Programming Metasystems with
Active Objects

M. Di Santo, F. Frattolillo, N. Ranaldo, E. Zimeo
University of Sannio — Benevento - Italy

W. Russo

University of Calabria — Rende (CS) - Italy

1 IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

2.4
2 Contents

Introduction and motivations
#Models for programming metasystems

= A brief introducton to HIMM
& The Hierarchical Metacomputer architecture (HiM)
& The Customizable architecture of a Node

& The API of HIMM
= The Integration of ProActive with HIMM

& Performance analisys

Conclusions and future work

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

2.
i:/’\ 57
— —

S Introduction and motivations

= The presence of a huge amount of computers and
mobile devices results in an increased focus on the
Interconnection of systems

= This evolution of the computer scenario has promoted
two new trends in distributed computing:
& Grid computing, for scientific applications
& Web Services, for e-commerce and business applications
= In both domains, it is important to

€ define suitable programming models in order to better
exploit large-scale distributed systems

& improve customizability of middleware platforms

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

%~

=

L

;L

Models for programming
metasystem

Most of the middleware platforms for Grid computing does not
define a model for programming parallel applications

The send/receive model is used as the de-facto standard for
communication both in cluster environments and in large
heterogeneous distributed systems

However, to handle the unpredictability of resource avalibility
and behavior more dynamic programming models are required
& Agents

1 completely change the way distributed applications are designed and
deployed

€ Active Objects
o allow for taking advantage of well-defined theories and design techniques

R ~jge

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

L

Fo

Our proposal (1)

Even though many active objects libraries have
been developed,

the diffusion of Grids has

Introduced new issues to be taken into account
during program development
& heterogeneity, scalability, unpredictability and adaptability

= We think that the separation of aspects gives the
proper flexibility for programming Grid applications

4

computational entities should exploit communication, security and
management features of a middleware platform without affecting

the functional aspects of an application

S0, we have chosen an approach based on

& A generalized, customizable middleware platform
& A customization to support an active object programming model

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

3
PR

5 Our proposal (2)

S~

The middleware adopted is HIMM

& Hierarchical Metacomputer Middleware
The programming model adopted is the one
provided by ProActive

& Currently ProActive is implemented on top of RMI that does not
offer specialized services for Grid computing

This way
& an application can be programmed by exploiting the asynchronous
remote method invocation model

& metasystems can be transparently managed by using meta-objects

0 through meta-objects, programmers can exploit the services of the
underlying middleware without affecting the functional code of the
application.

6 IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

A brief introduction to HiMM (1)

5 layered architecture

e g
(R (89,

#= HIMM has been developed according to the layered
architecture proposed by Foster et al.

Application

Y

Collective:
Console, Custom components

Each level adds abstractions

Resource:
RM, HMs, Coordinator

Connectivity:
M ulti-protocol transport, Nodes, HMs, Coordinator

Fabric:
Hosts, Clusters, Netw orks, Storage, Protocols

= At fabric layer, it allows a user to exploit collections of hosts,
which can be workstations or computing units of parallel
systems, interconnected by heterogeneous networks

7 IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

b

*

HIMM manages resources according to
a hierarchical topology (Hierarchical
Metacomputers) in order to
€& meet the constraints of the Internet
organization
& exploit the heterogeneity of networks

& improve scalability

Clusters of computers hidden from the
Internet or intra-connected by fast
networks are seen as macro-nodes

& A macro-node is a high-level concept that

allows clusters to be transparently used as a
single powerful machine

A macro-node can in turn contain other macro-
nodes

o A metacomputer can be organized according
to arecursive tree topology

The Coordinator interfaces the macro-
node with the metacomputer network

o™

Domain
XML cfgfile

A

A brief introduction to HIMM (2)

connectivity layer

Node creation
command

User
XML cfg file

Console

- LCluster
XML cfg file

~ . Cluster .~

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

7
S{U@@

(S~

(i

e

L

L

A macro-node is characterized by
two main components:

& The Host Manager (HM)

& The Resource Manager (RM)

The HM runs on each node
wanting to donate CPU cycles

The RM is use to publish the
available computing power at
each level

A macro-node manages another

important component:

€ the Distributed Class Storage
System (DCSS)

& This component allows a HiM to
run applications even if application
code is not present on nodes

A brief introduction to HiMM (3)

resource layer

pLl=plll+pll2+p1l13

Console pl2

pL3=pla1+(pl3.21+p1322+p13.23)

p :computing power of a host
oramacro-node

4.»
subscribe

Macro-node

‘pLil pli2

113,

/ .
pL321 @ pﬂ,z;,s
|

‘. Cluster -~

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

L

L

10

The broker acts as a mediator
between the user (console) and
grid resources (HiM) by using
middleware services (Info System
and HMs)

& the broker becomes responsible for
resource discovery, resource
selection, process/task mapping,
task scheduling, and presents the
Grid (HiM) as a single, unified
resource

The architecture of the broker is

distributed and hierarchical in

order to mach the architectural
organization of a HiM

A brief introduction to HiMM (4)

collective layer

Info System

Application L]

specification
&

> ——
Desired QoS

Resource

Console

selection

Application

specification
Console & Desired
QoS

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

s
f;
&[@@@

¥
\

@‘

L

L

L

11

g

HiIMM implements its services in

several software components
whose interfaces are designed
according to a Component

Framework approach

Both nodes and coordinators are
processes in which a set of
software components are loaded
either at start-up or at run-time

The main components are:

& the Node Manager (NM)

0 guarantees macro-node consistency

0 provides users with services for writing
distributed applications

0 takes charge of some system tasks, such as the
creation of new nodes at nm-time

¢ the Node Engine (NE)
o0 The Message Consumer (MC)
0 The Execution Environment (EE)
0 The Level Sender (LS)

A brief introduction to HiMM (5)

node architecture

Node M anager (NM) : manages a node in order to guarantee the HiM consistency
Node Engine (NE) . defines the behavior of a node

Level Sender (LS) . sends a message (an object) to a node or a group of nodes
M essage Consumer (MC) : receives messages from the network

Execution Environment (EE) : stores a component of a distributed application

Load

acomponent

EPs Install

aComponent

%%% acomgonent
M essage | [
Level Sender Consumer

Execution
Environment

N ode Engine

Node M anager
(Level M anager)

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

RN
)
RN

>

e
=

12

~ DefaultLevelSender

" [from itunisaninic.ing paradise himm)

+hroadcast
+deepbroadcast
+init

+send

+start

+stop

component is a Java class implementing one or
more interfaces according to the pattern “Inversion
of control”

NodeMgr

[from itunisannio.ing.paradise himm)

+currentLevelMgr
+currentLevelSender
+dawenLeveliigr
+downlevelSender
+isCoordinatar
+isRoot
+otherLevaltigr
+otherLevelSender
+uplLevelMgr
+uplevelSender

| ecreatesy
W

LevelMgr

{from itunisannio.ing.paradise imm)

+addMode
+getHPHints
+sethModules
+setProtocal
+size
+thisMode

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

O - A brief introduction to HIMM £\7P)I

communication

HIMM allows nodes to communicate using the

component Level Sender
#= A Level Sender can be customized even if a

default one is always available
& This component provides users with simple communication
mechanisms based on the asynchronous sending of objects

ik

o o

class DefaultLevelSender impements LevelSender {
public void send(Object m, int node) { ... }

public void broadcast(Object m) { ... }
public void deepBroadcast (Object m) { ... }

}

13 IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

<: Abrief introduction to HiMM (8)

interaction among components

HOST/

Configurator

\ Ay

Console

HiM Node

class Appl icationim plements Ekecut ion Envi ronment {
void ini t(NodeMgr nm) throws...{
nodeMg = nm

}
voidsta rt() {

nodeMg . downLevel Sender ().send (msg, node);

nodeMg . downLevel Mgr(). addNode(...);
O ecto = nodeMgr.d ownLevelMs gConsuner(). re ceiv e() ;

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

VI

~JIR

S

S

v

.
* Integration HIMM / ProActive (1)

= The implementation of P/H has been made easy thanks
to the particular organization of both software systems

