Coinduction and rational trees

Régis Spadotti

I.R.I.T

November 18th, 2013

Motivating example

2 Rational terms

Transformations / Computations

Perspectives

Régis Spadotti

Abstract Syntax

Consider an abstract syntax representing a very simple process algebra (CSP-like):

Type definition

> This abstract syntax T is naturally inductively defined in proof assistants

data Proc : Set where
STOP : Proc

$$\Rightarrow$$
_ : A \rightarrow Proc \rightarrow Proc
 $+$ _ : Proc \rightarrow Proc \rightarrow Proc

We can compute asynchronous parallel composition of processes

- · Our syntax models only finite processes which eventually terminate
- Inductive reasoning works quite well in this context

Extension

- Say we want to extend our syntax to model infinite processes that may never terminate
- New syntax is given by

- Semantically, rec X a \Rightarrow X represents the infinite stream a \Rightarrow a \Rightarrow ...
- ▶ [[rec X. P]] ≈ [[P [X := rec X. P]]]

The natural induction principle derived from this abstract syntax definition does not capture the semantics of \mathbf{rec} .

The natural induction principle derived from this abstract syntax definition does not capture the semantics of ${\bf rec}$.

Parallel composition revisited

$$\begin{array}{c} _|||_: \operatorname{Proc} \to \operatorname{Proc} \to \operatorname{Proc} \\ \cdots & = \cdots \\ \operatorname{rec} X. P ||| Q = ? \\ Q & ||| \operatorname{rec} X. P = ? \end{array}$$

The natural induction principle derived from this abstract syntax definition does not capture the semantics of ${\bf rec}$.

Parallel composition revisited

 $\mathsf{P} \ [\ \mathsf{X} := \textbf{rec} \ \mathsf{X}. \ \mathsf{P} \] \text{ is not a subterm of } \textbf{rec} \ \mathsf{X}. \ \mathsf{P}$

The natural induction principle derived from this abstract syntax definition does not capture the semantics of \mathbf{rec} .

Parallel composition revisited

$$\begin{array}{rcl} & |||_{-} & : & \operatorname{Proc} \to \operatorname{Proc} \\ & & & & \\ & & & & \\ \operatorname{rec} X. P & ||| & & \\ Q & & & P & [X := \operatorname{rec} X. P] & ||| & Q \\ Q & & & || & \operatorname{rec} X. P & Q & ||| & P & [X := \operatorname{rec} X. P] \end{array}$$

P [X := rec X, P] is not a subterm of rec X, P

Solutions

- Well-founded induction
- Coinduction

Coinductive representation

- Representation close to the finite one
- We can define the semantics of processes as $[\![_]\!]$: $\mathsf{Proc+rec} \to \mathit{Proc}^\omega$

Parallel composition revisited (again !)

Same definition as in the finite case

Question

Can we define function $f^{sem}: \star \to \omega Proc$ on the semantics and *derive* a function $f^{syn}: \star \to Proc - rec$ defined on the syntax such that $[\![f^{syn}]\!] \stackrel{\circ}{=} f^{sem}$?

lssue

- There are terms (t : $Proc^{\omega}$) which are not representable with the inductive definition • The process (1 \Rightarrow 2 \Rightarrow 3 \Rightarrow \cdots) is not representable with rec
- Analogy with \mathbb{Q} vs \mathbb{R}

Need to narrow $Proc^{\omega}$ to rational terms

D Motivating example

2 Rational terms

3 Transformations / Computations

Perspectives

Régis Spadotti

Let's generalize the syntax.

Definition

A signature is defined as a dependent record

```
\begin{array}{c} \mbox{record Signature} : Set_1 \mbox{ where} \\ \mbox{constructor} \_'\_ \\ \mbox{field} \\ \mbox{Label} : Set & -- \mbox{ set of symbols} \\ \mbox{|\_|} : \mbox{ Label} \rightarrow \mathbb{N} & -- \mbox{ arity function} \end{array}
```

Extension

Given a signature we define its extension as an endofunctor

 $\begin{array}{l} \langle _ \rangle \, : \, \mbox{Signature} \rightarrow \mbox{Set} \rightarrow \mbox{Set} \\ \langle \mbox{\bar{S}} \rangle \, X \, \, = \, \Sigma \, | . \, \mbox{Vec} \, X \, \, || \label{eq:constraint} \end{array}$

Abbott, Michael and al. (2003) Categories of Containers

Combinators

We can define various combinators to compose signatures such as :

Initial algebra and final coalgebra

```
\begin{array}{l} \text{data } \mu \ (\mathsf{C} \ : \ \mathsf{Container}) \ : \ \mathsf{Set \ where} \\ [\_] \ : \ \langle \ \mathsf{C} \ \rangle \ (\mu \ \mathsf{C}) \rightarrow \mu \ \mathsf{C} \\ \\ \text{codata } \nu \ (\mathsf{C} \ : \ \mathsf{Container}) \ : \ \mathsf{Set \ where} \\ [\_] \ : \ \langle \ \mathsf{C} \ \rangle \ (\nu \ \mathsf{C}) \rightarrow \nu \ \mathsf{C} \end{array}
```

Rational terms

Example

If we consider the process algebra defined previously the set of symbols is given by

and the arity function is given by

 $\begin{array}{c|c} | & : \operatorname{ProcLabel} \to \mathbb{N} \\ |\operatorname{STOP}| &= 0 \\ |_ \Rightarrow | &= 1 \\ |+| &= 2 \end{array}$

Using combinators

We could also use combinators to obtain the signature

With the same signature we get both the inductive and coinductive representation

 $\begin{array}{l} \operatorname{Proc} &\cong \mu \ \operatorname{ProcSig} \\ \operatorname{Proc}^{\omega} &\cong \nu \ \operatorname{ProcSig} \end{array}$

