
Presentation Semantics domain Serialisability Conclusion

Nested Atomic Sections with Thread Escape: A
Formal Definition

Frédéric Dabrowski, Frédéric Loulergue, Thomas Pinsard

LIFO - Université d’ Orléans

18/11/2013

Journées GDR LTP

1/25

Presentation Semantics domain Serialisability Conclusion

1 Presentation

2 Semantics domain
Definitions
Particular traces

3 Serialisability

4 Conclusion

2/25

Presentation Semantics domain Serialisability Conclusion

Concurrent programming

Multi-core trend

Gap between programming languages and hardware

No suitable abstraction to deal with shared data

3/25

Presentation Semantics domain Serialisability Conclusion

Locks : the most common pattern

Map operations to protect to a lock

Responsibility to the user to prevent interference

Error prone : deadlocks, need to understand the whole
program

Dilemma of the granularity : coarse/inefficient or fine/complex

Example

count := 0; Lock l;
procedure inc count(){

lock(l)
{

count := count+1;
}
unlock(l)

}
procedure main()
{

a := fork(inc count);
b := fork(inc count);
print(count);
}

4/25

Presentation Semantics domain Serialisability Conclusion

Atomic sections : an alternative ?

Responsibility to the run-time system or the compiler to
prevent interference

The user only delimits the region to protect

Example

count := 0;
procedure inc count(){

atomic
{

count := count+1;
}
}

procedure main()
{

a := fork(inc count);
b := fork(inc count);
print(count);
}

5/25

Presentation Semantics domain Serialisability Conclusion

Atomic sections : implementations

Transaction

Inspired from a database managements systems
Optimistic approach : assume no interference
Cancelled, roll-back and re-execute if interference happens

Locks inference

Pessimistic approach : prevent interference
Set of locks inferred by the compiler

6/25

Presentation Semantics domain Serialisability Conclusion

We do not focus first on implementation, but on the semantics of
atomic sections.

Our goal

Certified compilation of atomic sections toward locks

Language with atomic sections Language with locks

Certi ed

Compilation

7/25

Presentation Semantics domain Serialisability Conclusion

Nested atomic sections and inner parallelism

nested for modularity

distinctive instructions of spawn

threads live either completely inside or outside a section

simple, but poor expressivity

Example

procedure m1(x)
{

atomic
{

a := [x]
}
}

procedure main(){
x := 1;
atomic{

y := fork (m1,x);
}

}

8/25

Presentation Semantics domain Serialisability Conclusion

No such constraints, nested and escaping thread. Need to define a
new notion of atomicity.

9/25

Presentation Semantics domain Serialisability Conclusion

Language

Simple imperative language

fork/join and atomic primitives

Nested atomic sections

Thread can escape surrounding section

10/25

Presentation Semantics domain Serialisability Conclusion

Definitions

Traces

Abstraction from program semantics.

Sequence of events.

events ::= (thread,action)

Assume disjoint countable set of memory locations, thread
identifiers and section names.

Actions

a ::= | τ
| alloc ` n | free `
| read ` n v | write ` n v
| fork t | join t
| open p | close p

11/25

Presentation Semantics domain Serialisability Conclusion

Definitions

Well-formed traces

Set of properties on traces.

Abstraction of the operational semantics.

Conditions

Each section name, thread identifier is unique.

A fork of a thread is done before the action this thread.

A join on a thread t is done after the action this thread and
after its fork.

The opening and the closing of a section is done by the same
thread, and the close matches the last open.

Others conditions, need to have some additional definitions.

12/25

Presentation Semantics domain Serialisability Conclusion

Definitions

tribes

for a trace s and a section name, gives the thread identifiers
which are allowed to interfere with each other while the
section is opened.

defined as the least set containing :

the thread owner of the section
the threads forked as a side effect of the execution of the
section (tribe children)

t0

t1

t2

t3

p0

Figure : tribes(p0) = {t0, t1, t2}

13/25

Presentation Semantics domain Serialisability Conclusion

Definitions

subsection

p′ bs p

sections opened by the thread owner of p while p is opened

sections opened by tribe children of p

concurrent section

p ^s p
′ , p 6bs p

′ ∧ p′ 6bs p

t0

t1

t2

t3

p0
p1

p2

p3

Figure : p1, p2 bs p0, p0 ^s p3

14/25

Presentation Semantics domain Serialisability Conclusion

Definitions

pending section : a section is pending if there is no closing

projection : πs(i) i th element of the trace s

projection : πacts (i) i th action of the trace s

t0
p

Figure : pending section

15/25

Presentation Semantics domain Serialisability Conclusion

Definitions

Well-formed trace(2)

Conditions

A terminated thread don’t have any pending section.

A thread to join another thread t, must have received
explicitly its identifier.

Two concurrent sections are in mutual exclusion, i.e. the
closing of one must precede the opening of the other.

16/25

Presentation Semantics domain Serialisability Conclusion

Particular traces

Well-synchronized

We restraint to well-synchronized trace.

Well-synchronisation

A trace is well-synchronized if all of its conflicting accesses are
synchronized

conflicting accesses : two actions conflict if they are both
memory accesses over the same location and at least one is a write.

