
LEAF
Learning Agent FIPA Compliant

Community Toolkit

Steven Lynden, Omer F. Rana
Cardiff University, UK.

interacting Java based learning agents
existing in multiple communities to solve

goals requiring collective behaviour –
communication, coordination, analysis,

scalabili ty…

LEAF
Learning Agent FIPA Compliant

Community Toolkit

Plan of this talk

1. Agents, FIPA.

2. LEAF – concepts

3. FIPA-OS

4. LEAF – toolkit

5. Applications

LEAF Agents

• Autonomous
• Domain knowledge
• Learning behaviour
• Communication via Internet
• Interoperable (FIPA compliant)
• Research objective: deploy LEAF agents to

perform goals that require collective effort,
and support the scalabili ty of this approach.

Standards for interoperable agent systems,
to which developers adhere:

communication protocols

message transport

agent management

agent architectures

FIPA - Foundation for Intelligent
Physical Agents

Mandatory
specificatios

(request

:sender buyer_agent

:reciever seller_agent

:content (buy(apples,10))

:language prolog

:ontology market-trader

:protocol fipa-request

)

FIPA
Agent
Communication
Language

Agent
Management

System (AMS)

Directory
Facilitator

(DF)

Agent
Communication
Channel (ACC)

Agent

Agent Platform (AP)

FIPA

Internal Platform Message Transport (IPMT)

Support provided by LEAF

• Implementation

• Coordination

• Learning

• Performance Analysis

• Scalability

Java API, utilisation
of FIPA-OS toolkit

Utility function
assignment

Mixed learning
techniques – Neural
Networks, RL etc.

Functional utility,
Performance utility

Multiple utility
function assignment

Utilit y Function Assignment

Utilit y:
• An analysis tool
• A reward function/coordination mechanism

f1(… , … , … , … , …)

agent 1

Utility Function Assignment

Utilit y Function Assignment

Utilit y:
• An analysis tool
• A reward function/coordination mechanism

COIN (Wolpert)
• Agents learn to maximise local utili ty,
which in turn maximises the global utili ty of
a community of LEAF agents
• Performance and functional utili ty types

Performance Utilit y

• Provides a utili ty measure based on
performance engineering related aspects.

• The effect of implementation decisions
(algorithms; languages) and deployment
decisions (platforms; networks), can be
assessed.

• Performance utili ty may have a relation to
the functional util ity of an agent system.

• Coordination: util ity functions are assigned
to agents by an environment service node.

Utility function assignment

ESN

Community

f1

f2

Utility function assignment

ESN

Community a

f1

f2

ESN

f3

Community b

sum f2,f3

• Utilit y functions can have parameters not
available locally to the agent.

Utility function assignment

ESN

Community

f1

• Utilit y functions can have parameters not
available locally to the agent.

Utility function assignment

ESN

Community

R

O

O: observable properties
R: remote parameters

f1

LEAF implementation

• LEAF toolkit allows application specific
agents/communities to be developed easily

• Toolkit implementation is based on FIPA-
Open Source (FIPA-OS) from Emorphia

• Agent behaviours are programmed in Java
• Agents are composed of task components
• Utilit y functions implemented as Java

objects – assigned using object serialization

LEAF agents

• Consist of multiple concurrently executing
tasks.

• Je ssL eaf Node extends FIPA-OS
Je ssAgent

• LeafN ode extends FIPA-OS
FI PAOSAgent

• API provided for learning methods – neural
network, reinforcement learning

LEAF tasks

• Leaf Task extends the FIPA-OS Task class

• Developers extends the Leaf Task class

• Task statistics (number of tasks, execution time
etc.) used to parameterise performance utili ty
functions

• LEAF automatically maintains task stats – they
are available only to assigned utility functions and
ESNs.

Utilit y Function Implementation

• Extend the LocalUtilityFunction
abstract class.

• Implement the compute() method.
• Functions have access to remote parameters

and observable properties.
• Utilit y functions can be parameterised by

observable properties, remote parameters,
task statistics and performance data
(CPU/memory usage etc.)

Utility Function Implementation

Building LEAF communities

• Agents constructed using tasks as building
blocks

• LEAF contains a task library from which
tasks can be selected

• Behaviour is buil t around the maximisation
of local utilit y (performance & functional)

• ESNs deployed with sets of local utility
functions to be assigned to member agents

Applications

Coordination of buyer agents in
multiple markets

• A global cost function exists,
parameterised by the purchasing
decision of the buyer agents
• Buyer agents are assigned utility
functions aligned with the global cost
function
• Agents use local reinforcement
learning algorithms to maximise local
utility functions
• Maximisation of local utility functions
produces desired overall behaviour

Applications

Management of computational resources

• Agents manage resources and process computational
tasks
• Community cost functions are based on the efficiency
with which tasks are processed
• Agents may adapt their behaviour – which tasks to
accept, execution priorities, resource properties
• Performance utility provides an insight into the benefits of
deploying resources of certain platform configurations, and
the associated effect on function utility
• The eventual goal is for teams of resource agents to
adapt to their environment and function coherently

