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1 About this document
This document is an introduction to the definition and use of inductive and
co-inductive types in the Coq proof environment. It was born from the notes
written for the course about the version V5.10 of Coq, given by Eduardo
Gimenez at the Ecole Normale Supérieure de Lyon in March 1996. This
article is a revised and improved version of these notes for the version V8.0
of the system.

We assume that the reader has some familiarity with the proofs-as-programs
paradigm of Logic [7] and the generalities of the Coq system [4]. You would
take a greater advantage of this document if you first read the general tutorial
about Coq and Coq’s FAQ, both available on [5]. A text book [3], accompa-
nied with a lot of examples and exercises [2], presents a detailed description
of the Coq system and its underlying formalism: the Calculus of Inductive
Construction. Finally, the complete description of Coq is given in the refer-
ence manual [4]. Most of the tactics and commands we describe have several
options, which we do not present exhaustively. If some script herein uses a
non described feature, please refer to the Reference Manual.

If you are familiar with other proof environments based on type theory
and the LCF style —like PVS, LEGO, Isabelle, etc— then you will find not
difficulty to guess the unexplained details.

The better way to read this document is to start up the Coq system, type
by yourself the examples and exercises, and observe the behavior of the sys-
tem. All the examples proposed in this tutorial can be downloaded from the
same site as the present document.

The tutorial is organised as follows. The next section describes how in-
ductive types are defined in Coq, and introduces some useful ones, like natu-
ral numbers, the empty type, the propositional equality type, and the logical
connectives. Section 3 explains definitions by pattern-matching and their
connection with the principle of case analysis. This principle is the most
basic elimination rule associated with inductive or co-inductive types and
follows a general scheme that we illustrate for some of the types introduced
in Section 2. Section 4 illustrates the pragmatics of this principle, showing
different proof techniques based on it. Section 5 introduces definitions by
structural recursion and proofs by induction. Section 6 presents some elab-
orate techniques about dependent case analysis. Finally, Section 7 is a brief
introduction to co-inductive types –i.e., types containing infinite objects– and
the principle of co-induction.

Thanks to Bruno Barras, Yves Bertot, Hugo Herbelin, Jean-François
Monin and Michel Lévy for their help.

Lexical conventions
The typewriter font is used to represent text input by the user, while the
italic font is used to represent the text output by the system as answers.
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Moreover, the mathematical symbols ≤, 6=, ∃, ∀, →, → ∨, ∧, and ⇒
stand for the character strings <=, <>, exists, forall, ->, <-, \/, /\, and
=>, respectively. For instance, the Coq statement

forall A:Set,(exists x : A, forall (y:A), x <> y) -> 2 = 3

is written as follows in this tutorial:

∀ A:Set,(∃ x:A, ∀ y:A, x 6= y) → 2 = 3

When a fragment of Coq input text appears in the middle of regular text,
we often place this fragment between double quotes “. . . .” These double
quotes do not belong to the Coq syntax.

Finally, any string enclosed between (* and *) is a comment and is ig-
nored by the Coq system.

2 Introducing Inductive Types
Inductive types are types closed with respect to their introduction rules. These
rules explain the most basic or canonical ways of constructing an element of
the type. In this sense, they characterize the recursive type. Different rules
must be considered as introducing different objects. In order to fix ideas, let
us introduce in Coq the most well-known example of a recursive type: the
type of natural numbers.

Inductive nat : Set :=
| O : nat
| S : nat→nat.

The definition of a recursive type has two main parts. First, we establish
what kind of recursive type we will characterize (a set, in this case). Second,
we present the introduction rules that define the type (O and S), also called
its constructors. The constructors O and S determine all the elements of this
type. In other words, if n:nat, then n must have been introduced either by
the rule O or by an application of the rule S to a previously constructed natural
number. In this sense, we can say that nat is closed. On the contrary, the
type Set is an open type, since we do not know a priori all the possible ways
of introducing an object of type Set.

After entering this command, the constants nat, O and S are available in
the current context. We can see their types using the Check command :

Check nat.
nat : Set
Check O.
O : nat
Check S.
S : nat→ nat
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Moreover, Coq adds to the context three constants named nat_ind, nat_rec
and nat_rect, which correspond to different principles of structural induc-
tion on natural numbers that Coq infers automatically from the definition.
We will come back to them in Section 5.

In fact, the type of natural numbers as well as several useful theorems
about them are already defined in the basic library of Coq, so there is no
need to introduce them. Therefore, let us throw away our (re)definition of
nat, using the command Reset.

Reset nat.
Print nat.
Inductive nat : Set := O : nat | S : nat→ nat
For S: Argument scope is [nat_scope]

Notice that Coq’s interpretation scope for natural numbers (called nat_scope)
allows us to read and write natural numbers in decimal form (see [4]). For
instance, the constructor O can be read or written as the digit 0, and the term
“ S (S (S O)) ” as 3.

Check O.
0 : nat.

Check (S (S (S O))).
3 : nat

Let us now take a look to some other recursive types contained in the
standard library of Coq.

2.1 Lists
Lists are defined in library List:

Require Import List.
Print list.

Inductive list (A : Set) : Set :=
nil : list A | cons : A→ list A→ list A

For nil: Argument A is implicit
For cons: Argument A is implicit
For list: Argument scope is [type_scope]
For nil: Argument scope is [type_scope]
For cons: Argument scopes are [type_scope _ _]

In this definition, A is a general parameter, global to both constructors.
This kind of definition allows us to build a whole family of inductive types,
indexed over the sort Set. This can be observed if we consider the type
of identifiers list, cons and nil. Notice the notation (A := ...) which
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must be used when Coq’s type inference algorithm cannot infer the implicit
parameter A.

Check list.
list

: Set→ Set

Check (nil (A:=nat)).
nil

: list nat

Check (nil (A:= nat → nat)).
nil

: list (nat→ nat)

Check (fun A: Set ⇒ (cons (A:=A))).
fun A : Set⇒ cons (A:=A)

: ∀ A : Set, A→ list A→ list A

Check (cons 3 (cons 2 nil)).
3 :: 2 :: nil

: list nat

2.2 Vectors.
Like list, vector is a polymorphic type: if A is a set, and n a natural
number, “ vector A n ” is the type of vectors of elements of A and size n.

Require Import Bvector.

Print vector.

Inductive vector (A : Set) : nat→ Set :=
Vnil : vector A 0

| Vcons : A→ ∀ n : nat, vector A n→ vector A (S n)
For vector: Argument scopes are [type_scope nat_scope]
For Vnil: Argument scope is [type_scope]
For Vcons: Argument scopes are [type_scope _ nat_scope _]

Remark the difference between the two parameters A and n: The first one
is a general parameter, global to all the introduction rules,while the second
one is an index, which is instantiated differently in the introduction rules.
Such types parameterized by regular values are called dependent types.

Check (Vnil nat).
Vnil nat
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: vector nat 0

Check (fun (A:Set)(a:A)⇒ Vcons _ a _ (Vnil _)).
fun (A : Set) (a : A)⇒ Vcons A a 0 (Vnil A)

: ∀ A : Set, A→ vector A 1

Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))).
Vcons nat 5 1 (Vcons nat 3 0 (Vnil nat))

: vector nat 2

2.3 The contradictory proposition.
Another example of an inductive type is the contradictory proposition. This
type inhabits the universe of propositions, and has no element at all.

Print False.
Inductive False : Prop :=

Notice that no constructor is given in this definition.

2.4 The tautological proposition.
Similarly, the tautological proposition True is defined as an inductive type
with only one element I:

Print True.
Inductive True : Prop := I : True

2.5 Relations as inductive types.
Some relations can also be introduced in a smart way as an inductive family
of propositions. Let us take as example the order n ≤ m on natural numbers,
called le in Coq. This relation is introduced through the following definition,
quoted from the standard library2:

Print le.
Inductive le (n:nat) : nat→Prop :=
| le_n: n ≤ n
| le_S: ∀ m, n ≤ m→ n ≤ S m.

Notice that in this definition n is a general parameter, while the second
argument of le is an index (see section 2.2). This definition introduces the

2In the interpretation scope for Peano arithmetic: nat_scope, “ n <= m ” is equivalent to
“ le n m ” .
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binary relation n≤m as the family of unary predicates “to be greater or equal
than a given n”, parameterized by n.

The introduction rules of this type can be seen as a sort of Prolog rules
for proving that a given integer n is less or equal than another one. In fact,
an object of type n≤m is nothing but a proof built up using the constructors
le_n and le_S of this type. As an example, let us construct a proof that zero
is less or equal than three using Coq’s interactive proof mode. Such an object
can be obtained applying three times the second introduction rule of le, to
a proof that zero is less or equal than itself, which is provided by the first
constructor of le:

Theorem zero_leq_three: 0 ≤ 3.
Proof.
1 subgoal

============================
0 ≤ 3

Proof.
constructor 2.

1 subgoal
============================

0 ≤ 2

constructor 2.
1 subgoal
============================

0 ≤ 1

constructor 2
1 subgoal
============================

0 ≤ 0

constructor 1.

Proof completed
Qed.

When the current goal is an inductive type, the tactic “ constructor i ”
applies the i-th constructor in the definition of the type. We can take a look
at the proof constructed using the command Print:

Print Print zero_leq_three.
zero_leq_three =
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zero_leq_three = le_S 0 2 (le_S 0 1 (le_S 0 0 (le_n 0)))
: 0 ≤ 3

When the parameter i is not supplied, the tactic constructor tries to
apply “ constructor 1 ”, “ constructor 2 ”,. . . , “ constructor n ”
where n is the number of constructors of the inductive type (2 in our example)
of the conclusion of the goal. Our little proof can thus be obtained iterating
the tactic constructor until it fails:

Lemma zero_leq_three’: 0 ≤ 3.
repeat constructor.
Qed.

Notice that the strict order on nat, called lt is not inductively defined:

Print lt.

lt = fun n m : nat⇒ S n ≤ m
: nat→ nat→ Prop

Lemma zero_lt_three : 0 < 3.
Proof.
unfold lt.

====================
1 ≤ 3

repeat constructor.
Qed.

2.6 The propositional equality type.
In Coq, the propositional equality between two inhabitants a and b of the
same type A , noted a = b, is introduced as a family of recursive predicates
“ to be equal to a ”, parameterised by both a and its type A. This family
of types has only one introduction rule, which corresponds to reflexivity.
Notice that the syntax “a = b ” is an abbreviation for “eq a b ”, and that
the parameter A is implicit, as it can be infered from a.

