Nested Atomic Sections with Thread Escape: A
Formal Definition

Frédéric Dabrowski, Frédéric Loulergue, Thomas Pinsard
LIFO - Université d’' Orléans

18/11/2013

Journées GDR LTP

1/25

@ Presentation

© Semantics domain
@ Definitions
@ Particular traces

© Serialisability

@ Conclusion

2/25

Concurrent programming

@ Multi-core trend
@ Gap between programming languages and hardware
@ No suitable abstraction to deal with shared data

3/25

Locks : the most common pattern

@ Map operations to protect to a lock
@ Responsibility to the user to prevent interference

@ Error prone : deadlocks, need to understand the whole
program

@ Dilemma of the granularity : coarse/inefficient or fine/complex

count := 0; Lock I; }
procedure inc_count(){ procedure main()
lock(l) {
{ a := fork(inc_count);
count := count+1; b := fork(inc_count);
} print(count);
unlock(l) }

4/25

Atomic sections : an alternative ?

@ Responsibility to the run-time system or the compiler to
prevent interference

@ The user only delimits the region to protect

count := 0;
procedure inc_count(){ procedure main()
atomic {
{ a := fork(inc_count);
count := count+1; b := fork(inc_count);
} print(count);
} }

5/25

Atomic sections : implementations

@ Transaction

e Inspired from a database managements systems

e Optimistic approach : assume no interference

e Cancelled, roll-back and re-execute if interference happens
@ Locks inference

o Pessimistic approach : prevent interference
e Set of locks inferred by the compiler

6/25

We do not focus first on implementation, but on the semantics of
atomic sections.

Our goal

Certified compilation of atomic sections toward locks

Certified
Compilation

Language with atomic sections Language with locks

7/25

Nested atomic sections and inner parallelism

@ nested for modularity
@ distinctive instructions of spawn
@ threads live either completely inside or outside a section

@ simple, but poor expressivity

procedure m1(x) procedure main(){
{ x:=1;
atomic atomic{
{ y := fork (m1,x);
a:=[x]
} }

8/25

No such constraints, nested and escaping thread. Need to define a
new notion of atomicity.

9/25

Semantics domain

Language

@ Simple imperative language
e fork/join and atomic primitives
@ Nested atomic sections

@ Thread can escape surrounding section

10/25

Semantics domain
©00000

Definitions

Traces

@ Abstraction from program semantics.
@ Sequence of events.
@ events ::= (thread,action)

@ Assume disjoint countable set of memory locations, thread
identifiers and section names.

a == |7
| alloc £ n | free ¢
| read ¢ n v |write £ nv
| fork t| join t
| open p | close p

11/25

Semantics domain
0®0000

Definitions

Well-formed traces

@ Set of properties on traces.

@ Abstraction of the operational semantics.

@ Each section name, thread identifier is unique.

@ A fork of a thread is done before the action this thread.

@ A join on a thread t is done after the action this thread and
after its fork.

@ The opening and the closing of a section is done by the same
thread, and the close matches the last open.

Others conditions, need to have some additional definitions.

12/25

Semantics domain
00®000

Definitions

tribes
o for a trace s and a section name, gives the thread identifiers
which are allowed to interfere with each other while the
section is opened.
o defined as the least set containing :

o the thread owner of the section
o the threads forked as a side effect of the execution of the
section (tribe children)

pO QC
[/ N t1
_\\v - £2
£3

FIGURE : tribes(po) = {to, t1, t2}

13/25

Semantics domain
[eleleY Yolo)

Definitions

P Esp
@ sections opened by the thread owner of p while p is opened

@ sections opened by tribe children of p

concurrent section
p—sp Ep&p AP & p

0 Q to

[fi///////'z \\\\\ pl t1
p)

t 7 ~ t2

O
—0\ p3)

FIGURE : p1, p2 €s po, Po —s P3

14/25

Semantics domain
0000e0

Definitions

@ pending section : a section is pending if there is no closing

o projection : 7s(i) it element of the trace s

act

act(j) ith action of the trace s

(NN

@ projection : T

FIGURE : pending section

15/25

Semantics domain
00000e

Definitions

Well-formed trace(2)

@ A terminated thread don't have any pending section.

