
Modules over monads for operational semantics

Benedikt Ahrens

Institut de Recherche en Informatique de Toulouse
Université Paul Sabatier

Journées GDR LTP
2013–11–25

Participation sponsored by project CLIMT (ANR-11-BS02-016)

Benedikt Ahrens Modules over monads for operational semantics 1/19

Universal algebra

Goal of Universal algebra

specify
• terms
• equations of terms

by a signature

Signature of group theory:

• e : 0
• (_)−1 : 1
• ∗ : 2
+ equations

A group G is a set G with

operations and equations:
• e : G
• (_)−1 : G → G
• (∗) : G × G → G
• e ∗ g = g
• g ∗ g−1 = e
• . . .

The free group of a set X

inductively generated by
the signature.

Benedikt Ahrens Modules over monads for operational semantics 2/19

Goal: Universal algebra for programming languages

Goal: signatures for languages with variable binding

• want inequalities rather than equalities between terms
 model reductions more faithfully
• characterize language specified by signature categorically

Signatures specifying

• types + terms
• reduction rules

Characterization of generated
language

• category of models of
signature

• language as initial model

Benedikt Ahrens Modules over monads for operational semantics 3/19

Universal algebra with variable binding: related work

• Gabbay & Pitts
• nominal syntax, no equations

• Hofmann, Miculan & Scagnetto
• HOAS, no equations

• Fiore
• algebraic de Bruijn, equations

• Hirschowitz & Maggesi
• algebraic de Bruijn, equations

My work

• inspired by Hirschowitz & Maggesi
• adapted to

• inequalities
• simple typing

Benedikt Ahrens Modules over monads for operational semantics 4/19

Content of this talk

In this talk:

• Models of the untyped λ-calculus with β-reduction
• the λ-calculus as initial such model

Not in this talk — but elsewhere:

• General notion of signature for languages with reduction
• Signatures and models for simply-typed languages with term
reductions

First: take a look at H & M’s work on λ-calculus without reductions

Benedikt Ahrens Modules over monads for operational semantics 5/19

1 Review of Hirschowitz & Maggesi’s work

2 Integrating reduction rules

Benedikt Ahrens Modules over monads for operational semantics 6/19

λ-calculus as a monad on Set (Altenkirch & Reus ’99)

Inductive LC (V : Set) : Set :=
| Var : V -> LC(V)
| Abs : LC(option V) -> LC(V)
| App : LC(V) x LC(V) -> LC(V)

• Monad: set of terms over free variables

LC(V) = set of lambda terms over free variables in set V

• Monad structure: “Variables–as–terms” and substitution

VarV : V → LC(V)

(�=)V ,W : LC(V)×
(
V → LC(W)

)
→ LC(W)

• Monad axioms: properties of variable substitution

Benedikt Ahrens Modules over monads for operational semantics 7/19

Constructors and substitution

Goal: capture the interplay between constructors and substitution

App(M,N)�= f = App(M �= f ,N �= f)

Abs(M)�= f = Abs
(
M �= shift(f)

)
First try: are Abs and App monad morphisms?

Abs : LC∗ → LC with LC∗ : V 7→ LC(option V)

App : LC× LC→ LC

Fails:
• LC∗ a monad, but Abs not monad morphism
• LC× LC not a monad in a reasonable sense

Benedikt Ahrens Modules over monads for operational semantics 8/19

Modules over monads

Modules over monads generalize monads...

and the functors
LC : V 7→ LC(V)

LC∗ : V 7→ LC(option V)

LC× LC : V 7→ LC(V)× LC(V)

are modules over the monad LC.

and the constructors are module morphisms:

Abs : LC∗ → LC
App : LC× LC→ LC

Expresses precisely distributivity of substitution over App and Abs.

Benedikt Ahrens Modules over monads for operational semantics 9/19

Initiality for pure syntax

Summary: we have

• monad LC
• module morphisms

App : LC× LC→ LC
Abs : LC∗ → LC

Def.: model of λ-calculus

• monad P
• module morphisms

AppP : P × P → P

AbsP : P∗ → P

Theorem (Hirschowitz & Maggesi)

(LC ,App,Abs) is the initial object in the category of models.

Now: integrating reduction rules.

