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Universal algebra

Goal of Universal algebra

specify
• terms
• equations of terms

by a signature

Signature of group theory:

• e : 0
• (_)−1 : 1
• ∗ : 2
+ equations

A group G is a set G with

operations and equations:
• e : G
• (_)−1 : G → G
• (∗) : G × G → G
• e ∗ g = g
• g ∗ g−1 = e
• . . .

The free group of a set X

inductively generated by
the signature.
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Goal: Universal algebra for programming languages

Goal: signatures for languages with variable binding

• want inequalities rather than equalities between terms
 model reductions more faithfully
• characterize language specified by signature categorically

Signatures specifying

• types + terms
• reduction rules

Characterization of generated
language

• category of models of
signature

• language as initial model
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Universal algebra with variable binding: related work

• Gabbay & Pitts
• nominal syntax, no equations

• Hofmann, Miculan & Scagnetto
• HOAS, no equations

• Fiore
• algebraic de Bruijn, equations

• Hirschowitz & Maggesi
• algebraic de Bruijn, equations

My work

• inspired by Hirschowitz & Maggesi
• adapted to

• inequalities
• simple typing

Benedikt Ahrens Modules over monads for operational semantics 4/19



Content of this talk

In this talk:

• Models of the untyped λ-calculus with β-reduction
• the λ-calculus as initial such model

Not in this talk — but elsewhere:

• General notion of signature for languages with reduction
• Signatures and models for simply-typed languages with term
reductions

First: take a look at H & M’s work on λ-calculus without reductions
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1 Review of Hirschowitz & Maggesi’s work

2 Integrating reduction rules
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λ-calculus as a monad on Set (Altenkirch & Reus ’99)

Inductive LC (V : Set) : Set :=
| Var : V -> LC(V)
| Abs : LC(option V) -> LC(V)
| App : LC(V) x LC(V) -> LC(V)

• Monad: set of terms over free variables

LC(V ) = set of lambda terms over free variables in set V

• Monad structure: “Variables–as–terms” and substitution

VarV : V → LC(V )

(�= )V ,W : LC(V )×
(
V → LC(W )

)
→ LC(W )

• Monad axioms: properties of variable substitution
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Constructors and substitution

Goal: capture the interplay between constructors and substitution

App(M,N)�= f = App(M �= f ,N �= f )

Abs(M)�= f = Abs
(
M �= shift(f )

)
First try: are Abs and App monad morphisms?

Abs : LC∗ → LC with LC∗ : V 7→ LC(option V )

App : LC× LC→ LC

Fails:
• LC∗ a monad, but Abs not monad morphism
• LC× LC not a monad in a reasonable sense
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Modules over monads

Modules over monads generalize monads...

and the functors
LC : V 7→ LC(V )

LC∗ : V 7→ LC(option V )

LC× LC : V 7→ LC(V )× LC(V )

are modules over the monad LC.

and the constructors are module morphisms:

Abs : LC∗ → LC
App : LC× LC→ LC

Expresses precisely distributivity of substitution over App and Abs.
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Initiality for pure syntax

Summary: we have

• monad LC
• module morphisms

App : LC× LC→ LC
Abs : LC∗ → LC

Def.: model of λ-calculus

• monad P
• module morphisms

AppP : P × P → P

AbsP : P∗ → P

Theorem (Hirschowitz & Maggesi)

(LC ,App,Abs) is the initial object in the category of models.

Now: integrating reduction rules.
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1 Review of Hirschowitz & Maggesi’s work

2 Integrating reduction rules
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Integrating Semantics, untyped

Goal: define “model of λ-calculus with β-reduction”

such that λ-calculus with

λx .M(N)  M[x := N]

is the initial model.

Main question:

How should “ ” be modelled mathematically?

X Terms modulo relations, quotienting
X Monads Pre→ Pre
X Relative Monads Set→ Pre

with Pre := category of preordered sets
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Relative monads

Definition (Monad on C)

• P : C → C
• ηX : C(X ,PX )

• σX ,Y : C(X ,PY )→ C(PX ,PY )

• monad laws

Definition (Relative monad over a functor F — Altenkirch et al.)

+ F : C → D
• P : C → D
• ηX : D(FX ,PX )

• σX ,Y : D(FX ,PY )→ D(PX ,PY )

• relative monad laws
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The functor ∆ : Set→ Pre

Definition (∆ : Set→ Pre)

∆ : Set→ Pre := left adjoint to forgetful U : Pre→ Set, i.e.

∆ : X 7→ (X , diagonal)

Definition

LCβ(V ) := preordered set of λ-terms over variables in V

I preorder given by reflexive-transitive closure of β-reduction
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λ-calculus as relative monad

Relative monad structure on LCβ

• Relative monad structure: Variables and substitution

VarV : Set
(
V , LC(V )

)
σV ,W : Set

(
V , LC(W )

)
→ Pre

(
LCβ(V ), LCβ(W )

)
• σ ≡ (�= ) modulo currying
• needs proof that (�= ) is compatible with β in 1. argument

• relative monad laws: substitution properties as before

There are also modules over relative monads

and morphisms of such modules describe distributivity of
substitution over App and Abs.
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Initiality for syntax with reductions

Summary: we have

• relative monad LCβ over ∆

• rel. module morphisms

Appβ : LCβ × LCβ → LCβ
Absβ : LC∗

β → LCβ

Def.: model of λ-calculus w. β

• relative monad P over ∆

• rel. module morphisms

AppP : P × P → P

AbsP : P∗ → P

Theorem

(LCβ,Appβ,Absβ) is the initial object in the category of models.
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Refinement: integrate higher-order compatibility

Substitution is compatible with β-reduction

also in the higher-order argument:

σV ,W : Pre
(
∆(V ), LCβ(W )

)
→ Pre

(
LCβ(V ), LCβ(W )

)
f  g =⇒ σ(f ) σ(g)

pointwise pointwise

Captured by relative monad towards category enriched over itself:

Definition (Relative monad over a functor F : C → D)

with D enriched over itself (e.g., Pre):

σX ,Y : D
(
D(FX ,PY ),D(PX ,PY )

)
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What I have not told

• Signatures

• works with types, too

• allows to define translations with good properties by
construction

• implemented in the proof assistant Coq

Benedikt Ahrens Modules over monads for operational semantics 18/19



Future work

• Automation in Coq for specifying inequalities
 automate proofs of compatibility properties

• more fine-grained modeling of reduction
 by using a better category than Pre

• Non-wellfounded syntax
 as relative monads from sets to setoids

• Coinductive data types as relative comonads

Thanks for your attention!
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