Print eq.
Inductive eq (A : Type) (x : A) : A→ Prop :=

refl_equal : x = x
For eq: Argument A is implicit
For refl_equal: Argument A is implicit
For eq: Argument scopes are [type_scope _ _]
For refl_equal: Argument scopes are [type_scope _]
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Notice also that the first parameter A of eq has type Type. The type
system of Coq allows us to consider equality between various kinds of terms:
elements of a set, proofs, propositions, types, and so on. Look at [4, 3] to
get more details on Coq’s type system, as well as implicit arguments and
argument scopes.

Lemma eq_3_3 : 2 + 1 = 3.
Proof.
reflexivity.
Qed.

Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4).
Proof.
reflexivity.
Qed.

Print eq_proof_proof.
eq_proof_proof =
refl_equal (refl_equal (3 * 4))

: refl_equal (2 * 6) = refl_equal (3 * 4)

Lemma eq_lt_le : ( 2 < 4) = (3 ≤ 4).
Proof.
reflexivity.
Qed.

Lemma eq_nat_nat : nat = nat.
Proof.
reflexivity.
Qed.

Lemma eq_Set_Set : Set = Set.
Proof.
reflexivity.
Qed.

2.7 Logical connectives.
The conjunction and disjunction of two propositions are also examples of
recursive types:

Inductive or (A B : Prop) : Prop :=
or_introl : A → A ∨ B | or_intror : B → A ∨ B

Inductive and (A B : Prop) : Prop :=
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conj : A → B → A ∧ B

The propositions A and B are general parameters of these connectives.
Choosing different universes for A and B and for the inductive type itself
gives rise to different type constructors. For example, the type sumbool is a
disjunction but with computational contents.

Inductive sumbool (A B : Prop) : Set :=
left : A → {A} + {B} | right : B → {A} + {B}

This type –noted {A}+{B} in Coq– can be used in Coq programs as a
sort of boolean type, to check whether it is A or B that is true. The values
“ left p ” and “ right q ” replace the boolean values true and false, re-
spectively. The advantage of this type over bool is that it makes available the
proofs p of A or q of B, which could be necessary to construct a verification
proof about the program. For instance, let us consider the certified program
le_lt_dec of the Standard Library.

Require Import Compare_dec.
Check le_lt_dec.

le_lt_dec
: ∀ n m : nat, {n ≤ m} + {m < n}

We use le_lt_dec to build a function for computing the max of two
natural numbers:

Definition max (n p :nat) := match le_lt_dec n p with
| left _ ⇒ p
| right _ ⇒ n
end.

In the following proof, the case analysis on the term “ le_lt_dec n p ”
gives us an access to proofs of n ≤ p in the first case, p < n in the other.

Theorem le_max : ∀ n p, n ≤ p → max n p = p.
Proof.
intros n p ; unfold max ; case (le_lt_dec n p); simpl.

2 subgoals

n : nat
p : nat
============================
n ≤ p→ n ≤ p→ p = p

12



subgoal 2 is:
p < n→ n ≤ p→ n = p

trivial.
intros; absurd (p < p); eauto with arith.
Qed.

Once the program verified, the proofs are erased by the extraction proce-
dure:

Extraction max.

(** val max : nat→ nat→ nat **)

let max n p =
match le_lt_dec n p with

| Left→ p
| Right→ n

Another example of use of sumbool is given in Section 5.3.

2.8 The existential quantifier.
The existential quantifier is yet another example of a logical connective in-
troduced as an inductive type.

Inductive ex (A : Type) (P : A → Prop) : Prop :=
ex_intro : ∀ x : A, P x → ex P

Notice that Coq uses the abreviation “ ∃ x:A, B ” for
“ ex (fun x:A ⇒ B) ”.
The former quantifier inhabits the universe of propositions. As for the con-
junction and disjunction connectives, there is also another version of existen-
tial quantification inhabiting the universe Set, which is noted sig P . The
syntax “ {x:A | B} ” is an abreviation for “ sig (fun x:A ⇒ B) ”.

2.9 Mutually Dependent Definitions
Mutually dependent definitions of recursive types are also allowed in Coq. A
typical example of these kind of declaration is the introduction of the trees of
unbounded (but finite) width:

Inductive tree(A:Set) : Set :=
node : A → forest A → tree A

with forest (A: Set) : Set :=
nochild : forest A |
addchild : tree A → forest A → forest A.
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Yet another example of mutually dependent types are the predicates even
and odd on natural numbers:

Inductive
even : nat→Prop :=
evenO : even O |
evenS : ∀ n, odd n → even (S n)

with
odd : nat→Prop :=
oddS : ∀ n, even n → odd (S n).

Lemma odd_49 : odd (7 * 7).
simpl; repeat constructor.
Qed.

3 Case Analysis and Pattern-matching

3.1 Non-dependent Case Analysis
An elimination rule for the type A is some way to use an object a : A in order
to define an object in some type B. A natural elimination for an inductive
type is case analysis.

For instance, any value of type nat is built using either O or S. Thus, a
systematic way of building a value of type B from any value of type nat is
to associate to O a constant tO : B and to every term of the form “ S p ” a
term tS : B. The following construction has type B:

match n return B with O ⇒ tO | S p ⇒ tS end

In most of the cases, Coq is able to infer the type B of the object defined,
so the “return B” part can be omitted.

The computing rules associated with this construct are the expected ones
(the notation tS{q/p} stands for the substitution of p by q in tS :)

match O return b with O ⇒ tO | S p ⇒ tS end =⇒ tO

match S q return b with O ⇒ tO | S p ⇒ tS end =⇒ tS{q/p}

3.1.1 Example: the predecessor function.

An example of a definition by case analysis is the function which computes
the predecessor of any given natural number:

Definition pred (n:nat) := match n with
| O ⇒ O
| S m ⇒ m

end.
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Eval simpl in pred 56.
= 55
: nat

Eval simpl in pred 0.
= 0
: nat

Eval simpl in fun p ⇒ pred (S p).
= fun p : nat⇒ p
: nat→ nat

As in functional programming, tuples and wild-cards can be used in pat-
terns . Such definitions are automatically compiled by Coq into an expression
which may contain several nested case expressions. For example, the exclu-
sive or on booleans can be defined as follows:

Definition xorb (b1 b2:bool) :=
match b1, b2 with
| false, true ⇒ true
| true, false ⇒ true
| _ , _ ⇒ false
end.

This kind of definition is compiled in Coq as follows3:

Print xorb.
xorb =
fun b1 b2 : bool ⇒
if b1 then if b2 then false else true

else if b2 then true else false
: bool → bool → bool

3.2 Dependent Case Analysis
For a pattern matching construct of the form “ match n with ...end ” a
more general typing rule is obtained considering that the type of the whole
expression may also depend on n. For instance, let us consider some function
Q : nat→Set, and n : nat. In order to build a term of type Q n, we can
associate to the constructor O some term tO : Q O and to the pattern “ S p ”
some term tS : Q (S p). Notice that the terms tO and tS do not have the
same type.

3Coq uses the conditional “ if b then a else b ” as an abreviation to
“ match b with true ⇒ a | false ⇒ b end ”.
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The syntax of the dependent case analysis and its associated typing rule
make precise how the resulting type depends on the argument of the pattern
matching, and which constraint holds on the branches of the pattern match-
ing:

Q : nat→Set tO : Q O p : nat ` tp : Q (S p) n : nat
match n as n0 return Q n0 with | O ⇒tO | S p ⇒tS end : Q n

The interest of this rule of dependent pattern-matching is that it can also
be read as the following logical principle (replacing Set by Prop in the type
of Q): in order to prove that a property Q holds for all n, it is sufficient to
prove that Q holds for O and that for all p : nat, Q holds for (S p). The
former, non-dependent version of case analysis can be obtained from this
latter rule just taking Q as a constant function on n.

Notice that destructuring n into O or “ S p ” doesn’t make appear in the
goal the equalities “ n = O ” and “ n = S p ”. They are “internalized” in the
rules above (see section 4.3.)

3.2.1 Example: strong specification of the predecessor function.

In Section 3.1.1, the predecessor function was defined directly as a function
from nat to nat. It remains to prove that this function has some desired
properties. Another way to proceed is to, first introduce a specification of
what is the predecessor of a natural number, under the form of a Coq type,
then build an inhabitant of this type: in other words, a realization of this
specification. This way, the correctness of this realization is ensured by Coq’s
type system.

A reasonable specification for pred is to say that for all n there exists
another m such that either m = n = 0, or (S m) is equal to n. The function
pred should be just the way to compute such an m.

Definition pred_spec (n:nat) :=
{m:nat | n=0∧ m=0 ∨ n = S m}.

Definition predecessor : ∀ n:nat, pred_spec n.
intro n; case n.

n : nat
============================
pred_spec 0

unfold pred_spec;exists 0;auto.

=========================================
∀ n0 : nat, pred_spec (S n0)
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unfold pred_spec; intro n0; exists n0; auto.
Defined.

If we print the term built by Coq, we can observe its dependent pattern-
matching structure:

predecessor = fun n : nat ⇒
match n as n0 return (pred_spec n0) with
| O ⇒

exist (fun m : nat ⇒ 0 = 0 ∧ m = 0 ∨ 0 = S m) 0
(or_introl (0 = 1)

(conj (refl_equal 0) (refl_equal 0)))
| S n0 ⇒

exist (fun m : nat ⇒ S n0 = 0 ∧ m = 0 ∨ S n0 = S m) n0
(or_intror (S n0 = 0 ∧ n0 = 0) (refl_equal (S n0)))

end : ∀ n : nat, pred_spec n

Notice that there are many variants to the pattern “ intros ...; case
... ”. Look at the reference manual and/or the book: tactics destruct,
“ intro pattern ”, etc.
The command Extraction can be used to see the computational contents
associated to the certified function predecessor:

Extraction predecessor.

(** val predecessor : nat→ pred_spec **)

let predecessor = function
| O→ O
| S n0→ n0

Exercise 3.1 Prove the following theorem:

Theorem nat_expand : ∀ n:nat,
n = match n with

| 0 ⇒ 0
| S p ⇒ S p

end.

3.3 Some Examples of Case Analysis
The reader will find in the Reference manual all details about typing case
analysis (chapter 4: Calculus of Inductive Constructions, and chapter 15:
Extended Pattern-Matching).

