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About this course

I Objective: To show how a proof assistant like Coq can be
useful in NL framework (syntax, semantics, . . . )

I Level: Any level between “How to prove P =⇒ P ” and “how
to prove soundness and completeness of Lambek calculus”

I Documentation:
I Slides, Coq files, exercises on

esslli2004.loria.fr/casteran,
I The user contribution on Lambek calculus, on coq.inria.fr,
I A book:

“Interactive theorem proving and program development,
Coq’Art: the Calculus of Inductive Constructions” ,
Bertot and Castéran, Springer-Verlag, June 2004

I A lot of documentation on coq.inria.fr
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Overview of the course

1. Reasoning about CTL

2. A Gentle Introduction to Coq

3. Formalization of NL Lambek Calculus

4. Advanced Coq

The relative importance of 2, 3, and 4 will be determined
according to your interest.
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Reasoning about CTL

I A categorial grammar is determined by many parameters:
I atomic types
I modes
I structural rules
I lexicons

I It is hard to understand the consequences of the choice of
these parameters on grammars we design

I A tool like Grail cannot handle “generic” properties of CTL,
i.e. properties of classes of grammars.
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Examples of derived rules

Co-application:

∀AB, A ` (A•B/B)

Geach rule:

MA(i , j)1 ∈ R

∀AB C , B/iC `R (A/jB)\j(A/iC )

1

Γ[(∆1 , (∆2 , ∆3)i )j ]`C

Γ[((∆1 , ∆2)j , ∆3)i ]`C
MA(i , j)
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Some derived rules, like unbounded dependencies use auxiliary
computations for reorganizing contexts:

L♦(i , j) ∈ R φi (Γ, 〈∆〉j) `R C

(Γ , 〈∆〉j)i `R C
Ui,j

....

(John , (believes , (Mary , (thinks , ((the , girl)a , (loves , : ♦c�cnp)a)a)a)a)a)a ` s

((John , (believes , (Mary , (thinks , ((the , girl)a , loves)a)a)a)a)a , : ♦c�cnp)a ` s
Ua,c

(John , (believes , (Mary , (thinks , ((the , girl)a , loves)a)a)a)a)a ` s/a♦c�cnp
/I

(whom , (John , (believes , (Mary , (thinks , ((the , girl)a , loves)a)a)a)a)a)a ` n\an
/E

whom John , Mary thinks, believes the girl
(n\a n)/a (s/a ♦c�c np) np (np\a s)/a s np/a n n
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Proposition for a toolkit for studying CTL

I Multimodal framework

I Possibility of deriving/applying (arbitrarily complex) generic
rules

I Decision procedures

I User interface

I Proofs and computations

I Higher-order programming and reasoning

I Interface with other tools (Grail)
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A Gentle Introduction to Coq

I What’s Coq?

I Terms and Types

I Propositions and Proofs

I Simple Induction
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What’s Coq?

I A computer tool for building/verifying theorem proofs.

I Domains: usual mathematics, proof theory, program
verification . . .

I Uses in logic and linguistics: partial knowledge (A. Nait
Abdallah), categorial grammars, . . .
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Some characteristics

I A typed λ-calculus called the Calculus of Inductive
Constructions:

I Rich type system (polymorphic, dependent, higher-order,
inductive types)

I Computation facilities via reduction rules
I Logical reasoning via Curry-Howard isomorphism

I Interactive developments via programmable tactics

I A standard library : theories, tactics, decision procedures, . . .

Our presentation of Coq uses a small theory of NL grammars which
can be downloaded.



Reasoning about Categorial Type Logics

How to use Coq?

I Interactive sessions, using a command language: the Coq
vernacular,

I On a terminal (command coqtop), or under [x]emacs, by
editing a vernacular file foo.v (Proof General, coqIde),

I With the graphical interface Pcoq,

I For large developments, use the coqc compiler (produces .vo
files), makefile generation, ...
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How to write a Coq File

The easiest way is to edit a file with suffix .v on xemacs:

xemacs foo.v

It runs Proof General. The blue region is read-only and contains
the checked part of your file. The main commands are:

I Ctrl-c Ctrl-n: send next command (ending with
.<space>), and extends the blue region.