@ A thread to join another thread t, must have received
explicitly its identifier.

@ Two concurrent sections are in mutual exclusion, i.e. the
closing of one must precede the opening of the other.

16/25

Semantics domain
[I}

Particular traces

Well-synchronized

We restraint to well-synchronized trace.

Well-synchronisation

A trace is well-synchronized if all of its conflicting accesses are
synchronized

conflicting accesses : two actions conflict if they are both
memory accesses over the same location and at least one is a write.

(read ¢ nv) x (write £ n V')
(write £ nv) w (read £ n V')
(write £ nv) x (write £ n V')

17/25

Semantics domain
oce

Particular traces

Synchronisation

———
4o /@ t,
— .

synchronisation

18/25

Semantics domain
oce

Particular traces

Synchronisation

———
T T /@ t
— .

synchronisation of two actions of the same thread

18/25

Semantics domain
oce

Particular traces

Synchronisation

—
4o /@ t,
DZEN

synchronisation of a fork of a thread and the action done by it

18/25

Semantics domain
oce

Particular traces

Synchronisation

———
4o /@ t,
DZEN

synchronisation of a fork of a thread and the action done by it

18/25

Semantics domain
oce

Particular traces

Synchronisation

l L (P21) t,
___J

I] t

synchronisation of the action done by a thread and the join

18/25

Semantics domain
oce

Particular traces

Synchronisation

l L (P21) t,
___J

] I t

synchronisation of the action done by a thread and the join

18/25

Semantics domain
oce

Particular traces

Synchronisation

—
4o /@ t,
— .

synchronisation of the closing,opening of two concurrent sections

18/25

Semantics domain
oce

Particular traces

Synchronisation

transitive closure

18/25

Serialisability

Atomicity

o Weak atomicity :
e Atomic section isolated from concurrent atomic sections
e Ensure by our condition of well-formedness

@ Strong atomicity :

e Atomic sections isolated from outside.
o We want to prove that well-synchronised traces ensure this
property of serialisability

19/25

Serialisability

Every well-formed and well-synchronised trace is serialisable.

20/25

Serialisability

Every well-formed and well-synchronised trace is serialisable.

20/25

Serialisability

Serialisable

A trace s is serialisable if there exists a serial trace s’ such that s is
equivalent to s'.

21/25

Serialisability

Serialisable

A trace s is serialisable if there exists a serial trace s’ such that s
is equivalent to s’.

Serial trace

| A

A trace s is serial if for all section p only threads members of
tribes p run when the section is opened.

21/25

Serialisability

Serialisable

A trace s is serialisable if there exists a serial trace s’ such that s
is equivalent to s’.

Serial trace
A trace s is serial if for all section p only threads members of
tribes p run when the section is opened.

Equivalence

Two traces s and s’ are (schedule-)equivalent?, noted s = ¢/, if
there exists a bijection between positions of s and s’ such that

(1) =ws(i) = 7 (v())) for all i < |s|
(2) swsij<e swy (i) () foralli,j<]|s|

a. This equivalence relation implies the more classical (conflict-)equivalence
relation

21/25

Serialisability

Sketch of the proof

Every well-formed and well-synchronised trace is serialisable.

Sketch of the proof

@ induction on trace s.
o base case : trivial.
o s-(t,a) with s = s’ where s’ is serial
o s-(t,a)=s"-(t,a)
o s’ - (t,a) serialisable.

22/25

Conclusion

@ Formalisation in the proof assistant Coq
e 15 000 lines :

o 30% definitions
e 70% proofs

23/25

Conclusion

Ongoing work

Properties on traces can be viewed as a specification.

Atomic Fork Join

Imperative language with atomic sections

@ Operational semantics
@ Proof that it verifies the specification
o

Source language for compilation

V.

Lock Unlock Fork Join

@ No atomic sections

Lock-based implementation

One lock by level

Target language for compilation

24/25

Conclusion

@ Language supporting nesting and escaping thread

@ Definition of well-synchronised and serialisability

”
Perspectives

@ Verification of implementation

o Efficient implementation

A\

25/25

	Presentation
	Semantics domain
	Definitions
	Particular traces

	Serialisability
	Conclusion