The following commented examples will show the different situations to
consider.
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3.3.1 The Empty Type

In a definition by case analysis, there is one branch for each introduction rule
of the type. Hence, in a definition by case analysis on p : False there are
no cases to be considered. In other words, the rule of (non-dependent) case
analysis for the type False is (for s in Prop, Set or Type):

Q : s p : False
match p return Q with end : Q

As a corollary, if we could construct an object in False, then it could
be possible to define an object in any type. The tactic contradiction cor-
responds to the application of the elimination rule above. It searches in the
context for an absurd hypothesis (this is, a hypothesis whose type is False)
and then proves the goal by a case analysis of it.

Theorem fromFalse : False → 0=1.
intro H.
contradiction.
Qed.

In Coq the negation is defined as follows :

Definition not (P:Prop) := P → False

The proposition “ not A ” is also written “ ∼ A ”.
If A and B are propositions, a is a proof of A and H is a proof of ∼

A, the term “ match H a return B with end ” is a proof term of B.
Thus, if your goal is B and you have some hypothesis H :∼ A, the tactic
“ case H ” generates a new subgoal with statement A, as shown by the
following example4.

Fact Nosense : 0 6= 0 → 2 = 3.
Proof.
intro H; case H.

===========================
0 = 0

reflexivity.
Qed.

The tactic “ absurd A ” (where A is any proposition), is based on the
same principle, but generates two subgoals: A and ∼ A, for solving B.

4Notice that a 6=b is just an abreviation for “ ∼a= b ”
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3.3.2 The Equality Type

Let A : Type, a, b of type A, and π a proof of a = b. Non dependent case
analysis of π allows us to associate to any proof of “ Q a ” a proof of “ Q b ”,
where Q : A→s (where s ∈ {Prop, Set, Type}). The following term is a
proof of “ Q a→Q b ”.

fun H : Q a ⇒
match π in (_ = y) return Q y with

refl_equal ⇒ H
end

Notice the header of the match construct. It expresses how the resulting type
“ Q y ” depends on the type of p. Notice also that in the pattern introduced
by the keyword in, the parameter a in the type “ a = y ” must be implicit,
and replaced by a wildcard ’_’.

Therefore, case analysis on a proof of the equality a = b amounts to
replacing all the occurrences of the term b with the term a in the goal to be
proven. Let us illustrate this through an example: the transitivity property of
this equality.

Theorem trans : ∀ n m p:nat, n=m → m=p → n=p.
Proof.
intros n m p eqnm.

n : nat
m : nat
p : nat
eqnm : n = m
============================
m = p→ n = p
case eqnm.

n : nat
m : nat
p : nat
eqnm : n = m
============================
n = p→ n = p
trivial.
Qed.

Exercise 3.2 Prove the symmetry property of equality.

Instead of using case, we can use the tactic rewrite . If H is a proof of
a = b, then “ rewrite H ” performs a case analysis on a proof of b = a, ob-
tained by applying a symmetry theorem to H . This application of symmetry
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allows us to rewrite the equality from left to right, which looks more natural.
An optional parameter (either→ or←) can be used to precise in which sense
the equality must be rewritten. By default, “ rewrite H ” corresponds to
“ rewrite → H ”

Lemma Rw : ∀ x y: nat, y = y * x → y * x * x = y.
intros x y e; do 2 rewrite <- e.

1 subgoal

x : nat
y : nat
e : y = y * x
============================
y = y

reflexivity.
Qed.

Notice that, if H : a = b, then the tactic “ rewrite H ” replaces all the
occurrences of a by b. However, in certain situations we could be interested
in rewriting some of the occurrences, but not all of them. This can be done
using the tactic pattern . Let us consider yet another example to illustrate
this.

Let us start with some simple theorems of arithmetic; two of them are
already proven in the Standard Library, the last is left as an exercise.

mult_1_l
: ∀ n : nat, 1 * n = n

mult_plus_distr_r
: ∀ n m p : nat, (n + m) * p = n * p + m * p

mult_distr_S : ∀ n p : nat, n * p + p = (S n)* p.

Let us now prove a simple result:

Lemma four_n : ∀ n:nat, n+n+n+n = 4*n.
Proof.
intro n;rewrite <- (mult_1_l n).

n : nat
============================
1 * n + 1 * n + 1 * n + 1 * n = 4 * (1 * n)
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We can see that the rewrite tactic call replaced all the occurrences of
n by the term “ 1 * n ”. If we want to do the rewriting ony on the leftmost
occurrence of n, we can mark this occurrence using the pattern tactic:

Undo.
intro n; pattern n at 1.

n : nat
============================

(fun n0 : nat⇒ n0 + n + n + n = 4 * n) n

Applying the tactic “ pattern n at 1 ” allowed us to explicitly abstract the
first occurrence of n from the goal, putting this goal under the form “ Q n ”,
thus pointing to rewrite the particular predicate on n that we search to
prove.

rewrite <- mult_1_l.

1 subgoal

n : nat
============================
1 * n + n + n + n = 4 * n

repeat rewrite mult_distr_S.

n : nat
============================
4 * n = 4 * n

trivial.
Qed.

3.3.3 The Predicate n≤m

The last but one instance of the elimination schema that we will illustrate is
case analysis for the predicate n≤m:

Let n and p be terms of type nat, and Q a predicate of type nat→Prop.
If H is a proof of “ n ≤ p ”, H0 a proof of “ Q n ” and HS a proof of
“ ∀ m:nat, n ≤ m → Q (S m) ”, then the term

match H in (_ ≤ q) return (Q q) with
| le_n ⇒ H0
| le_S m Hm ⇒ HS m Hm

end
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is a proof term of “ Q p ”.
The two patterns of this match construct describe all possible forms of

proofs of “ n ≤ m ” (notice again that the general parameter n is implicit in
the “ in ... ” clause and is absent from the match patterns.

Notice that the choice of introducing some of the arguments of the pred-
icate as being general parameters in its definition has consequences on the
rule of case analysis that is derived. In particular, the type Q of the object
defined by the case expression only depends on the indexes of the predicate,
and not on the general parameters. In the definition of the predicate ≤, the
first argument of this relation is a general parameter of the definition. Hence,
the predicate Q to be proven only depends on the second argument of the
relation. In other words, the integer n is also a general parameter of the rule
of case analysis.

An example of an application of this rule is the following theorem, show-
ing that any integer greater or equal than 1 is the successor of another natural
number:

Lemma predecessor_of_positive :
∀ n, 1 ≤ n → ∃ p:nat, n = S p.
Proof.
intros n H;case H.

n : nat
H : 1 ≤ n
============================
∃ p : nat, 1 = S p

exists 0; trivial.

n : nat
H : 1 ≤ n
============================
∀ m : nat, 0 ≤ m→ ∃ p : nat, S m = S p

intros m _ .
exists m.
trivial.

Qed.

3.3.4 Vectors

The vector polymorphic and dependent family of types will give an idea of
the most general scheme of pattern-matching.

For instance, let us define a function for computing the tail of any vector.
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Notice that we shall build a total function, by considering that the tail of an
empty vector is this vector itself. In that sense, it will be slightly different
from the Vtail function of the Standard Library, which is defined only for
vectors of type “ vector A (S n) ”.

The header of the function we want to build is the following:

Definition Vtail_total
(A : Set) (n : nat) (v : vector A n) : vector A (pred n):=

Since the branches will not have the same type (depending on the param-
eter n), the body of this function is a dependent pattern matching on v. So
we will have :

match v in (vector _ n0) return (vector A (pred n0)) with

The first branch deals with the constructor Vnil and must return a value
in “ vector A (pred 0) ”, convertible to “ vector A 0 ”. So, we pro-
pose:

| Vnil ⇒ Vnil A

The second branch considers a vector in “ vector A (S n0) ” of the
form “ Vcons A n0 v0 ”, with “ v0:vector A n0 ”, and must return a
value in “ vector A (pred (S n0)) ”, convertible to “ v0:vector A n0 ”.
This second branch is thus :

| Vcons _ n0 v0 ⇒ v0

Here is the full definition:

Definition Vtail_total
(A : Set) (n : nat) (v : vector A n) : vector A (pred n):=

match v in (vector _ n0) return (vector A (pred n0)) with
| Vnil ⇒ Vnil A
| Vcons _ n0 v0 ⇒ v0
end.

3.4 Case Analysis and Logical Paradoxes
In the previous section we have illustrated the general scheme for generating
the rule of case analysis associated to some recursive type from the defini-
tion of the type. However, if the logical soundness is to be preserved, certain
restrictions to this schema are necessary. This section provides a brief expla-
nation of these restrictions.
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3.4.1 The Positivity Condition

In order to make sense of recursive types as types closed under their intro-
duction rules, a constraint has to be imposed on the possible forms of such
rules. This constraint, known as the positivity condition, is necessary to pre-
vent the user from naively introducing some recursive types which would
open the door to logical paradoxes. An example of such a dangerous type
is the “inductive type” Lambda, whose only constructor is lambda of type
(Lambda→False)→Lambda. Following the pattern given in Section 3.3,
the rule of (non dependent) case analysis for Lambda would be the follow-
ing:

Q : Prop p : Lambda h : Lambda→False ` t : Q
match p return Q with lambda h ⇒ t end : Q

In order to avoid paradoxes, it is impossible to construct the type Lambda
in Coq:

Inductive Lambda : Set :=
lambda : (Lambda → False) → Lambda.

Error: Non strictly positive occurrence of "Lambda" in
"(Lambda→ False)→ Lambda"

In order to explain this danger, we will declare some constants for simu-
lating the construction of Lambda as an inductive type.

Let us open some section, and declare two variables, the first one for
Lambda, the other for the constructor lambda.

Section Paradox.
Variable Lambda : Set.
Variable lambda : (Lambda → False) →Lambda.

Since Lambda is not a truely inductive type, we can’t use the match
construct. Nevertheless, we can simulate it by a variable matchL such that
“ matchL l Q (fun h : Lambda → False ⇒ t) ” should be under-
stood as “ match l return Q with | lambda h ⇒ t) ”

Variable matchL : Lambda →
∀ Q:Prop, ((Lambda →False) → Q) →
Q.

From these constants, it is possible to define application by case analysis.
Then, through auto-application, the well-known looping term (λx.(x x) λx.(x x))
provides a proof of falsehood.

Definition application (f x: Lambda) :False :=
matchL f False (fun h ⇒ h x).
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Definition Delta : Lambda :=
lambda (fun x : Lambda ⇒ application x x).