I Ctrl-c Ctrl-u: undo last command and move the
white/blue frontier upwards

I Ctrl-c Ctrl-<ret>: moves the white/blue frontier to the
point

I Ctrl-x Ctrl-s: save

I Ctrl-x Ctrl-c: quit
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If you are not familiar with emacs, you can use any editor, or
copy/paste from a terminal to a .v file.

$ coqtop
Welcome to Coq 8.0 (Apr 2004)

Coq < Theorem my_first_thm : exists x:nat, x+x=x*x.
1 subgoal

============================
exists x : nat, x + x = x * x

my_first_thm < Proof.

my_first_thm < exists 2.
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1 subgoal

============================
2 + 2 = 2 * 2

my_first_thm < simpl.
1 subgoal

============================
4 = 4

my_first_thm < auto.
Proof completed.

my_first_thm < Qed.
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my_first_thm is defined

Coq < Print my_first_thm.
my_first_thm =
ex_intro (fun x : nat => x + x = x * x)

2
(refl_equal 4)

: exists x : nat, x + x = x * x

ctrl-d
$
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Terms and Types

The following session, using a module NL.vo we wrote, shows that
every well formed term has a type, given by the command Check:

Require Import NL.

Check mary.
mary : word
Check np.
np : Atom
Check np.
np : Form

The type A of a term t may depend on some declarations gathered
in a context Γ. This is expressed as a typing judgment:

Γ ` t : A
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Other examples

Check O.
O : nat
Check -23.
-23 : Z
Check 2=3.
2=3 : Prop
Check False.
False : Prop
Check false.
false : bool
Check bool.
bool : Set
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Typing rule for application

The following rule is used to control that functions are applied to
arguments of the correct type:

Γ ` f : A→B Γ ` a : A
Γ ` f a : B

app

Check atomic.
atomic : Form -> Prop

Check (atomic (np\\ s)).
atomic (np\\ s): Prop

Check (atomic -5).
Error: The term "atomic" has type "Form -> Prop"
while it is expected to have type "Z"
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Functions of several arguments

Check Zplus.
Zplus : Z -> Z -> Z

Check (Zplus (-2)).
(Zplus (-2): Z -> Z

Check (Zplus (-2) 8).
-2 + 8 : Z

Check -2 + 8.
-2 + 8 : Z
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Creating functions: The constructors of an inductive type

Print Form.

Inductive Form : Set :=
| At: Atom -> Form
| Slash: Form -> Form -> Form
| Backslash: Form -> Form -> Form
| Dot: Form -> Form -> Form

Check (Backslash np s).
np \\ s : Form

Check np o np \\ s.
np o np \\ s : Form
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Creating functions: abstractions

Γ, (a : A) ` t : B

Γ ` fun a : A⇒ t : B
lam

Check (fun z:Z ⇒ 2*z).
fun z:Z ⇒ 2*z : Z → Z

Definition double z := 2*z.
double is defined

Definition lift A B := B // (A \\ B).
lift is defined

Check lift.
lift : Form → Form → Form
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Creating functions: primitive recursion

Fixpoint polarform (p:Atom)(F : Form){struct F}:Z :=
match F with

| (At a) => (if atom_eq_dec p a then 1 else 0)
| A // B => polarform p A - polarform p B
| B \\ A => polarform p A - polarform p B
| A o B => polarform p A + polarform p B

end.

polarform : Atom -> Form -> Z
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Computing with reductions

The Calculus of Inductive Constructions is provided with various
types of reduction, whose combination gives a strongly
normalizing, confluent calculus.

Eval compute in 2*3.
= 6 : Z

Eval compute in polarform np (lift s np).
= 0 : Z
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Propositions and Proofs

A proposition is any term A of the sort Prop. A proof of A is any
term of type A.
In this logical framework, a type judgment Γ ` t : A can be read as
follows:

Γ Hypotheses

t Proof term for A

A Theorem statement
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The Curry-Howard Isomorphism

Maps every proposition to the type of its proofs.