Equality over coinductive terms

 $\textit{Bisimulation} \ _ \approx _ : \ \forall \ \{ S \} \rightarrow \nu \ S \rightarrow \nu \ S \rightarrow Set \ is \ defined \ coinductively \ as$

 $\frac{\forall \ i. \ v \cdot i \approx v' \cdot i}{[\ s \ , v \] \approx [\ s \ , v' \]}$

Definition

The subterm relation $_ \preccurlyeq _$: \forall {S} $\rightarrow \nu$ S $\rightarrow \nu$ S \rightarrow Set is defined inductively as

$$\frac{\exists \ i. \ t_1 \leqslant v \cdot i}{t_1 \leqslant t} \, \leqslant \! \text{-refl} \qquad \frac{\exists \ i. \ t_1 \leqslant v \cdot i}{t_1 \leqslant [\ \text{s} \ , v \]} \, \leqslant \! \text{-sub}$$

Rational term

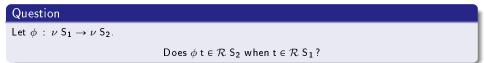
A term (t : ν S) is rational if it has finately many subterms (w.r.t $\geq \sim$).

We call $\mathcal{R} \Sigma$ the restriction of $\nu \Sigma$ to rational terms.

1 Motivating example

Transformations / Computations

Rational terms define a subset of coinductive terms ($\mathcal{R} \ S \subseteq \nu \ S$)



We study various tree transformations which preserve rationality

Expressing transformations

Rewriting rule

$$\sigma(x_1,\ldots,x_n)\mapsto\sigma'(y_1,\ldots,y_m)$$

Tree transducers

A tree transducer is defined as tuple \langle Q , q_0 , Σ , Δ , R \rangle where

- Q is a finite set of states
- ▶ $q_0 \in Q$ is an initial state
- Σ and Δ are an input and output signature respectively.
- ▶ R is a finite set of complete and deterministic rewriting rules

We write $(\tau : \Sigma \Rightarrow \Delta)$ to make explicit the input/output signatures.

Semantics

The semantics of a tree transducer au is given by the functions

$$\begin{bmatrix} \tau \\ \tau \end{bmatrix}^{\omega} : \mu \Sigma \to \mu \Delta$$
$$\begin{bmatrix} \tau \end{bmatrix}^{\omega} : \nu \Sigma \to \nu \Delta$$

Engelfriet, J. (1977) Top-down tree transducers with regular look-ahead

Specifying rewriting rules^a

 $\begin{array}{l} \text{Trans : Signature} \rightarrow \text{Set} \rightarrow \text{Signature} \rightarrow \text{Set} _\\ \text{Trans } \Sigma \ Q \ \Delta \ = \ \forall \ \{\alpha\} \rightarrow Q \rightarrow \langle \Sigma \rangle \ \alpha \rightarrow \langle \Delta \rangle^* \ (Q \times \alpha) \\ \text{ where } \langle _ \rangle^* \ : \ \text{Signature} \rightarrow \text{Set} \rightarrow \text{Set} \ -- \ \text{free monad} \\ \langle S \rangle^* \ X \ = \ \mu \ (\text{const} \ X \ \uplus \ S) \end{array}$

Example

Compute the length of a list

Theorem

Let τ : $\Sigma \Rightarrow \Delta$ be a finite state tree transducer.

$$\forall (t : \nu \Sigma). t \in \mathcal{R} \Sigma \to [\![\tau]\!]^{\omega} t \in \mathcal{R} \Delta$$

Bahr, Patrick and Day, Laurence E. (2013) Programming Macro Tree Transducers

Product of terms

The previous approach can be applied to compute product of terms

```
\llbracket \tau \rrbracket^{\omega} \ : \ \nu \ \Sigma \to \nu \ \Delta \to \nu \ \Gamma
```

As a result, it is possible to define parallel composition of processes and prove that it does preverse rationality.

Summary

A rational term consist of

- ▶ an (in)finite term
- a proof that its underlying structure is finite (i.e finitely many subterms)

Tree transducers may be used as

- a tool to define function that computes rational terms by construction
- as a proof method to prove that an arbitrary function preserves rationality

From inductive terms to rational terms

- We defined a semantic function \llbracket_\rrbracket : Proc+rec \rightarrow *Proc*^{ω}.
- We can prove that :

 $\forall t. [t] \in \mathcal{R}$

From rational terms to inductive terms

Conversely, we can define a function $[_]^{-1}$: $\mathcal{R} \to \mathsf{Proc+rec} \Rightarrow$ by induction on the set of subterms

1 Motivating example

2 Rational terms

3 Transformations / Computations

Even more expressive rewriting rules

ε-rules (production)

 $\mathsf{Trans-}\epsilon \; \mathsf{\Sigma} \; \mathsf{Q} \; \Delta \; = \; \forall \; \{\alpha\} \to \mathsf{Q} \to \alpha \to \langle \Delta \rangle^* \; (\mathsf{Q} \; \times \; \alpha)$

Deeper context

Trans n $\Sigma Q \Delta = \forall \{\alpha\} \rightarrow Q \rightarrow \langle \Sigma \rangle^{\mathbf{n}} \alpha \rightarrow \langle \Delta \rangle^{*} (Q \times \alpha)$

Decidability on rational terms

- Quantifiers on terms
 - All P t: P holds on each subterm of t
 - Any Pt: P holds on one subterm of t
- If the predicate P is decidable then All P t and Any P t are decidable provided t is rational.

Questions?