Definition loop : False := application Delta Delta.

Theorem two_is_three : 2 = 3.
Proof.
elim loop.
Qed.

End Paradox.

This example can be seen as a formulation of Russell’s paradox in type theory
associating (application x x) to the formula x 6∈ x, and Delta to the set
{x | x 6∈ x}. If matchL would satisfy the reduction rule associated to case
analysis, that is,

matchL (lambda f) Q h =⇒ h f

then the term loop would compute into itself. This is not actually surprising,
since the proof of the logical soundness of Coq strongly lays on the property
that any well-typed term must terminate. Hence, non-termination is usually
a synonymous of inconsistency.

3.4.1.1 In this case, the construction of a non-terminating program comes
from the so-called negative occurrence of Lambda in the argument of the con-
structor lambda.

The reader will find in the Reference Manual a complete formal definition
of the notions of positivity condition and strict positivity that an inductive
definition must satisfy.

Notice that the positivity condition does not forbid us to put functional
recursive arguments in the constructors.

For instance, let us consider the type of infinitely branching trees, with
labels in Z.

Require Import ZArith.

Inductive itree : Set :=
| ileaf : itree
| inode : Z → (nat → itree) → itree.

In this representation, the i-th child of a tree represented by “ inode z
s ” is obtained by applying the function s to i. The following definitions
show how to construct a tree with a single node, a tree of height 1 and a tree
of height 2:
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Definition isingle l := inode l (fun i ⇒ ileaf).

Definition t1 := inode 0 (fun n ⇒ isingle (Z_of_nat n)).

Definition t2 :=
inode 0

(fun n : nat ⇒
inode (Z_of_nat n)
(fun p ⇒ isingle (Z_of_nat (n*p)))).

Let us define a preorder on infinitely branching trees. In order to compare
two non-leaf trees, it is necessary to compare each of their children without
taking care of the order in which they appear:

Inductive itree_le : itree→ itree → Prop :=
| le_leaf : ∀ t, itree_le ileaf t
| le_node : ∀ l l’ s s’,

Zle l l’ →
(∀ i, ∃ j:nat, itree_le (s i) (s’ j))→
itree_le (inode l s) (inode l’ s’).

Notice that a call to the predicate itree_le appears as a general parame-
ter of the inductive type ex (see Sect.2.8). This kind of definition is accepted
by Coq, but may lead to some difficulties, since the induction principle au-
tomatically generated by the system is not the most appropriate (see chapter
14 of [3] for a detailed explanation).

The following definition, obtained by skolemising the proposition
∀ i,∃ j, (itree_le (s i) (s′ j)) in the type of itree_le, does not present
this problem:

Inductive itree_le’ : itree→ itree → Prop :=
| le_leaf’ : ∀ t, itree_le’ ileaf t
| le_node’ : ∀ l l’ s s’ g,

Zle l l’ →
(∀ i, itree_le’ (s i) (s’ (g i))) →
itree_le’ (inode l s) (inode l’ s’).

Another example is the type of trees of unbounded width, in which a
recursive subterm (ltree A) instantiates the type of polymorphic lists:

Require Import List.

Inductive ltree (A:Set) : Set :=
lnode : A → list (ltree A) → ltree A.
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This declaration can be transformed adding an extra type to the definition,
as was done in Section 2.9.

3.4.2 Impredicative Inductive Types

An inductive type R inhabiting a universe S is predicative if the introduction
rules of R do not make a universal quantification on a universe containing
S. All the recursive types previously introduced are examples of predicative
types. An example of an impredicative one is the following type:

Inductive prop : Prop :=
prop_intro : Prop → prop.

Notice that the constructor of this type can be used to inject any propo-
sition –even itself!– into the type. A careless use of such a self-contained
objects may lead to a variant of Burali-Forti’s paradox. The construction of
Burali-Forti’s paradox is more complicated than Russel’s one, so we will not
describe it here, and point the interested reader to [1, 6].

Lemma prop_inject: prop.
Proof prop_intro prop.

Another example is the second order existential quantifier for proposi-
tions:

Inductive ex_Prop (P : Prop → Prop) : Prop :=
exP_intro : ∀ X : Prop, P X → ex_Prop P.

Notice that predicativity on sort Set forbids us to build the following
definitions.

Inductive aSet : Set :=
aSet_intro: Set → aSet.

User error: Large non-propositional inductive types must be in Type

Inductive ex_Set (P : Set → Prop) : Set :=
exS_intro : ∀ X : Set, P X → ex_Set P.

User error: Large non-propositional inductive types must be in Type

Nevertheless, one can define types like aSet and ex_Set, as inhabitants
of Type.

Inductive ex_Set (P : Set → Prop) : Type :=
exS_intro : ∀ X : Set, P X → ex_Set P.
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In the following example, the inductive type typ can be defined, but the
term associated with the interactive Definition of typ_inject is incompati-
ble with Coq’s hierarchy of universes:

Inductive typ : Type :=
typ_intro : Type → typ.

Definition typ_inject: typ.
split; exact typ.

Proof completed
Defined.

Error: Universe Inconsistency.

Abort.

One possible way of avoiding this new source of paradoxes is to restrict
the kind of eliminations by case analysis that can be done on impredicative
types. In particular, projections on those universes equal or bigger than the
one inhabited by the impredicative type must be forbidden [6]. A conse-
quence of this restriction is that it is not possible to define the first projection
of the type “ ex_Prop P ”:

Check (fun (P:Prop→Prop)(p: ex_Prop P) ⇒
match p with exP_intro X HX ⇒ X end).

Error:
Incorrect elimination of "p" in the inductive type
"ex_Prop", the return type has sort "Type" while it should be
"Prop"

Elimination of an inductive object of sort "Prop"
is not allowed on a predicate in sort "Type"
because proofs can be eliminated only to build proofs.

3.4.3 Extraction Constraints

There is a final constraint on case analysis that is not motivated by the poten-
tial introduction of paradoxes, but for compatibility reasons with Coq’s ex-
traction mechanism . This mechanism is based on the classification of basic
types into the universe Set of sets and the universe Prop of propositions. The
objects of a type in the universe Set are considered as relevant for computa-
tion purposes. The objects of a type in Prop are considered just as formalised
comments, not necessary for execution. The extraction mechanism consists
in erasing such formal comments in order to obtain an executable program.
Hence, in general, it is not possible to define an object in a set (that should
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be kept by the extraction mechanism) by case analysis of a proof (which will
be thrown away).

Nevertheless, this general rule has an exception which is important in
practice: if the definition proceeds by case analysis on a proof of a singleton
proposition or an empty type (e.g. False), then it is allowed. A single-
ton proposition is a non-recursive proposition with a single constructor c, all
whose arguments are proofs. For example, the propositional equality and the
conjunction of two propositions are examples of singleton propositions.

3.4.4 Strong Case Analysis on Proofs

One could consider allowing to define a proposition Q by case analysis on
the proofs of another recursive proposition R. As we will see in Section 4.1,
this would enable one to prove that different introduction rules of R construct
different objects. However, this property would be in contradiction with the
principle of excluded middle of classical logic, because this principle entails
that the proofs of a proposition cannot be distinguished. This principle is not
provable in Coq, but it is frequently introduced by the users as an axiom, for
reasoning in classical logic. For this reason, the definition of propositions by
case analysis on proofs is not allowed in Coq.

Definition comes_from_the_left (P Q:Prop)(H:P∨Q): Prop :=
match H with

| or_introl p ⇒ True
| or_intror q ⇒ False

end.

Error:
Incorrect elimination of "H" in the inductive type
"or", the return type has sort "Type" while it should be
"Prop"

Elimination of an inductive object of sort "Prop"
is not allowed on a predicate in sort "Type"
because proofs can be eliminated only to build proofs.

On the other hand, if we replace the proposition P∨Q with the informa-
tive type {P}+ {Q}, the elimination is accepted:

Definition comes_from_the_left_sumbool
(P Q:Prop)(x:{P} + {Q}): Prop :=

match x with
| left p ⇒ True
| right q ⇒ False
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end.

3.4.5 Summary of Constraints

To end with this section, the following table summarizes which universe U1

may inhabit an object of type Q defined by case analysis on x : R, depending
on the universe U2 inhabited by the inductive types R.5

x : R :
U2

Q : U1

Set Prop Type
Set yes yes yes

Prop if R singleton yes no
Type yes yes yes

4 Some Proof Techniques Based on Case Analy-
sis
In this section we illustrate the use of case analysis as a proof principle,
explaining the proof techniques behind three very useful Coq tactics, called
discriminate, injection and inversion.

4.1 Discrimination of introduction rules
In the informal semantics of recursive types described in Section 2 it was
said that each of the introduction rules of a recursive type is considered as
being different from all the others. It is possible to capture this fact inside
the logical system using the propositional equality. We take as example the
following theorem, stating that O constructs a natural number different from
any of those constructed with S.

Theorem S_is_not_O : ∀ n, S n 6= 0.

In order to prove this theorem, we first define a proposition by case anal-
ysis on natural numbers, so that the proposition is true for O and false for any
natural number constructed with S. This uses the empty and singleton type
introduced in Sections 2.

Definition Is_zero (x:nat):= match x with
| 0 ⇒ True
| _ ⇒ False

end.

5In the box indexed by U1 = Type and U2 = Set, the answer “yes” takes into account the
predicativity of sort Set. If you are working with the option “impredicative-set”, you must put in
this box the condition “if R is predicative”.
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Then, we prove the following lemma:

Lemma O_is_zero : ∀ m, m = 0 → Is_zero m.
Proof.
intros m H; subst m.

================
Is_zero 0

simpl;trivial.
Qed.

Finally, the proof of S_is_not_O follows by the application of the previous
lemma to S n.

red; intros n Hn.

n : nat
Hn : S n = 0
============================
False

apply O_is_zero with (m := S n).
assumption.
Qed.

The tactic discriminate is a special-purpose tactic for proving dise-
qualities between two elements of a recursive type introduced by different
constructors. It generalizes the proof method described here for natural num-
bers to any [co]-inductive type. This tactic is also capable of proving dis-
equalities where the difference is not in the constructors at the head of the
terms, but deeper inside them. For example, it can be used to prove the fol-
lowing theorem:

Theorem disc2 : ∀ n, S (S n) 6= 1.
Proof.
intros n Hn; discriminate.
Qed.