I Proving a proposition A is building a term of type A

I → is both functional arrow and (intuitionist) implication

I Applying a theorem (by modus ponens) is just like applying a
function

I Programming and logical intuitions cooperate
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Minimal Propositional Logic

Section Minimal Propositional Logic.
Variables P Q R S : Prop.

Check P -> P.
P -> P : Prop
Check P -> Q -> P.
P -> Q -> P : Prop

Check fun p:P ⇒ p.
fun p:P ⇒ p : P -> P
Check fun (p:P)(q:Q) ⇒ p.
fun (p:P)(q:Q) ⇒ p : P -> Q -> P
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Saving theorems

Theorem delta : (P->P->Q)->P->Q.
Proof fun H p => (H p p).
delta is defined

Theorem imp_trans : (P->Q) -> (Q->R) -> P->R.
Proof fun H H0 p ⇒ H0 (H p).
imp_trans is defined
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Goals and tactics

I A goal is a pair of a context Γ and a type A (written Γ ` A)

I A solution of this goal is any term t such that the judgment
Γ ` t : A holds.

I A tactic is a function which transforms some goal into a
sequence of subgoals and combines their solutions to solve the
original goal.
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Basic tactics: intro, apply and assumption

Theorem imp trans : (P->Q)->(Q->R)->P->R.
Proof.

============================
(P -> Q) -> (Q -> R) -> P -> R

intro H.

1 subgoal:
H : P -> Q
============================
(Q -> R) -> P -> R
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H : P -> Q
=======================
(Q -> R) -> P -> R

intros H’ p.

1 subgoal:
H : P -> Q
H’ : Q -> R
p : P
===========
R
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H : P -> Q
H’ : Q -> R
p : P
===========
R

apply H’.

1 subgoal:
H : P -> Q
H’ : Q -> R
p : P
===========
Q
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H: P -> Q
H’ : Q -> R
p : P
===========
Q

apply H.

1 subgoal:
H : P -> Q
H’ : Q -> R
p : P
===========
P
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H : P -> Q
H’ : Q -> R
p : P
===========
P

assumption.

Proof completed
Qed.
imp trans is defined
Print imp trans.
= fun (H:P->Q) (H’:Q->R)(p:P) => H’ (H p)
: (P->Q)->(Q->R)->P->R
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Some variants

Theorem imp trans : (P->Q)->(Q->R)->P->R.
Proof.

intros H H’ p.
apply H’; apply H; assumption.

Qed

Theorem imp trans : (P->Q)->(Q->R)->P->R.
Proof.

auto.
Qed
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Thursday

You are now ready to write your own proofs . . . .

First, let us look again at some details.
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Coq syntax

Section Minimal_Propositional_Logic.
Variables P Q R S : Prop.

Theorem imp_trans : (P->Q)->(Q->R)->P->R.
Proof.
intros H H0 p.
apply H0.
apply H.
assumption.
Qed.

End Minimal_Propositional_Logic.
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How to use Coq?

I Interactive sessions, using a command language: the Coq
vernacular,

I On a terminal (command coqtop), or under [x]emacs, by
editing a vernacular file foo.v (Proof General, coqIde),

I With the graphical interface Pcoq,

I For large developments, use the coqc compiler (produces .vo
files), makefile generation, ...
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How to write a Coq File

The easiest way is to edit a file with suffix .v on xemacs:

xemacs foo.v

It runs Proof General. The blue region is read-only and contains
the checked part of your file. The main commands are:

I Ctrl-c Ctrl-n: send next command (ending with
.<space>), and extends the blue region.

I Ctrl-c Ctrl-u: undo last command and move the
white/blue frontier upwards

I Ctrl-c Ctrl-<ret>: moves the white/blue frontier to the
point

I Ctrl-x Ctrl-s: save

I Ctrl-x Ctrl-c: quit
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If you are not familiar with emacs, you can use any editor, or
copy/paste from a terminal to a .v file.