& ProActive is heavily based on the Adapter Pattern
& HiMM is implemented following the Component Framework

HBA = HBodyAdapter

approaCh \ @ Globa UID for HIMM Global Objects
. . . HBAid = HBodyAdapter stub
ProActive t of t t
@ ive component of an active objec contains only the GUID of the remote adapter
&/ HIMM Adapters HBody = HalfBody
ABody = ActiveB ody

@ Stub generated by Becel
HNA = HNodeAdapter

— Reference
- » Invocation or data transfer

HMMT ransport layer [
(TCP,RUDP, Fif)
EPs” "EPs N

] ProActive] %% RoAdive
M essage M essage
L eviel Sender] Consumer [JLevel Sender Consumer
- , - NM

] /
,@HEAM HBAId
LN LN
! P accessto Grid features
| BProxy HBA HBA
Body @ -
Future Pool ABody N T
) Object B
It
H A@V—/ bjectA e

NE on node x

N E on node Y

Execution Environment

15 IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

L ¢
AR
&%

publi cc lassMatr i xMul ti ply extends
ProActi veExecuti onEnvironnent {
pri vate NodeMyrn odeMg ;
pri vatevo | atil eb oole an stop =f al se;

o

Q’

publicv oid init (NodeMygr nm {
super.init(nm;n odeMyr = nm;
NodeFact ory.s et Facto ry(“hi mi,n ew HNodeFactory());
}
publicv oid start(){
stop= false;
i f(nodeMyr.isRoot()){
Hwvat ri x[] nDxActiv eGoup=null; intd in¥rO;
System out. println ("Insert matrix size:");
<read dinp;
Matrixm Dx =new Matri x(dim);
LevelMgrim = nodeMyr. downLevel Myr();
intsi ze= Imsize()-1;
Object[]po=n ew CObje ct [[{ nDx. get Tab() };
nDxAct i veGroup = new Matrix [si ze];
for(inti =0;i <size; i+ +)
nDxActi veGroup[i 1=(HMtri x)
ProActi ve. newActiv e(HMa ri x. cl ass.g et Narme(),
po, N odeFactory. getNode(“hi mm://” +(i+1)), null ,
HMet aObj ect Fact ory .n ewlnst ance());
Matrixm Sx =new Mtri x(dim);
while (!stop){
Matr i x[] results= nul tip | y(nBx, m DxActi veGroup) ;
Matr i xre sult= Matr ix . re bui | d(r esult s,d i m);
}
}
}
}
16

public clas s HMatrix exte nds M at r ix imp
priv. ate H Matr i x[] subMats;
publ icvo id initActivity(Body body){

Integration HiMM / ProActive (2)

| ement s nitAc tive, RunA ctive, En dActi ve{

HBodyAdapte r hba =(HBodyAdapter) body.ge t RenoteAd apter ();

NodeMgr nod eMgr =
if (nodeMyr.isCoordinator()) {

hba. get NodeMyr () ;

Level Mgr | m= nodeMyr.downLevel Myr();
ints ize = Imsize()-1; subMats= new Matr i x[si ze];
Objec t[] po= {tab}
for(i nti =0; i<siz e;i+ +){
subMats [i]= (HMatrix) ProActive .newActiv e(HMatrix. class . getName(), po ,
NodeFact ory.g etNod e(“himm:/ /" +(i +1)) , null ,
HMé aObj ectFa ctory . newlnsta nce());

}
}

publ icvo id runActivity(Body body) {

Ser vice ser vice = new Serv i ce(body);
whi le (body. isAc tive()){
Requestr = se rvice

HBodyAdapt er h ba =(HBodyAdapter)

NodeMgr n odeMgr

i f(r. getMethod Name() .equ al s("mult
H MVRequest rr=
flo at] [ImSxtab= (floa t[][)rr.
Matrix nmSx = new Matri x(nBSxtab);
Matrix[] res ults = new Matrix[s
Object]] subSxMats = nBx.creat
for (inti=0; i<

(H MVRequest)r;

. bloc ki ngRemoweOlde st() ;

body. getR emote Adapt er();