When there is an assumption H in the context stating a false equality
t1 = t2, discriminate solves the goal by first proving (t1 6= t2) and then
reasoning by absurdity with respect to H:

Theorem disc3 : ∀ n, S (S n) = 0 → ∀ Q:Prop, Q.
Proof.
intros n Hn Q.
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discriminate.
Qed.

In this case, the proof proceeds by absurdity with respect to the false equality
assumed, whose negation is proved by discrimination.

4.2 Injectiveness of introduction rules
Another useful property about recursive types is the injectiveness of intro-
duction rules, i.e., that whenever two objects were built using the same in-
troduction rule, then this rule should have been applied to the same element.
This can be stated formally using the propositional equality:

Theorem inj : ∀ n m, S n = S m → n = m.
Proof.

This theorem is just a corollary of a lemma about the predecessor function:

Lemma inj_pred : ∀ n m, n = m → pred n = pred m.
Proof.
intros n m eq_n_m.
rewrite eq_n_m.
trivial.
Qed.

Once this lemma is proven, the theorem follows directly from it:

intros n m eq_Sn_Sm.
apply inj_pred with (n:= S n) (m := S m); assumption.
Qed.

This proof method is implemented by the tactic injection . This tactic
is applied to a term t of type “ c t1 . . . tn = c t′1 . . . t′n ”, where c is some
constructor of an inductive type. The tactic injection is applied as deep as
possible to derive the equality of all pairs of subterms of ti and t′i placed in
the same position. All these equalities are put as antecedents of the current
goal.

Like discriminate, the tactic injection can be also applied if x does
not occur in a direct sub-term, but somewhere deeper inside it. Its applica-
tion may leave some trivial goals that can be easily solved using the tactic
trivial.

Lemma list_inject : ∀ (A:Set)(a b :A)(l l’:list A),
a :: b :: l = b :: a :: l’ → a = b ∧ l = l’.

Proof.
intros A a b l l’ e.
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e : a :: b :: l = b :: a :: l’
============================
a = b ∧ l = l’

injection e.

============================
l = l’→ b = a→ a = b→ a = b ∧ l = l’

auto.
Qed.

4.3 Inversion Techniques
In section 3.2, we motivated the rule of dependent case analysis as a way of
internalizing the informal equalities n = O and n = (S p) associated to each
case. This internalisation consisted in instantiating n with the corresponding
term in the type of each branch. However, sometimes it could be better to
internalise these equalities as extra hypotheses –for example, in order to use
the tactics rewrite, discriminate or injection presented in the previous
sections. This is frequently the case when the element analysed is denoted by
a term which is not a variable, or when it is an object of a particular instance
of a recursive family of types. Consider for example the following theorem:

Theorem not_le_Sn_0 : ∀ n:nat, ~ (S n ≤ 0).

Intuitively, this theorem should follow by case analysis on the hypothesis
H : (S n ≤ O), because no introduction rule allows to instantiate the
arguments of le with respectively a successor and zero. However, there is
no way of capturing this with the typing rule for case analysis presented in
section 2, because it does not take into account what particular instance of
the family the type of H is. Let us try it:

Proof.
red; intros n H; case H.

2 subgoals

n : nat
H : S n ≤ 0
============================
False

subgoal 2 is:
∀ m : nat, S n ≤ m→ False
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Undo.

What is necessary here is to make available the equalities “ S n = O ” and
“ S m = O ” as extra hypotheses of the branches, so that the goal can be
solved using the Discriminate tactic. In order to obtain the desired equal-
ities as hypotheses, let us prove an auxiliary lemma, that our theorem is a
corollary of:

Lemma not_le_Sn_0_with_constraints :
∀ n p , S n ≤ p → p = 0 → False.
Proof.
intros n p H; case H .

2 subgoals

n : nat
p : nat
H : S n ≤ p
============================
S n = 0→ False

subgoal 2 is:
∀ m : nat, S n ≤ m→ S m = 0→ False

intros;discriminate.
intros;discriminate.
Qed.

Our main theorem can now be solved by an application of this lemma:

Show.

2 subgoals

n : nat
p : nat
H : S n ≤ p
============================
S n = 0→ False

subgoal 2 is:
∀ m : nat, S n ≤ m→ S m = 0→ False

eapply not_le_Sn_0_with_constraints; eauto.
Qed.
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The general method to address such situations consists in changing the
goal to be proven into an implication, introducing as preconditions the equal-
ities needed to eliminate the cases that make no sense. This proof technique is
implemented by the tactic inversion . In order to prove a goal G ~q from an
object of type R ~t, this tactic automatically generates a lemma ∀, ~x.(R ~x)→
~x = ~t → ~B → (G ~q), where the list of propositions ~B correspond to the
subgoals that cannot be directly proven using discriminate. This lemma
can either be saved for later use, or generated interactively. In this latter case,
the subgoals yielded by the tactic are the hypotheses ~B of the lemma. If the
lemma has been stored, then the tactic
“ inversion ...using ... ” can be used to apply it.

Let us show both techniques on our previous example:

4.3.1 Interactive mode

Theorem not_le_Sn_0’ : ∀ n:nat, ~ (S n ≤ 0).
Proof.
red; intros n H ; inversion H.
Qed.

4.3.2 Static mode

Derive Inversion le_Sn_0_inv with (∀ n :nat, S n ≤ 0).
Theorem le_Sn_0’’ : ∀ n p : nat, ~ S n ≤ 0 .
Proof.
intros n p H;
inversion H using le_Sn_0_inv.
Qed.

In the example above, all the cases are solved using discriminate, so there
remains no subgoal to be proven (i.e. the list ~B is empty). Let us present a
second example, where this list is not empty:

TTheorem le_reverse_rules :
∀ n m:nat, n ≤ m →

n = m ∨
∃ p, n ≤ p ∧ m = S p.

Proof.
intros n m H; inversion H.

2 subgoals
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n : nat
m : nat
H : n ≤ m
H0 : n = m
============================
m = m ∨ (∃ p : nat, m ≤ p ∧ m = S p)

subgoal 2 is:
n = S m0 ∨ (∃ p : nat, n ≤ p ∧ S m0 = S p)

left;trivial.
right; exists m0; split; trivial.

Proof completed

This example shows how this tactic can be used to “reverse” the intro-
duction rules of a recursive type, deriving the possible premises that could
lead to prove a given instance of the predicate. This is why these tactics are
called inversion tactics: they go back from conclusions to premises.

The hypotheses corresponding to the propositional equalities are not needed
in this example, since the tactic does the necessary rewriting to solve the sub-
goals. When the equalities are no longer needed after the inversion, it is better
to use the tactic Inversion_clear. This variant of the tactic clears from the
context all the equalities introduced.

Restart.
intros n m H; inversion_clear H.

n : nat
m : nat
============================
m = m ∨ (∃ p : nat, m ≤ p ∧ m = S p)

left;trivial.

n : nat
m : nat
m0 : nat
H0 : n ≤ m0
============================
n = S m0 ∨ (∃ p : nat, n ≤ p ∧ S m0 = S p)

right; exists m0; split; trivial.
Qed.
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Exercise 4.1 Consider the following language of arithmetic expression, and
its operational semantics, described by a set of rewriting rules.

Inductive ArithExp : Set :=
| Zero : ArithExp
| Succ : ArithExp → ArithExp
| Plus : ArithExp → ArithExp → ArithExp.

Inductive RewriteRel : ArithExp → ArithExp → Prop :=
| RewSucc : ∀ e1 e2 :ArithExp,

RewriteRel e1 e2 →
RewriteRel (Succ e1) (Succ e2)

| RewPlus0 : ∀ e:ArithExp,
RewriteRel (Plus Zero e) e

| RewPlusS : ∀ e1 e2:ArithExp,
RewriteRel e1 e2 →
RewriteRel (Plus (Succ e1) e2)

(Succ (Plus e1 e2)).

1. Prove that Zero cannot be rewritten any further.

2. Prove that an expression of the form “ Succ e ” is always rewritten
into an expression of the same form.

5 Inductive Types and Structural Induction
Elements of inductive types are well-founded with respect to the structural
order induced by the constructors of the type. In addition to case analysis,
this extra hypothesis about well-foundedness justifies a stronger elimination
rule for them, called structural induction. This form of elimination consists
in defining a value “ f x ” from some element x of the inductive type I ,
assuming that values have been already associated in the same way to the
sub-parts of x of type I .

Definitions by structural induction are expressed through the Fixpoint
command . This command is quite close to the let-rec construction of
functional programming languages. For example, the following definition
introduces the addition of two natural numbers (already defined in the Stan-
dard Library:)

Fixpoint plus (n p:nat) {struct n} : nat :=
match n with

| 0 ⇒ p
| S m ⇒ S (plus m p)

end.
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The definition is by structural induction on the first argument of the func-
tion. This is indicated by the “ {struct n} ” directive in the function’s
header6. In order to be accepted, the definition must satisfy a syntactical
condition, called the guardedness condition. Roughly speaking, this condi-
tion constrains the arguments of a recursive call to be pattern variables, issued
from a case analysis of the formal argument of the function pointed by the
struct directive. In the case of the function plus, the argument m in the re-
cursive call is a pattern variable issued from a case analysis of n. Therefore,
the definition is accepted.

Notice that we could have defined the addition with structural induction
on its second argument:

Fixpoint plus’ (n p:nat) {struct p} : nat :=
match p with

| 0 ⇒ n
| S q ⇒ S (plus’ n q)

end.

In the following definition of addition, the second argument of plus’’
grows at each recursive call. However, as the first one always decreases, the
definition is sound.

Fixpoint plus’’ (n p:nat) {struct n} : nat :=
match n with

| 0 ⇒ p
| S m ⇒ plus’’ m (S p)

end.

Moreover, the argument in the recursive call could be a deeper compo-
nent of n. This is the case in the following definition of a boolean function
determining whether a number is even or odd:

Fixpoint even_test (n:nat) : bool :=
match n
with 0 ⇒ true

| 1 ⇒ false
| S (S p) ⇒ even_test p

end.

Mutually dependent definitions by structural induction are also allowed.
For example, the previous function even could alternatively be defined using
an auxiliary function odd :

Reset even_test.

6This directive is optional in the case of a function of a single argument

38



Fixpoint even_test (n:nat) : bool :=
match n
with

| 0 ⇒ true
| S p ⇒ odd_test p

end
with odd_test (n:nat) : bool :=
match n
with

| 0 ⇒ false
| S p ⇒ even_test p

end.