$ coqtop
Welcome to Coq 8.0 (Apr 2004)

Coq < Theorem my_first_thm : exists x:nat, x+x=x*x.
1 subgoal

============================
exists x : nat, x + x = x * x

my_first_thm < Proof.

my_first_thm < exists 2.
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1 subgoal

============================
2 + 2 = 2 * 2

my_first_thm < simpl.
1 subgoal

============================
4 = 4

my_first_thm < auto.
Proof completed.

my_first_thm < Qed.
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my_first_thm is defined

Coq < Print my_first_thm.
my_first_thm =
ex_intro (fun x : nat => x + x = x * x)

2
(refl_equal 4)

: exists x : nat, x + x = x * x

ctrl-d
$
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Exercise
Please look at esslli2004.loria.fr/casteran (first exercise).
Replace the command Admitted with a real proof (a proof term or
a sequence of tactic calls).

Section Minimal_Propositional_Logic.
Variables P Q R S : Prop.

Theorem imp_perm : (P->Q->R)->(Q->P->R).

Theorem imp_dist : (P->Q->R)->(P->Q)->P->R.

Theorem P3_Q : (((P->Q)->Q)->Q) -> P->Q.

Theorem weak_peirce : ((((P->Q)->P)->P)->Q)->Q.

End Minimal_Propositional_Logic.
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Complete the development in file exercise1.v, replacing the
command Admitted by a real proof.
For each theorem:

I Give an explicit proof term

I Use tactics

I Use auto
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Intuitionist Propositional Logic

For each connective, as well as True and False, we have

I typing rules for building propositions,

I introduction rules and tactics (except for False),

I elimination rules and tactics.
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Conjunction

Typing rule: and : Prop → Prop → Prop

Introduction tactic : split transforms the subgoal Γ ` A/\B into
two subgoals Γ ` A and Γ ` B.

Elimination tactic: If Γ ` t : A/\B, then elim t transforms the
goal Γ ` C into Γ ` A→B→C .



Reasoning about Categorial Type Logics

Theorem and_comm : P /\ Q -> Q /\ P.
Proof.
intro H.

1 subgoal:
H : P /\ Q
===========
Q /\ P

elim H.

1 subgoal:
===================
P -> Q -> Q /\ P

intros; split; assumption.
Qed.
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Disjunction

Typing rule: or : Prop → Prop → Prop

Introduction tactics : left (resp.right) transforms a subgoal
Γ ` A\/B into the subgoal Γ ` A (resp. Γ ` B).

Elimination tactic: If Γ ` t : A\/B, then elim t transforms the
goal Γ ` C into the subgoals Γ ` A→C and
Γ ` B→C
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Theorem or_comm : P \/ Q -> Q \/ P.
Proof.
intro H; elim H.

2 subgoals
===================
P -> Q \/ P

subgoal 2 is:
===================
Q -> Q \/ P

intro; right.
intro; left.

Qed.
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Falsehood and negation

Typing rules: False : Prop
not := fun P : Prop ⇒False

Introduction tactics :

I No introduction tactic for False!
I red transforms a subgoal Γ ` ∼A into the

subgoal Γ ` A→False.

Elimination tactics:

I If Γ ` t : False, then elim t solves
immediately any goal.

I If Γ ` t : ∼A, then elim t replaces the goal
Γ ` B by the subgoal Γ ` A.
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Theorem contrap : (P -> Q) -> ∼Q -> ∼P.
Proof.
intros H H0.
red; intro p.

H : P -> Q
H0 : ∼Q
p : P
===========
False
elim H0; auto.

Qed.
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Exercises (2)

Complete the development in file exercise2.v, replacing the
command Admitted by a real proof.
For each theorem:

I Use tactics

I Use auto and/or tauto
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Theorem P_or_False : P \/ False -> P.

Theorem and_idempotent_1 : P -> P /\ P.

Theorem and_idempotent_2 : P/\P -> P.