Benedikt Ahrens Modules over monads for operational semantics 10/19

1 Review of Hirschowitz & Maggesi’s work

2 Integrating reduction rules

Benedikt Ahrens Modules over monads for operational semantics 11/19

Integrating Semantics, untyped

Goal: define “model of λ-calculus with β-reduction”

such that λ-calculus with

λx .M(N) M[x := N]

is the initial model.

Main question:

How should “ ” be modelled mathematically?

X Terms modulo relations, quotienting
X Monads Pre→ Pre
X Relative Monads Set→ Pre

with Pre := category of preordered sets

Benedikt Ahrens Modules over monads for operational semantics 12/19

Relative monads

Definition (Monad on C)

• P : C → C
• ηX : C(X ,PX)

• σX ,Y : C(X ,PY)→ C(PX ,PY)

• monad laws

Definition (Relative monad over a functor F — Altenkirch et al.)

+ F : C → D
• P : C → D
• ηX : D(FX ,PX)

• σX ,Y : D(FX ,PY)→ D(PX ,PY)

• relative monad laws

Benedikt Ahrens Modules over monads for operational semantics 13/19

The functor ∆ : Set→ Pre

Definition (∆ : Set→ Pre)

∆ : Set→ Pre := left adjoint to forgetful U : Pre→ Set, i.e.

∆ : X 7→ (X , diagonal)

Definition

LCβ(V) := preordered set of λ-terms over variables in V

I preorder given by reflexive-transitive closure of β-reduction

Benedikt Ahrens Modules over monads for operational semantics 14/19

λ-calculus as relative monad

Relative monad structure on LCβ

• Relative monad structure: Variables and substitution

VarV : Set
(
V , LC(V)

)
σV ,W : Set

(
V , LC(W)

)
→ Pre

(
LCβ(V), LCβ(W)

)
• σ ≡ (�=) modulo currying
• needs proof that (�=) is compatible with β in 1. argument

• relative monad laws: substitution properties as before

There are also modules over relative monads

and morphisms of such modules describe distributivity of
substitution over App and Abs.

Benedikt Ahrens Modules over monads for operational semantics 15/19

Initiality for syntax with reductions

Summary: we have

• relative monad LCβ over ∆

• rel. module morphisms

Appβ : LCβ × LCβ → LCβ
Absβ : LC∗

β → LCβ

Def.: model of λ-calculus w. β

• relative monad P over ∆

• rel. module morphisms

AppP : P × P → P

AbsP : P∗ → P

Theorem

(LCβ,Appβ,Absβ) is the initial object in the category of models.

Benedikt Ahrens Modules over monads for operational semantics 16/19

Refinement: integrate higher-order compatibility

Substitution is compatible with β-reduction

also in the higher-order argument:

σV ,W : Pre
(
∆(V), LCβ(W)

)
→ Pre

(
LCβ(V), LCβ(W)

)
f g =⇒ σ(f) σ(g)

pointwise pointwise

Captured by relative monad towards category enriched over itself:

Definition (Relative monad over a functor F : C → D)

with D enriched over itself (e.g., Pre):

σX ,Y : D
(
D(FX ,PY),D(PX ,PY)

)
Benedikt Ahrens Modules over monads for operational semantics 17/19

What I have not told

• Signatures

• works with types, too

• allows to define translations with good properties by
construction

• implemented in the proof assistant Coq

Benedikt Ahrens Modules over monads for operational semantics 18/19

Future work

• Automation in Coq for specifying inequalities
 automate proofs of compatibility properties

• more fine-grained modeling of reduction
 by using a better category than Pre

• Non-wellfounded syntax
 as relative monads from sets to setoids

• Coinductive data types as relative comonads

Thanks for your attention!

Benedikt Ahrens Modules over monads for operational semantics 19/19

Future work

• Automation in Coq for specifying inequalities
 automate proofs of compatibility properties

• more fine-grained modeling of reduction
 by using a better category than Pre

• Non-wellfounded syntax
 as relative monads from sets to setoids

• Coinductive data types as relative comonads

Thanks for your attention!

Benedikt Ahrens Modules over monads for operational semantics 19/19

	Review of Hirschowitz & Maggesi's work
	Integrating reduction rules