Definitions by structural induction are computed only when they are ap-
plied, and the decreasing argument is a term having a constructor at the head.
We can check this using the Eval command, which computes the normal
form of a well typed term.

Eval simpl in even_test.

= even_test
: nat→ bool

Eval simpl in (fun x : nat ⇒ even x).

= fun x : nat⇒ even x
: nat→ Prop

Eval simpl in (fun x : nat => plus 5 x).

= fun x : nat⇒ S (S (S (S (S x))))

Eval simpl in (fun x : nat ⇒ even_test (plus 5 x)).

= fun x : nat⇒ odd_test x
: nat→ bool

Eval simpl in (fun x : nat ⇒ even_test (plus x 5)).

= fun x : nat⇒ even_test (x + 5)
: nat→ bool
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5.1 Proofs by Structural Induction
The principle of structural induction can be also used in order to define
proofs, that is, to prove theorems. Let us call an elimination combinator
any function that, given a predicate P , defines a proof of “ P x ” by struc-
tural induction on x. In Coq, the principle of proof by induction on natural
numbers is a particular case of an elimination combinator. The definition
of this combinator depends on three general parameters: the predicate to be
proven, the base case, and the inductive step:

Section Principle_of_Induction.
Variable P : nat → Prop.
Hypothesis base_case : P 0.
Hypothesis inductive_step : ∀ n:nat, P n → P (S n).
Fixpoint nat_ind (n:nat) : (P n) :=

match n return P n with
| 0 ⇒ base_case
| S m ⇒ inductive_step m (nat_ind m)

end.

End Principle_of_Induction.

As this proof principle is used very often, Coq automatically generates
it when an inductive type is introduced. Similar principles nat_rec and
nat_rect for defining objects in the universes Set and Type are also au-
tomatically generated 7. The command Scheme can be used to generate an
elimination combinator from certain parameters, like the universe that the de-
fined objects must inhabit, whether the case analysis in the definitions must
be dependent or not, etc. For example, it can be used to generate an elimi-
nation combinator for reasoning on even natural numbers from the mutually
dependent predicates introduced in page 14. We do not display the combina-
tors here by lack of space, but you can see them using the Print command.

Scheme Even_induction := Minimality for even Sort Prop
with Odd_induction := Minimality for odd Sort Prop.

Theorem even_plus_four : ∀ n:nat, even n → even (4+n).
Proof.
intros n H.
elim H using Even_induction with (P0 := fun n ⇒ odd (4+n));
simpl;repeat constructor;assumption.
Qed.

7In fact, whenever possible, Coq generates the principle I_rect, then derives from it the weaker
principles I_ind and I_rec. If some principle has to be defined by hand, the user may try to build
I_rect (if possible). Thanks to Coq’s conversion rule, this principle can be used directly to build
proofs and/or programs.
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Another example of an elimination combinator is the principle of double
induction on natural numbers, introduced by the following definition:

Section Principle_of_Double_Induction.
Variable P : nat → nat →Prop.
Hypothesis base_case1 : ∀ m:nat, P 0 m.
Hypothesis base_case2 : ∀ n:nat, P (S n) 0.
Hypothesis inductive_step : ∀ n m:nat, P n m →

P (S n) (S m).

Fixpoint nat_double_ind (n m:nat){struct n} : P n m :=
match n, m return P n m with
| 0 , x ⇒ base_case1 x
| (S x), 0 ⇒ base_case2 x
| (S x), (S y) ⇒ inductive_step x y (nat_double_ind x y)
end.
End Principle_of_Double_Induction.

Changing the type of P into nat → nat → Set, another combinator
nat_double_rec for constructing (certified) programs can be defined in ex-
actly the same way. This definition is left as an exercise.

For instance the function computing the minimum of two natural num-
bers can be defined in the following way:

Definition min : nat → nat → nat :=
nat_double_rec (fun (x y:nat) ⇒ nat)

(fun (x:nat) ⇒ 0)
(fun (y:nat) ⇒ 0)
(fun (x y r:nat) ⇒ S r).

Eval compute in (min 5 8).

= 5 : nat

5.2 Using Elimination Combinators.
The tactic apply can be used to apply one of these proof principles during
the development of a proof.

Lemma not_circular : ∀ n:nat, n 6= S n.
Proof.
intro n.
apply nat_ind with (P:= fun n ⇒ n 6= S n).

41



2 subgoals

n : nat
============================
0 6= 1

subgoal 2 is:
∀ n0 : nat, n0 6= S n0→ S n0 6= S (S n0)

discriminate.
red; intros n0 Hn0 eqn0Sn0;injection eqn0Sn0;trivial.
Qed.

The tactic elim is a refinement of apply, specially designed for the
application of elimination combinators. If t is an object of an inductive type
I , then “ elim t ” tries to find an abstraction P of the current goal G such
that (P t) ≡ G. Then it solves the goal applying “ I_ind P ”, where I_ind
is the combinator associated to I . The different cases of the induction then
appear as subgoals that remain to be solved. In the previous proof, the tactic
call “ apply nat_ind with (P:= fun n ⇒ n 6= S n) ” can simply be
replaced with “ elim n ”.

The option “ elim t using C ” allows to use a derived combinator
C instead of the default one. Consider the following theorem, stating that
equality is decidable on natural numbers:

Lemma eq_nat_dec : ∀ n p:nat, {n=p}+{n 6= p}.
Proof.
intros n p.

Let us prove this theorem using the combinator nat_double_rec of sec-
tion 5.1. The example also illustrates how elim may sometimes fail in find-
ing a suitable abstraction P of the goal. Note that if “ elim n ” is used
directly on the goal, the result is not the expected one.

elim n using nat_double_rec.

4 subgoals

n : nat
p : nat
============================
∀ x : nat, {x = p} + {x 6= p}
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subgoal 2 is:
nat→ {0 = p} + {0 6= p}

subgoal 3 is:
nat→ ∀ m : nat, {m = p} + {m 6= p}→ {S m = p} + {S m 6= p}

subgoal 4 is:
nat

The four sub-goals obtained do not correspond to the premises that would
be expected for the principle nat_double_rec. The problem comes from
the fact that this principle for eliminating n has a universally quantified for-
mula as conclusion, which confuses elim about the right way of abstracting
the goal.

Therefore, in this case the abstraction must be explicited using the tactic
pattern. Once the right abstraction is provided, the rest of the proof is
immediate:

Undo.
pattern p,n.

n : nat
p : nat
============================
(fun n0 n1 : nat⇒ {n1 = n0} + {n1 6= n0}) p n

elim n using nat_double_rec.

3 subgoals

n : nat
p : nat
============================
∀ x : nat, {x = 0} + {x 6= 0}

subgoal 2 is:
∀ x : nat, {0 = S x} + {0 6= S x}
subgoal 3 is:
∀ n0 m : nat, {m = n0} + {m 6= n0}→ {S m = S n0} + {S m 6= S n0}

destruct x; auto.
destruct x; auto.
intros n0 m H; case H.
intro eq; rewrite eq ; auto.
intro neg; right; red ; injection 1; auto.
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Defined.

Notice that the tactic “ decide equality ” generalises the proof above
to a large class of inductive types. It can be used for proving a proposition of
the form ∀ (x, y : R), {x = y}+{x6=y}, where R is an inductive datatype all
whose constructors take informative arguments —like for example the type
nat:

Definition eq_nat_dec’ : ∀ n p:nat, {n=p} + {n6=p}.
decide equality.
Defined.

Exercise 5.1 1. Define a recursive function nat2itree mapping any natu-
ral number n into an infinitely branching tree of height n.

2. Provide an elimination combinator for these trees.

3. Prove that the relation itree_le is a preorder (i.e. reflexive and tran-
sitive).

Exercise 5.2 Define the type of lists, and a predicate “being an ordered
list” using an inductive family. Then, define the function (from n) = 0 ::
1 . . . n :: nil and prove that it always generates an ordered list.

5.3 Well-founded Recursion
Structural induction is a strong elimination rule for inductive types. This
method can be used to define any function whose termination is based on
the well-foundedness of certain order relation R decreasing at each recursive
call. What makes this principle so strong is the possibility of reasoning by
structural induction on the proof that certain R is well-founded. In order to
illustrate this we have first to introduce the predicate of accessibility.

Print Acc.

Inductive Acc (A : Set) (R : A→ A→ Prop) : A→ Prop :=
Acc_intro : ∀ x : A, (∀ y : A, R y x→ Acc R y)→ Acc R x

For Acc: Argument A is implicit
For Acc_intro: Arguments A, R are implicit

. . .

This inductive predicate characterize those elements x of A such that any
descending R-chain . . . x2 R x1 R x starting from x is finite. A well-
founded relation is a relation such that all the elements of A are accessible.

Consider now the problem of representing in Coq the following ML func-
tion div(x, y) on natural numbers, which computes dx

y e if y > 0 and yields
x otherwise.
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let rec div x y =
if x = 0 then 0
else if y = 0 then x

else (div (x-y) y)+1;;

The equality test on natural numbers can be represented as the function
eq_nat_dec defined page 42. Giving x and y, this function yields either the
value (left p) if there exists a proof p : x = y, or the value (right q) if there
exists q : a 6= b. The subtraction function is already defined in the library
Minus.

Hence, direct translation of the ML function div would be:

Require Import Minus.

Fixpoint div (x y:nat){struct x}: nat :=
if eq_nat_dec x 0
then 0
else if eq_nat_dec y 0

then x
else S (div (x-y) y).

Error:
Recursive definition of div is ill-formed.
In environment
div : nat→ nat→ nat
x : nat
y : nat
_ : x 6= 0
_ : y 6= 0

Recursive call to div has principal argument equal to
"x - y"
instead of a subterm of x

The program div is rejected by Coq because it does not verify the syn-
tactical condition to ensure termination. In particular, the argument of the
recursive call is not a pattern variable issued from a case analysis on x. We
would have the same problem if we had the directive “ {struct y} ” instead
of “ {struct x} ”. However, we know that this program always stops. One
way to justify its termination is to define it by structural induction on a proof
that x is accessible trough the relation <. Notice that any natural number x
is accessible for this relation. In order to do this, it is first necessary to prove
some auxiliary lemmas, justifying that the first argument of div decreases at
each recursive call.