Theorem and_or_dist : (P\/Q)/\R -> (P/\R)\/(Q/\R).

Theorem absurd : P -> ~P -> Q.

Theorem demorgan1 : P /\ Q -> ~(~P \/ ~Q).

Theorem demorgan2 : ~(P \/ Q) -> ~P /\~Q.

Theorem demorgan3 : P \/ Q -> ~(~P /\ ~Q).
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Predicate and Higher-order Logic

I Universal quantification

I Existential quantification

I Equality
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Universal quantification (dependent product)

Γ, (x : A) ` B : Prop

Γ ` ∀ x:A, B : Prop

Γ, (x : A) ` t : B

Γ ` fun x : A⇒t : ∀ x:A, B
Γ ` f : ∀ x:A, B Γ ` t : A

Γ ` f t : B{x := t}

The symbol ∀ is typed forall
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Tactics for the dependent products

Introduction tactic : intro y transforms a subgoal Γ ` ∀ x:A, B
into the subgoal Γ, (y : A) ` B{x := y}.

Elimination tactic If Γ ` t : ∀ x:A, B, then apply t solves the
subgoal Γ ` B{x := t}.

Notice that there are some variants (see examples).
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Theorem all_perm :
∀ (A:Set)(P : A -> A -> Prop),

(∀ x y, P x y) ->
∀ x y, P y x.

Proof.
intros A P H x y.

A : Set
P : A -> A -> Prop
H : ∀ x y : A, P x y
x : A
y : A
===========
P y x

apply H.

Proof completed
Qed.



Reasoning about Categorial Type Logics

Print all_perm.

= fun (A:Set)(P: A -> A-> Prop)
(H: ∀ x y:A, P x y)
(x y: A) ⇒
H y x

: ∀ (A:Set)(P : A -> A -> Prop),
(∀ x y, P x y) ->
∀ x y, P y x

Lemma toy: (∀ x y:Z, x < y)-> (∀ x y:Z, y < x).
intros; apply all_perm.
assumption.

Qed.
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Existential quantification

Γ ` P : A→Prop

Γ ` ex P : Prop

Notation ∃ x : A, P x is just an abreviation for
ex (fun x:A⇒P x).

Introduction tactic : exists t transforms a subgoal Γ ` ex P into
the subgoal Γ ` P t.

Elimination tactic: If Γ ` t : ex P, then elim t transforms the
subgoal Γ ` A into Γ ` ∀x : A,P x→A.
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Theorem not_ex_all_not :
∀ (A:Set)(P : A -> Prop),
∼(exists x, P x) ->
∀ x , ∼ P x.

Proof.
intros A P H x.
red; intro H0.
elim H.

x : A
H0 : P x
===========
exists x:A, P x

exists x; assumption.
Qed.
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Theorem all_not_ex_not : ∀ (A:Set)(P : A -> Prop),
(∀ a, P a) -> ∼(exists a, ∼(P a)).
red; intros A P H H0.

H : forall a : A, P a
H0 : exists a : A, ∼ P a
============================
False

elim H0; intros b Hb.

H : forall a : A, P a
b : A
Hb : ∼ P b
============================
False
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H : forall a : A, P a
b : A
Hb : ∼ P b
============================
False
elim Hb; apply H.

Qed.
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Equality

Γ ` t1 : A Γ ` t2 : A
Γ ` t1 = t2 : Prop

Introduction tactic : reflexivity solves the subgoal Γ ` t1 = t2
if t1 and t2 are convertible.

Elimination tactics : If Γ ` t : t1 = t2, then rewrite t
transforms the subgoal Γ ` P t1 into Γ ` P t2.

Variant: rewrite <- t (right to left)
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Theorem eq_trans:
∀ (A:Set)(a b c:A),

a = b -> b = c -> a = c.
Proof.
intros A a b c H H0.

H : a = b
H0 : b = c
==========
a = c

rewrite H; assumption.
Qed.
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Notation: t1<>t2 is an abreviation for ∼t1 = t2

Lemma no_diff : forall A:Set, A -> ~(forall x y: A, x<>y).
Proof.
intros A a H.

