the indices, genIndexedCases will run the guards in order until one
of them computes true (more precisely, its integer encoding 1), at
which point the corresponding branch is run.

The concrete implementations of the lattice operations are also
specified using triples in this style.
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For the two-point lattice, it is easy to prove that the implemented
operators satisfy these specifications; §11 describes an analogous
result for a lattice of sets of principals.

Going a bit further towards bridging the gap between the sym-
bolic rule and concrete machines, we prove specifications for the
generation of label expressions

⇢ ` LE # oL

P(,�) :=  = 0 ^ � = �0

Q(,�) :=  = 0 ^ � = Tag (oL)@T ,�0

{P} genELabLE {Q}

and for the code generated to implement the application of a sym-
bolic IFC symbolic rule. For instance, the case where the the in-
struction is allowed is described by the specification:

Escaping-code Hoare triples To be able to specify the entire code
of the generated fault handler, we also define a second form of
triple, {P} c {Q}

O
pc

, which specifies mostly self-contained, total
code c that either makes exactly one jump outside of c or returns
out of kernel mode. This non-locality is needed because the fault
handler checks whether an information flow violation is about to
occur, and returns to the user-mode caller if not (Success), or
jumps to an invalid address (Failure) otherwise. More precisely,
if P and Q are predicates on  ⇥ � and O is a function from
 ⇥ � to outcomes (the constants Success and Failure), then
{P} c {Q}

O
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holds if, whenever the kernel instruction memory �
contains the sequence c starting at the current PC, the current cache
and stack satisfy P , and

• if O computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.

• if O computes Failure then the machine runs (in kernel mode)
until it halts (pc = �1 in kernel mode), and Q is satisfied.
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These triples obey the natural extension of the familiar weaken-
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The law on the left allows for pre-composing with self-contained
code, specified by a standard triple, while the one on the right
allows for post-composing with arbitrary code: since the post-
composed code will never be reached, its behavior need not be
specified. Finally, we use these triples to specify the Ret and Jump
instructions, which could not be given useful specifications using
using the contained-code triples:

P(,�) := 9�0. Q(,�0) ^ � = (pc, u);�0

O(,�) := Success

{P} [Ret] {Q}

O
pc

P(,�) := 9�0. Q(,�0) ^ � = (�1)@ ,�0

O(,�) := Failure

{P} [Jump] {Q}

O
pc

Draft 9 2013/7/12

• Triples for concrete lattice operations (genBot, genJoin, genFlows)

• WP style helps automate proofs (straight-line code)
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• propose abstracted version 
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• prove interesting property of abstract object

• automatically follows for concrete object
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• Refinement framework very useful for reasoning 
• start with concrete object

• propose abstracted version 
• incorporate convenient structure and annotations 

• prove refinement

• prove interesting property of abstract object

• automatically follows for concrete object

• Need a generic notion of noninterference that makes 
sense for all machines 
• Includes a notion of abstracting concrete tags (and associated 

memory states) into labels
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• SAFE architecture is quite generic
• Can be used to implement a range of IFC label models just by 

varying the rule table   [Montagu CSF ’13]
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• SAFE architecture is quite generic
• Can be used to implement a range of IFC label models just by 

varying the rule table   [Montagu CSF ’13]

• Other potential uses
• access control (clearance), memory protection, linearity, 

dynamic typing

More uses for tags

35

Conclusion

Not presented here : richer IFC tag model
• Sets of statically known principals

• Memory allocation, and tags are pointers to data 
structures dynamically allocated in kernel memory
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