Lemma minus_smaller_S : ∀ x y:nat, x - y < S x.
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Proof.
intros x y; pattern y, x;
elim x using nat_double_ind.
destruct x0; auto with arith.
simpl; auto with arith.
simpl; auto with arith.
Qed.

Lemma minus_smaller_positive :
∀ x y:nat, x 6=0 → y 6= 0 → x - y < x.
Proof.
destruct x; destruct y;
( simpl;intros; apply minus_smaller ||
intros; absurd (0=0); auto).

Qed.

The last two lemmas are necessary to prove that for any pair of positive nat-
ural numbers x and y, if x is accessible with respect to lt, then so is x− y.

Definition minus_decrease : ∀ x y:nat, Acc lt x →
x 6= 0 →
y 6= 0 →
Acc lt (x-y).

Proof.
intros x y H; case H.
intros z Hz posz posy.
apply Hz; apply minus_smaller_positive; assumption.
Defined.

Let us take a look at the proof of the lemma minus_decrease, since the
way in which it has been proven is crucial for what follows.

Print minus_decrease.

minus_decrease =
fun (x y : nat) (H : Acc lt x)⇒
match H in (Acc _ y0) return (y0 6= 0→ y 6= 0→ Acc lt (y0 - y)) with
| Acc_intro z Hz⇒

fun (posz : z 6= 0) (posy : y 6= 0)⇒
Hz (z - y) (minus_smaller_positive z y posz posy)

end
: ∀ x y : nat, Acc lt x→ x 6= 0→ y 6= 0→ Acc lt (x - y)

Notice that the function call (minus_decrease n m H) indeed yields an
accessibility proof that is structurally smaller than its argument H , because
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it is (an application of) its recursive component Hz. This enables to justify
the following definition of div_aux:

Definition div_aux (x y:nat)(H: Acc lt x):nat.
fix 3.
intros.
refine (if eq_nat_dec x 0

then 0
else if eq_nat_dec y 0

then y
else S( div_aux (x-y) y _)).

div_aux : ∀ x : nat, nat→ Acc lt x→ nat
x : nat
y : nat
H : Acc lt x
_ : x 6= 0
_0 : y 6= 0
============================
Acc lt (x - y)

apply (minus_decrease x y H);auto.
Defined.

The main division function is easily defined, using the theorem lt_wf of
the library Wf_nat. This theorem asserts that nat is well founded w.r.t. lt,
thus any natural number is accessible.

Definition div x y := div_aux x y (lt_wf x).

Let us explain the proof above. In the definition of div_aux, what de-
creases is not x but the proof of the accessibility of x. The tactic “ fix 3 ”
is used to indicate that the proof proceeds by structural induction on the third
argument of the theorem –that is, on the accessibility proof. It also introduces
a new hypothesis in the context, named as the current theorem, and with the
same type as the goal. Then, the proof is refined with an incomplete proof
term, containing a hole _. This hole corresponds to the proof of accessibility
for x− y, and is filled up with the (smaller!) accessibility proof provided by
the function minus_decrease.
Let us take a look to the term div_aux defined:
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Print div_aux.

div_aux =
(fix div_aux (x y : nat) (H : Acc lt x) {struct H} : nat :=

match eq_nat_dec x 0 with
| left _⇒ 0
| right _⇒

match eq_nat_dec y 0 with
| left _⇒ y
| right _0⇒ S(div_aux (x - y) y (minus_decrease x y H _ _0))
end

end)
: ∀ x : nat, nat→ Acc lt x→ nat

If the non-informative parts from this proof –that is, the accessibility
proof– are erased, then we obtain exactly the program that we were look-
ing for.

Extraction div.

let div x y =
div_aux x y

Extraction div_aux.

let rec div_aux x y =
match eq_nat_dec x O with

| Left→ O
| Right→

(match eq_nat_dec y O with
| Left→ y
| Right→ S (div_aux (minus x y) y))

This methodology enables the representation of any program whose ter-
mination can be proved in Coq. Once the expected properties from this pro-
gram have been verified, the justification of its termination can be thrown
away, keeping just the desired computational behavior for it.
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6 A case study in dependent elimination
Dependent types are very expressive, but ignoring some useful techniques
can cause some problems to the beginner. Let us consider again the type of
vectors (see section 2.2). We want to prove a quite trivial property: the only
value of type “ vector A 0 ” is “ Vnil A ”.

Our first naive attempt leads to a cul-de-sac.

Lemma vector0_is_vnil :
∀ (A:Set)(v:vector A 0), v = Vnil A.

Proof.
intros A v;inversion v.

1 subgoal

A : Set
v : vector A 0
============================
v = Vnil A

Abort.

Another attempt is to do a case analysis on a vector of any length n, under
an explicit hypothesis n = 0. The tactic discriminate will help us to get
rid of the case n = S p. Unfortunately, even the statement of our lemma is
refused!

Lemma vector0_is_vnil_aux :
∀ (A:Set)(n:nat)(v:vector A n), n = 0 → v = Vnil A.

Error: In environment
A : Set
n : nat
v : vector A n
e : n = 0
The term "Vnil A" has type "vector A 0" while it is expected to have type
"vector A n"

In effect, the equality “ v = Vnil A ” is ill typed, because the type
“ vector A n ” is not convertible with “ vector A 0 ”.

This problem can be solved if we consider the heterogeneous equality
JMeq [11] which allows us to consider terms of different types, even if this
equality can only be proven for terms in the same type. The axiom JMeq_eq,
from the library JMeq allows us to convert a heterogeneous equality to a
standard one.
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Lemma vector0_is_vnil_aux :
∀ (A:Set)(n:nat)(v:vector A n),

n= 0 → JMeq v (Vnil A).
Proof.
destruct v.
auto.
intro; discriminate.
Qed.

Our property of vectors of null length can be easily proven:

Lemma vector0_is_vnil : ∀ (A:Set)(v:vector A 0), v = Vnil A.
intros a v;apply JMeq_eq.
apply vector0_is_vnil_aux.
trivial.
Qed.

It is interesting to look at another proof of vector0_is_vnil, which
illustrates a technique developed and used by various people (consult in
the Coq-club mailing list archive the contributions by Yves Bertot, Pierre
Letouzey, Laurent Théry, Jean Duprat, and Nicolas Magaud, Venanzio Capretta
and Conor McBride). This technique is also used for unfolding infinite list
definitions (see chapter13 of [3]). Notice that this definition does not rely on
any axiom (e.g. JMeq_eq).

We first give a new definition of the identity on vectors. Before that,
we make the use of constructors and selectors lighter thanks to the implicit
arguments feature:

Implicit Arguments Vcons [A n].
Implicit Arguments Vnil [A].
Implicit Arguments Vhead [A n].
Implicit Arguments Vtail [A n].

Definition Vid : ∀ (A : Set)(n:nat), vector A n → vector A n.
Proof.
destruct n; intro v.
exact Vnil.
exact (Vcons (Vhead v) (Vtail v)).
Defined.

Then we prove that Vid is the identity on vectors:

Lemma Vid_eq : ∀ (n:nat) (A:Set)(v:vector A n), v=(Vid _ n v).
Proof.
destruct v.
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A : Set
============================
Vnil = Vid A 0 Vnil

subgoal 2 is:
Vcons a v = Vid A (S n) (Vcons a v)

reflexivity.
reflexivity.
Defined.

Why defining a new identity function on vectors? The following dialogue
shows that Vid has some interesting computational properties:

Eval simpl in (fun (A:Set)(v:vector A 0) ⇒ (Vid _ _ v)).
= fun (A : Set) (_ : vector A 0)⇒ Vnil

: ∀ A : Set, vector A 0→ vector A 0

Notice that the plain identity on vectors doesn’t convert v into Vnil.

Eval simpl in (fun (A:Set)(v:vector A 0) ⇒ v).
= fun (A : Set) (v : vector A 0)⇒ v

: ∀ A : Set, vector A 0→ vector A 0

Then we prove easily that any vector of length 0 is Vnil:

Theorem zero_nil : ∀ A (v:vector A 0), v = Vnil.
Proof.
intros.
change (Vnil (A:=A)) with (Vid _ 0 v).

1 subgoal

A : Set
v : vector A 0
============================
v = Vid A 0 v

apply Vid_eq.
Defined.

A similar result can be proven about vectors of strictly positive lenght8.

8As for Vid and Vid_eq, this definition is from Jean Duprat.
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Theorem decomp :
∀ (A : Set) (n : nat) (v : vector A (S n)),
v = Vcons (Vhead v) (Vtail v).

Proof.
intros.
change (Vcons (Vhead v) (Vtail v)) with (Vid _ (S n) v).

1 subgoal

A : Set
n : nat
v : vector A (S n)
============================
v = Vid A (S n) v

apply Vid_eq.
Defined.

Both lemmas: zero_nil and decomp, can be used to easily derive a
double recursion principle on vectors of same length:

Definition vector_double_rect :
∀ (A:Set) (P: ∀ (n:nat),(vector A n)→(vector A n) → Type),

P 0 Vnil Vnil →
(∀ n (v1 v2 : vector A n) a b, P n v1 v2 →

P (S n) (Vcons a v1) (Vcons b v2)) →
∀ n (v1 v2 : vector A n), P n v1 v2.

induction n.
intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2).
auto.
intros v1 v2; rewrite (decomp _ _ v1);rewrite (decomp _ _ v2).
apply X0; auto.
Defined.

Notice that, due to the conversion rule of Coq’s type system, this function
can be used directly with Prop or Set instead of type (thus it is useless to
build vector_double_ind and vector_double_rec) from scratch.

We finish this example with showing how to define the bitwise or on
boolean vectors of the same length, and proving a little property about this
operation.

Definition bitwise_or n v1 v2 : vector bool n :=
vector_double_rect
bool
(fun n v1 v2 ⇒ vector bool n)
Vnil
(fun n v1 v2 a b r ⇒ Vcons (orb a b) r) n v1 v2.
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Let us define recursively the n-th element of a vector. Notice that it must
be a partial function, in case n is greater or equal than the length of the vector.
Since Coq only considers total functions, the function returns a value in an
option type.

Fixpoint vector_nth (A:Set)(n:nat)(p:nat)(v:vector A p)
{struct v}
: option A :=

match n,v with
_ , Vnil ⇒ None

| 0 , Vcons b _ _ ⇒ Some b
| S n’, Vcons _ p’ v’ ⇒ vector_nth A n’ p’ v’
end.

Implicit Arguments vector_nth [A p].