A : Set
a : A
H : forall x y : A, x <> y
============================
False

elim (H a a); trivial.
Qed.
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Exercises (3)

Complete the development in file exercise3.v, replacing the
command Admitted by a real proof.

Some questions are quite difficult but interesting.
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Friday

You can now write simple proofs . . .

. . . but not all proofs are so simple.
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Simple Induction

Let A be an inductive type.

I Each constructor c of A is an introduction rule:
the associated tactic is apply c .
Variants: constructor i , split, left, right, exists t,
etc.

I The elimination tactic is elim t,
variants: induction v , case t, etc.
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Example

The two constructors for nat are O:nat and S:nat→nat. If
Γ ` n:nat, the tactic elim n transforms the goal Γ ` P n into the
two subgoals

I Γ ` P O

I Γ ` ∀ p : nat,P p→P (S p)

Theorem plus_assoc : forall n p q:nat, (n+p)+q = n+(p+q).
intro n; elim n; simpl; auto.

Qed.

Notice the higher-order pattern-matching:

P n = λ p q.(n + p) + q = n + (p + q)
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Formalization of the Lambek Calculus (NL)

Let us start with the axiomatic (à la Hilbert) formalization of the
logic of residuation, as the binary relation −→

NL
on Form

(derivability).
In Coq, we define it as an inductive dependent type NL arrow:

I NL arrow has type Form→Form→Set

I Each rule of derivability is represented by a constructor.
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The definition of NL arrow

Inductive NL_arrow : Form -> Form -> Set :=
| one : forall A, NL_arrow A A
| comp : forall A B C, NL_arrow A B ->

NL_arrow B C ->
NL_arrow A C

| beta : forall A B C, NL_arrow (A o B) C ->
NL_arrow A (C // B)

| beta’ : forall A B C , NL_arrow A (C // B) ->
NL_arrow (A o B) C

| gamma : forall A B C, NL_arrow (A o B) C ->
NL_arrow B (A \\ C)

| gamma’ : forall A B C, NL_arrow B (A \\ C) ->
NL_arrow (A o B) C.
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Check one.
one : ∀ A : Form, A -NL-> A

Definition deriv0 : np \\ s -NL-> np \\ s.
apply one.

Defined.
Print deriv0.
deriv0 = one (np \\ s) :
np \\ s -NL-> np \\ s
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Lemma scheme1 : forall A B, A -NL-> (A o B)//B.
intros A B; apply beta; apply one.

Defined.

Lemma ex2 : (np\\s)//np -NL-> ((np\\s)//np o np)//np.
apply scheme1.

Defined.

Notice that one, beta and gamma are in the ctl base for auto.

Lemma scheme1 : forall A B, A -NL-> (A o B)//B.
auto with ctl.

Defined.



Reasoning about Categorial Type Logics

More on apply

Definition Dot_mono_left :
forall A B C, A -NL-> C ->

A o B -NL-> C o B.
intros A B C H; apply beta’.

H : A -NL-> C
========================

A -NL-> (C o B) // B
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H : A -NL-> C
========================

A -NL-> (C o B) // B

apply comp.

Error: generated subgoal "A -NL-> ?638"
has metavariables in it

comp : forall A B C, A -NL-> B -> B -NL-> C ->
A -NL-> C
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Explicit argument for apply

H : A -NL-> C
========================

A -NL-> (C o B) // B

apply comp with C; auto with ctl.

Defined.
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Prolog-like resolution

H : A -NL-> C
========================

A -NL-> (C o B) // B

eapply comp.

H : A -NL-> C
==============
A -NL-> ?74

subgoal 2 is:
?74 -NL-> (C o B) // B
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first subgoal

H : A -NL-> C
==============
A -NL-> ?74

second subgoal

?74 -NL-> (C o B) // B

eexact H. (* or eauto *)

C -NL-> (C o B) // B
eauto with ctl.
Defined.
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A One-liner proof

Lemma Dot_mono_left :
forall A B C : Form,
A -NL-> C -> A o B -NL-> C o B.

intros; apply beta’; eauto with ctl.
Defined.