= hba. get NodeMyr () ;

i ply") && nodeMyr. i sCoordi nator ()){
nmetho dCal | .get Parameter(0);

ubMats.le ngth];
eSubMatri xes(s ubMats.len gt h);

s ubMats. | ength; i++)

resul tsfilj= su bMats[i].multi ply((float[]])subSxMats[i]);
Matrix resul t =Matrix .rebuild(resul ts, nBSxtab.len gth);
Object]] params= new Object]]{ resul t};
Class[Jclas ses= new Class[[{M atrix .cla ss};
try {
Metho d m = HMatrix.c | ass.getM ethod ("ge t Resul t*, class es);
rr.met hodCall= Meth odCall.ge t MethodCal I(m, para ns);
}c atch (No SuchMethod Exception e){ .}
ser vice . serv e(rr);

} els e service . serv e(r);

IPDPS - Work. on Java fon I5arallel and Distributed Computing - Nice 22 Apr.

2003

Performance analisys (1)

We have conducted a first analysis to compare RMI with HIMM and P/R with P/H

The benchmark is the invocation of a remote method (with one parameter and an
empty body) and the return of an integer value, for a varying size of the parameter
The figure shows that for a small size (1 byte) of the parameter, RMI RTT (0.9
ms) is smaller than HIMM RTT (1.3 ms), but P/H RTT (7.8 ms) is smaller than P/R
RTT (9.2 ms)

& Even if the HiIMM transport layer is not optimized, P/H behaves better than P/R due

to the use of asynchronous messaging that allows low-level ProActive operations to
be overlapped with communication

>

b

b

100t RMmI

SRIH & 21000
PIH % @
PIR < S
|
[&}
S
7 £ 100
510;— o
= £
= 5
x £
g 10
RMI
\ B S
= PIR —<-
1 10 100 1000 10000 10000C ol 10 100 1000 10000 10000C

17 PABISES W ork. on Java for Parallel and Distributed Co%abﬁﬁ}eés'—'zﬁlice 22 Apr. 2003

b

b

3

18

Performance analisys (2)

A further analysis has aimed to measure the speedup factor by running a simple
application benchmark

The benchmark is the product of two square matrixes with different sizes of the
matrixes.

The performance obtained with P/H is slightly better than the one obtained with
P/R, especially when the size of the matrixes is small
& This is mainly due to the improvement of remote method invocation implemented by HiIMM

& When the size of the matrixes is large, the execution time is dominated by the time of the
matrix serialization, which is the same in P/H and P/R

2500 +
== &= &+ 5 — & S-R/H
5| ==] PH &
7 2000t PIR =
5 4 F 2
- / 1 ~
¢ R F e R R SR — = £1500
a3 % =
3 &
© =
8 5 /Z/ ‘glooo—
o r i R— J—
2 / R R R R R S odes A 0
/& P/R 2 nodes - 500 |
1 P/H 4 nodes <~
P/R 4 nodes *-
P/H 6 nodes E=—
0 P/R 6 nodes +—
100 200 300 400 500 600 700 800 9001000 1200 100 200 300 400
Matrix Size

IPDPS - Work. on Java for Parallel and Distributed Computlng Nice 22 Apr. 2003

7
\%7
e

é Conclusions

e

\

[

L

| have described the integration of ProActive with HIMM to
create a new framework for easily programming Grid
applications with the active object model

The separation of concerns and the use of meta-objects allow
programmers to exploit the underlying features of HIMM to
program distributed aspects of applications without affecting
functional code

& This approach enables code reuse and makes the object oriented
approach effective for the development of distributed and parallel
applications

HiIMM assures better performance than RMI to ProActive
& The overhead introduced by the new framework is small

L

L

19 IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

e

il
-

L

L

20

X
iy

’ Future work

In the future, we will conduct further experiments with a
larger, hierarchical distributed system

§ characterized by different computational power,
communication hardware and protocols

We will complete the definition and the implementation of
the broker architecture
We will define a framework for automatically transforming

sequential object oriented applications in parallel and
distributed applications when the master/slave parallel

model can be adopted

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 2003