We can now prove — using the double induction combinator — a simple
property relying vector_nth and bitwise_or:

Lemma nth_bitwise :
∀ (n:nat) (v1 v2: vector bool n) i a b,

vector_nth i v1 = Some a →
vector_nth i v2 = Some b →
vector_nth i (bitwise_or _ v1 v2) = Some (orb a b).

Proof.
intros n v1 v2; pattern n,v1,v2.
apply vector_double_rect.
simpl.
destruct i; discriminate 1.
destruct i; simpl;auto.
injection 1; injection 2;intros; subst a; subst b; auto.
Qed.

7 Co-inductive Types and Non-ending Construc-
tions
The objects of an inductive type are well-founded with respect to the con-
structors of the type. In other words, these objects are built by applying a
finite number of times the constructors of the type. Co-inductive types are
obtained by relaxing this condition, and may contain non-well-founded ob-
jects [10, 9]. An example of a co-inductive type is the type of infinite se-
quences formed with elements of type A, also called streams. This type can
be introduced through the following definition:

CoInductive Stream (A: Set) :Set :=
| Cons : A→Stream A→Stream A.
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If we are interested in finite or infinite sequences, we consider the type of
lazy lists:

CoInductive LList (A: Set) : Set :=
| LNil : LList A
| LCons : A → LList A → LList A.

It is also possible to define co-inductive types for the trees with infinite
branches (see Chapter 13 of [3]).

Structural induction is the way of expressing that inductive types only
contain well-founded objects. Hence, this elimination principle is not valid
for co-inductive types, and the only elimination rule for streams is case anal-
ysis. This principle can be used, for example, to define the destructors head
and tail.

Definition head (A:Set)(s : Stream A) :=
match s with Cons a s’ ⇒ a end.

Definition tail (A : Set)(s : Stream A) :=
match s with Cons a s’ ⇒ s’ end.

Infinite objects are defined by means of (non-ending) methods of con-
struction, like in lazy functional programming languages. Such methods can
be defined using the CoFixpoint command . For example, the following
definition introduces the infinite list [a, a, a, . . .]:

CoFixpoint repeat (A:Set)(a:A) : Stream A :=
Cons a (repeat a).

However, not every co-recursive definition is an admissible method of
construction. Similarly to the case of structural induction, the definition must
verify a guardedness condition to be accepted. This condition states that any
recursive call in the definition must be protected –i.e, be an argument of–
some constructor, and only an argument of constructors [8]. The following
definitions are examples of valid methods of construction:

CoFixpoint iterate (A: Set)(f: A → A)(a : A) : Stream A:=
Cons a (iterate f (f a)).

CoFixpoint map
(A B:Set)(f: A → B)(s : Stream A) : Stream B:=
match s with Cons a tl ⇒ Cons (f a) (map f tl) end.

Exercise 7.1 Define two different methods for constructing the stream which
infinitely alternates the values true and false.

Exercise 7.2 Using the destructors head and tail, define a function which
takes the n-th element of an infinite stream.
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A non-ending method of construction is computed lazily. This means that
its definition is unfolded only when the object that it introduces is eliminated,
that is, when it appears as the argument of a case expression. We can check
this using the command Eval.

Eval simpl in (fun (A:Set)(a:A) ⇒ repeat a).
= fun (A : Set) (a : A)⇒ repeat a

: ∀ A : Set, A→ Stream A

Eval simpl in (fun (A:Set)(a:A) ⇒ head (repeat a)).
= fun (A : Set) (a : A)⇒ a

: ∀ A : Set, A→ A

7.1 Extensional Properties
Case analysis is also a valid proof principle for infinite objects. However, this
principle is not sufficient to prove extensional properties, that is, properties
concerning the whole infinite object [9]. A typical example of an extensional
property is the predicate expressing that two streams have the same elements.
In many cases, the minimal reflexive relation a = b that is used as equality for
inductive types is too small to capture equality between streams. Consider
for example the streams iterate f (f x) and (map f (iterate f x)).
Even though these two streams have the same elements, no finite expansion
of their definitions lead to equal terms. In other words, in order to deal with
extensional properties, it is necessary to construct infinite proofs. The type
of infinite proofs of equality can be introduced as a co-inductive predicate,
as follows:

CoInductive EqSt (A: Set) : Stream A → Stream A → Prop :=
eqst : ∀ s1 s2: Stream A,

head s1 = head s2 →
EqSt (tail s1) (tail s2) →
EqSt s1 s2.

It is possible to introduce proof principles for reasoning about infinite
objects as combinators defined through CoFixpoint. However, oppositely
to the case of inductive types, proof principles associated to co-inductive
types are not elimination but introduction combinators. An example of such
a combinator is Park’s principle for proving the equality of two streams, usu-
ally called the principle of co-induction. It states that two streams are equal
if they satisfy a bisimulation. A bisimulation is a binary relation R such that
any pair of streams s1 ad s2 satisfying R have equal heads, and tails also
satisfying R. This principle is in fact a method for constructing an infinite
proof:

Section Parks_Principle.
Variable A : Set.
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Variable R : Stream A → Stream A → Prop.
Hypothesis bisim1 : ∀ s1 s2:Stream A,

R s1 s2 → head s1 = head s2.

Hypothesis bisim2 : ∀ s1 s2:Stream A,
R s1 s2 → R (tail s1) (tail s2).

CoFixpoint park_ppl :
∀ s1 s2:Stream A, R s1 s2 → EqSt s1 s2 :=
fun s1 s2 (p : R s1 s2) ⇒

eqst s1 s2 (bisim1 s1 s2 p)
(park_ppl (tail s1)

(tail s2)
(bisim2 s1 s2 p)).

End Parks_Principle.

Let us use the principle of co-induction to prove the extensional equality
mentioned above.

Theorem map_iterate : ∀ (a:Set)(f:A→A)(x:A),
EqSt (iterate f (f x))

(map f (iterate f x)).
Proof.
intros A f x.
apply park_ppl with
(R:= fun s1 s2 ⇒

∃ x: A, s1 = iterate f (f x) ∧
s2 = map f (iterate f x)).

intros s1 s2 (x0,(eqs1,eqs2));
rewrite eqs1; rewrite eqs2; reflexivity.

intros s1 s2 (x0,(eqs1,eqs2)).
exists (f x0);split;

[rewrite eqs1|rewrite eqs2]; reflexivity.
exists x;split; reflexivity.
Qed.

The use of Park’s principle is sometimes annoying, because it requires
to find an invariant relation and prove that it is indeed a bisimulation. In
many cases, a shorter proof can be obtained trying to construct an ad-hoc
infinite proof, defined by a guarded declaration. The tactic “ “Cofix f ” can
be used to do that. Similarly to the tactic fix indicated in Section 5.3, this
tactic introduces an extra hypothesis f into the context, whose type is the
same as the current goal. Note that the applications of f in the proof must be
guarded. In order to prevent us from doing unguarded calls, we can define a
tactic that always apply a constructor before using f :
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Ltac infiniteproof f :=
cofix f;
constructor;
[clear f| simpl; try (apply f; clear f)].

In the example above, this tactic produces a much simpler proof that the
former one:

Theorem map_iterate’ : ∀ ((A:Set)f:A→A)(x:A),
EqSt (iterate f (f x))

(map f (iterate f x)).
Proof.
infiniteproof map_iterate’.
reflexivity.
Qed.

Exercise 7.3 Define a co-inductive type Nat containing non-standard natu-
ral numbers –this is, verifying

∃m ∈ Nat,∀n ∈ Nat, n < m

.

Exercise 7.4 Prove that the extensional equality of streams is an equivalence
relation using Park’s co-induction principle.

Exercise 7.5 Provide a suitable definition of “being an ordered list” for in-
finite lists and define a principle for proving that an infinite list is ordered.
Apply this method to the list [0, 1, . . .]. Compare the result with exercise 5.2.

7.2 About injection, discriminate, and inversion
Since co-inductive types are closed w.r.t. their constructors, the techniques
shown in Section 4 work also with these types.

Let us consider the type of lazy lists, introduced on page 53. The follow-
ing lemmas are straightforward applications of discriminate and injection:

Lemma Lnil_not_Lcons : ∀ (A:Set)(a:A)(l:LList A),
LNil 6= (LCons a l).

Proof.
intros;discriminate.
Qed.

Lemma injection_demo : ∀ (A:Set)(a b : A)(l l’: LList A),
LCons a (LCons b l) = LCons b (LCons a l’) →
a = b ∧ l = l’.
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Proof.
intros A a b l l’ e; injection e; auto.
Qed.

In order to show inversion at work, let us define two predicates on lazy
lists:

Inductive Finite (A:Set) : LList A → Prop :=
| Lnil_fin : Finite (LNil (A:=A))
| Lcons_fin : ∀ a l, Finite l → Finite (LCons a l).

CoInductive Infinite (A:Set) : LList A → Prop :=
| LCons_inf : ∀ a l, Infinite l → Infinite (LCons a l).

First, two easy theorems:

Lemma LNil_not_Infinite : ∀ (A:Set), ~ Infinite (LNil (A:=A)).
Proof.
intros A H;inversion H.

Qed.

Lemma Finite_not_Infinite : ∀ (A:Set)(l:LList A),
Finite l → ~ Infinite l.

Proof.
intros A l H; elim H.
apply LNil_not_Infinite.
intros a l0 F0 I0’ I1.
case I0’; inversion_clear I1.
trivial.
Qed.

On the other hand, the next proof uses the cofix tactic. Notice the de-
structuration of l, which allows us to apply the constructor LCons_inf, thus
satisfying the guard condition:

Lemma Not_Finite_Infinite : ∀ (A:Set)(l:LList A),
~ Finite l → Infinite l.

Proof.
cofix H.
destruct l.
intro;
absurd (Finite (LNil (A:=A)));
[auto|constructor].
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1 subgoal

H : forall (A : Set) (l : LList A), ~ Finite l -> Infinite l
A : Set
a : A
l : LList A
H0 : ~ Finite (LCons a l)
============================
Infinite l

At this point, one must not apply H! . It would be possible to solve the
current goal by an inversion of “ Finite (LCons a l) ”, but, since the
guard condition would be violated, the user would get an error message after
typing Qed. In order to satisfy the guard condition, we apply the constructor
of Infinite, then apply H.

constructor.
apply H.
red; intro H1;case H0.
constructor.
trivial.
Qed.

The reader is invited to replay this proof and understand each of its steps.
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