Reasoning about Categorial Type Logics

Exercises (4)

Derive the following rules (see exercise4.v).
Print the terms associed with your definitions.
Use as many derived rules and automatisms as possible.

To compile the theory NL, just download distrib.tar.gz and
execute tar zxvf distrib.tar.gz, then goto the exercises
subdirectory.
. . . /. . .
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Definition deriv1 : s -NL-> (s o np) // np.

Definition deriv2 : (s//np) o np -NL-> s.

Definition deriv3 : np o (np \\ (s // np)) o np -NL-> s.

Definition deriv4 : (np//n)o(n//n o n) -NL-> np.

Definition Dot_mono_right :
forall A B C : Form,
B -NL-> C ->
A o B -NL-> A o C.
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Definition Dot_mono : forall A B C D,
A -NL-> B ->
C -NL-> D ->
A o C -NL-> B o D.

Definition isotonicity :
forall A B C : Form , A -NL-> B ->

A // C -NL-> B // C.

Definition antitonicity:
forall A B C : Form , C -NL-> B ->

A // B -NL-> A // C.
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Definition antitonicity’:
forall A B C : Form ,
A -NL-> B ->
B \\ C -NL-> A \\ C.

Definition isotonicity’ :
forall A B C : Form,
B -NL-> C ->
A \\ B -NL-> A \\ C.

Definition lifting:
forall A B, A -NL-> B//(A\\B).

Definition lifting’:
forall A B, A -NL-> (B//A)\\B.
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Advanced Coq

I Induction on dependent types

I Building new tactics

I Higher-Order reasoning
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Induction on derivations
Let us consider a goal of the form:

A : Form
B : Form
d : A -NL-> B
==============
P A B

The tactic elim d generates the following goals:

∀ A, P A A

∀ A B C : Form,
(A -NL-> B) -> P A B ->
(B -NL-> C) -> P B C ->
P A C

etc.
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Example : an invariant on derivations

Theorem Hilbert_polar : forall A B a, A -NL-> B ->
polarform a A = polarform a B.

intros A B a H; elim H; simpl; auto with zarith.
Qed.

In fact Coq computed the following elimination predicate:

P = fun A B ⇒
∀ a, polarform a A = polarform a B
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Example: How to falsify a derivation

Lemma ex5 : np o np//s//np o np -NL-> s
-> False.

intro H; elim H.

6 subgoals

H: np o np // s // np o np -NL-> s
============================
forall A: Form, False

...

The elimination predicate is fun A B ⇒ False !
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A better attempt

Lemma ex5 : np o np//s//np o np -NL-> s -> False.
intro H; generalize (Hilbert_polar _np H).

H : np o np//s//np o np -NL-> s
============================
polarform _np (np o np//s//np o np) = polarform _np s
-> False
simpl.

============================
4 = 0 -> False
auto with zarith.

Qed.
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Other applications of induction

I Definition of sequent calculus and natural deduction as
inductive types

I Proof of equivalence between the three systems.

Definition NL_arrowToseq :
forall (A B : Form),
A -NL-> B -> (form A) ==> B.
intros A B H; elim H.
....
Defined.

See ../Light/*.v
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Building new tactics

Coq is not an automatic theorem prover, but

I We can build Hint databases (for auto and eauto)

I There exist some automatic tactics for useful fragments:
tauto, intuition, omega, ring, etc.

I We can program new tactics with Ltac
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A tactic for falsifying a derivation

Ltac noderiv H atom :=
match goal with

H : NL_arrow ?A ?B |- False =>
generalize(Hilbert_polar atom H);
simpl ; auto with zarith

end.

Lemma ex5’ : np o np//s//np o np -NL-> s
-> False.

intro H; noderiv H _s.
Defined.
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Higher-Order reasoning

Section semantic_defs.