(read ` n v) on (write ` n v ′)
(write ` n v) on (read ` n v ′)
(write ` n v) on (write ` n v ′)

17/25

Presentation Semantics domain Serialisability Conclusion

Particular traces

Synchronisation

p1

p2

t0

t1

t2

synchronisation

18/25

Presentation Semantics domain Serialisability Conclusion

Particular traces

Synchronisation

p1

p2

t0

t1

t2

synchronisation of two actions of the same thread

18/25

Presentation Semantics domain Serialisability Conclusion

Particular traces

Synchronisation

p1

p2

t0

t1

t2

synchronisation of a fork of a thread and the action done by it

18/25

Presentation Semantics domain Serialisability Conclusion

Particular traces

Synchronisation

p1

p2

t0

t1

t2

synchronisation of a fork of a thread and the action done by it

18/25

Presentation Semantics domain Serialisability Conclusion

Particular traces

Synchronisation

p1

p2

t0

t1

t2

synchronisation of the action done by a thread and the join

18/25

Presentation Semantics domain Serialisability Conclusion

Particular traces

Synchronisation

p1

p2

t0

t1

t2

synchronisation of the action done by a thread and the join

18/25

Presentation Semantics domain Serialisability Conclusion

Particular traces

Synchronisation

p1

p2

t0

t1

t2

synchronisation of the closing,opening of two concurrent sections

18/25

Presentation Semantics domain Serialisability Conclusion

Particular traces

Synchronisation

p1

p2

t0

t1

t2

transitive closure

18/25

Presentation Semantics domain Serialisability Conclusion

Atomicity

Weak atomicity :

Atomic section isolated from concurrent atomic sections
Ensure by our condition of well-formedness wf

Strong atomicity :

Atomic sections isolated from outside.
We want to prove that well-synchronised traces ensure this
property of serialisability

19/25

Presentation Semantics domain Serialisability Conclusion

Theorem

Every well-formed and well-synchronised trace is serialisable.

20/25

Presentation Semantics domain Serialisability Conclusion

Theorem

Every well-formed and well-synchronised trace is serialisable.

20/25

Presentation Semantics domain Serialisability Conclusion

Serialisable

A trace s is serialisable if there exists a serial trace s ′ such that s is
equivalent to s ′.

Serial trace

A trace s is serial if for all section p only threads members of
tribes p run when the section is opened.

Equivalence

Two traces s and s ′ are (schedule-)equivalent a, noted s ; s ′, if
there exists a bijection γ between positions of s and s ′ such that

(1) πs(i) = πs′(γ(j)) for all i < |s|
(2) sws i j ⇔ sws′ γ(i) γ(j) for all i , j < |s|

a. This equivalence relation implies the more classical (conflict-)equivalence
relation

21/25

Presentation Semantics domain Serialisability Conclusion

Serialisable

A trace s is serialisable if there exists a serial trace s ′ such that s
is equivalent to s ′.

Serial trace

A trace s is serial if for all section p only threads members of
tribes p run when the section is opened.

Equivalence

Two traces s and s ′ are (schedule-)equivalent a, noted s ; s ′, if
there exists a bijection γ between positions of s and s ′ such that

(1) πs(i) = πs′(γ(j)) for all i < |s|
(2) sws i j ⇔ sws′ γ(i) γ(j) for all i , j < |s|

a. This equivalence relation implies the more classical (conflict-)equivalence
relation

21/25

Presentation Semantics domain Serialisability Conclusion

Serialisable

A trace s is serialisable if there exists a serial trace s ′ such that s
is equivalent to s ′.

Serial trace

A trace s is serial if for all section p only threads members of
tribes p run when the section is opened.

Equivalence

Two traces s and s ′ are (schedule-)equivalent a, noted s ; s ′, if
there exists a bijection γ between positions of s and s ′ such that

(1) πs(i) = πs′(γ(j)) for all i < |s|
(2) sws i j ⇔ sws′ γ(i) γ(j) for all i , j < |s|

a. This equivalence relation implies the more classical (conflict-)equivalence
relation

21/25

Presentation Semantics domain Serialisability Conclusion

Sketch of the proof

Theorem

Every well-formed and well-synchronised trace is serialisable.

Sketch of the proof

induction on trace s.

base case : trivial.
s · (t, a) with s ; s ′ where s ′ is serial

s · (t, a) ; s ′ · (t, a)
s ′ · (t, a) serialisable.

22/25

Presentation Semantics domain Serialisability Conclusion

Coq

Formalisation in the proof assistant Coq

15 000 lines :

30% definitions
70% proofs

23/25

Presentation Semantics domain Serialisability Conclusion

Ongoing work

Properties on traces can be viewed as a specification.

Atomic Fork Join

Imperative language with atomic sections

Operational semantics

Proof that it verifies the specification

Source language for compilation

Lock Unlock Fork Join

No atomic sections

Lock-based implementation

One lock by level

Target language for compilation

24/25

Presentation Semantics domain Serialisability Conclusion

Results

Language supporting nesting and escaping thread

Definition of well-synchronised and serialisability

Perspectives

Verification of implementation

Efficient implementation

25/25

	Presentation
	Semantics domain
	Definitions
	Particular traces

	Serialisability
	Conclusion