(* Kripke models for CTL *)

Variables (W : Set) (* worlds *)
(R : W -> W -> W -> Prop) (* accessibility *)
(v_at : Atom -> W -> Prop). (* valuation *)
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Fixpoint val (F : Form) : W -> Prop :=
match F with
| At a => v_at a
| A o B =>

fun x => exists y : W,
(exists z : W, R x y z /\ val A y /\ val B z)

| C // B =>
fun y => forall x z : W, R x y z -> val B z ->
val C x

| A \\ C =>
fun z => forall x y : W, R x y z -> val A y ->

val C x
end.
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Definition satisfies (w : W) (A : Form) : Prop
:= val A w.

End semantic_defs.

Definition sem_implies : Form -> Form -> Prop :=
fun A B : Form =>
forall (W : Set) (R : W -> W -> W -> Prop)

(v_at : Atom -> W -> Prop),
forall w : W, satisfies R v_at w A ->

satisfies R v_at w B.
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Lemma GAMMA :
forall A B C,
sem_implies (A o B) C -> sem_implies B (A \\ C).
Proof.
unfold sem_implies, satisfies in |- *;
simpl in |- *; auto.
intros A B C H W R v_at w H1 x y H2 H3.
apply H.
exists y; exists w; auto.
Qed.
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Definition NL_sound :=
forall A B : Form, NL_arrow A B -> sem_implies A B.

Theorem NL_sound_thm : NL_sound.
Proof.
unfold NL_sound.
simple induction 1.
apply ONE.
intros; eapply COMP; eauto.
intros; apply GAMMA’BETA; apply GAMMA; auto.
intros; apply BETA’; assumption.
intros; apply GAMMA; auto.
intros; apply GAMMA’; assumption.
Qed.
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Extensions of the development

I Polymorphism

I Variants of Lambek calculus

I Multimodal categorial grammars
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Polymorphism

The type At is now arbitrary, and locally declared:

Section lambek_defs.
Variable A:Set.
Inductive Form : Set :=

| At : A -> Form
| Slash : Form -> Form -> Form
| Dot : Form -> Form -> Form
| Backslash : Form -> Form -> Form .

...
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All types and constants are generalized at the end of the section:

End lambek_defs.

Check Form.
Form : Set -> Set

Check Dot.
Dot: forall A:Set, Form A -> Form A -> Form A

Check NL_arrow.
NL_arrow: forall A:Set, Form A -> Form A -> Set
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Variants of Lambek Calculus

Definition structrules := Form -> Form -> Set.

Inductive NL : structrules :=.

Inductive L : structrules :=
L1 : forall A B C, L (A o (B o C)) ((A o B) o C)

| L2 : forall A B C, L ((A o B) o C) (A o (B o C)).

Inductive P : structrules :=
P1 : forall A B, P (A o B) (B o A).

Definition LP := union L P.
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The type of the derivation relation is now:

forall (At:Set)(R: structrules At),
Form At -> Form At -> Set

Completeness, soundness, cut-elimination, equivalence between the
three calculus, are proved for L, NLP, and LP (look at Coq
contrib on Lambek calculus).
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Multimodal categorial grammars

We simply add new parameters:

I Uunary operators: � and ♦

I Composition modes, for labeling the binary operators

I Unary modes, for labeling � and ♦

I Interaction principles, generalizing the structural rules

I Meta-theorems and tactics parameterized by the structural
rules (look at the reader)



Reasoning about Categorial Type Logics

Present state of the development

I syntax/semantics interface (beginning)
I To do:

I Libraries of modes,
I Graphical interface,
I Interface with Grail
I Montague semantics with non simply typed λ-calculi

(2nd-order types, dynamic aspects, etc.)
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A last (long) exercise

In the (monomorphic) system of ../Light/, consider extensions
by structural rules, like associativity and/or commutativity of the o
operator.
For instance, you should derive the Geach rule : if o is associative,
then A//B can be derived into (A//C)//(B//C).
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Conclusion

Proof assistants like Coq seem to be a good tool for exploring
complex theories. They are a good compromise between a hopeless
automaticity and hand-made proofs and computations.
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