
IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 20031

Programming Metasystems with
Active Objects

M.M. Di Di Santo, F. Frattolillo, Santo, F. Frattolillo, N. Ranaldo, EN. Ranaldo, E. . Zimeo Zimeo

University of University of Sannio Sannio –– Benevento Benevento -- ItalyItaly
W. W. RussoRusso

University of University of Calabria Calabria –– Rende Rende (CS) (CS) -- ItalyItaly

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 20032

Introduction and motivations
Models for programming metasystems
A brief introducton to HiMM

The Hierarchical Hierarchical MetacomputerMetacomputer architecture (HiM)
The CustomizableCustomizable architecture of a Node
The API of HiMM

The integration of ProActive with HiMM
Performance analisys

Conclusions and future work

Contents

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 20033

Introduction and motivations

The presence of a huge amount of computers and
mobile devices results in an increased focus on the
interconnection of systems
This evolution of the computer scenario has promoted
two new trends in distributed computing:

Grid computing, for scientific applications

Web Services, for e-commerce and business applications

In both domains, it is important to
define suitable programming models in order to better
exploit large-scale distributed systems

improve customizability of middleware platforms

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 20034

Models for programming
metasystem

Most of the middleware platforms for Grid computing does not
define a model for programming parallel applications

The send/receive model is used as the de-facto standard for
communication both in cluster environments and in large
heterogeneous distributed systems

However, to handle the unpredictability of resource avalibility
and behavior more dynamic programming models are required

Agents
✦ completely change the way distributed applications are designed and

deployed

Active Objects
✦ allow for taking advantage of well-defined theories and design techniques

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 20035

Our proposal (1)

Even though many active objects libraries have
been developed, the diffusion of Grids has
introduced new issues to be taken into account
during program development

heterogeneity, scalability, unpredictability and adaptability

We think that the separation of aspects gives the
proper flexibility for programming Grid applications

computational entities should exploit communication, security and
management features of a middleware platform without affecting
the functional aspects of an application

So, we have chosen an approach based on
A generalized, customizable middleware platform
A customization to support an active object programming model

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 20036

Our proposal (2)

The middleware adopted is HiMM
Hierarchical Metacomputer Middleware

The programming model adopted is the one
provided by ProActive

Currently ProActive is implemented on top of RMI that does not
offer specialized services for Grid computing

This way
an application can be programmed by exploiting the asynchronous
remote method invocation model
metasystems can be transparently managed by using meta-objects

✦ through meta-objects, programmers can exploit the services of the
underlying middleware without affecting the functional code of the
application.

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 20037

A brief introduction to HiMM (1)
layered architecture

HiMM has been developed according to the layered
architecture proposed by Foster et al.

Each level adds abstractions

At fabric layer, it allows a user to exploit collections of hosts,
which can be workstations or computing units of parallel
systems, interconnected by heterogeneous networks

Fa bric :
Hos ts , C lus ters , N etw orks , S torage, P rotoc ols

C o n n e ct iv ity :
M ulti-pro toc ol trans por t, N odes , HM s , Coordinator

R e s ou rce :
RM , HM s , Coordinator

C o lle ct ive :
Cons ole, Cus tom c om ponents

Applic ation

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 20038

A brief introduction to HiMM (2)
connectivity layer

HiMM manages resources according to
a hierarchical topology (Hierarchical
Metacomputers) in order to

meet the constraints of the Internet
organization

exploit the heterogeneity of networks

improve scalability

Clusters of computers hidden from the
Internet or intra-connected by fast
networks are seen as macro-nodes

A macro-node is a high-level concept that
allows clusters to be transparently used as a
single powerful machine

A macro-node can in turn contain other macro-
nodes

✦ A metacomputer can be organized according
to a recursive tree topology

The Coordinator interfaces the macro-
node with the metacomputer network

N et-IPN et- IP

Root

W SW S

M ac ro-node
M ac ro-node

M ac ro-node

C C

C

N et-IP

N et-F P

C lus te r

D o m a in
X M L c f g f i le

C o nso le

C

D o m a in
X M L c f g f i le

C l u s t e r
X M L c f g f i le

U s e r
X M L c f g f i le

N ode

H M H M

C re a t e a n o d e

N o d e c re a t io n
c o m m a n d

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 20039

A brief introduction to HiMM (3)
resource layer

A macro-node is characterized by
two main components:

The Host Manager (HM)
The Resource Manager (RM)

The HM runs on each node
wanting to donate CPU cycles
The RM is use to publish the
available computing power at
each level
A macro-node manages another
important component:

the Distributed Class Storage
System (DCSS)
This component allows a HiM to
run applications even if application
code is not present on nodes

N et- IPN et- IP

Root

W SW S

M ac ro-nod e M ac ro-nod e

M ac ro-nod e

C C

C

N et- IP

N et-F P

R M

R M R M

R M

C lus te r

C o nso le

s ubsc r ib e

pub lish

p 1 .3.2.1 p 1 .3.2.3

p 1 .3.2.2

p 1 .3.2 = p 1 .3.2.1+ p 1 .3.2.2+ p 1 .3.2.3
p1.3 .1

p 1 .3= p 2 .1+ p 2 .2p 1 .1
p 1 .2

p 1 .4

p 1 .1 = p 1 .1.1+ p 1 .1.2+ p 1 .1.3
p 1 .2
p 1 .3 = p 1 .3.1+ (p 1 .3.2.1+ p 1 .3.2.2+ p 1 .3.2.3)
p 1 .4

H M H MHMHM

HM HM HM

p : c o m p u t in g p o w e r o f a h o s t
o r a m a c ro -n o d e

H M HM

C

p 1 .1.1 p 1 .1.2 p 1 .1.3

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 200310

A brief introduction to HiMM (4)
collective layer

The broker acts as a mediator
between the user (console) and
grid resources (HiM) by using
middleware services (Info System
and HMs)

the broker becomes responsible for
resource discovery, resource
selection, process/task mapping,
task scheduling, and presents the
Grid (HiM) as a single, unified
resource

The architecture of the broker is
distributed and hierarchical in
order to mach the architectural
organization of a HiM

Console

Info Sys tem

G RIDBroker

Applic ation
spec ific ation

&
D es ired Q oS Resourc e

selec tion

C o n so le

I n f o Sy s t e m

G lo ba l B r o k e r

A p p lic a t io n
sp e c if ic a t io n

& D e s ir e d
Q o S

D om ain
B rok er

D om ain
B rok er

N

N

N

N

N

N

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 200311

A brief introduction to HiMM (5)
node architecture

HiMM implements its services in
several software components
whose interfaces are designed
according to a Component
Framework approach
Both nodes and coordinators are
processes in which a set of
software components are loaded
either at start-up or at run-time
The main components are:

the Node Manager (NM)
✦ guarantees macro-node consistency
✦ provides users with services for writing

distributed applications
✦ takes charge of some system tasks, such as the

creation of new nodes at run-time

the Node Engine (NE)
✦ The Message Consumer (MC)
✦ The Execution Environment (EE)
✦ The Level Sender (LS)

N ode E ngine N ode M a na ge r
(Le v e l M a n a g e r)

E x e c u t io n
E n v ir o n m e n t

M e s sa g e
C o n su m e rL e v e l Se n d e r

E P s

L o a d
a c o m p o n e n t

I n s t a l l
a c o m p o n e n t

a C o m p o n e n t

N o d e M a n a g er (N M) : m an ag es a n o d e in o rd er to g u aran tee th e H iM co n s i s ten cy
N o d e E n g i n e (N E) : d efin es th e b eh av io r o f a n o d e
L ev el S en d er (L S) : s en d s a m essag e (an o b ject) to a n o d e o r a g ro u p o f n o d es
M es s a g e C o n s u m er (M C) : receiv es m essag es fro m th e n etw o rk
E x ecu ti o n E n v iro n m en t (E E) : s to res a co m p o n en t o f a d i s t rib u ted ap p l icatio n

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 200312

A brief introduction to HiMM (6)
API

A component is a Java class implementing one or
more interfaces according to the pattern “Inversion
of control”

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 200313

A brief introduction to HiMM (7)
communication API

HiMM allows nodes to communicate using the
component LevelSender
A LevelSender can be customized even if a
default one is always available

This component provides users with simple communication
mechanisms based on the asynchronous sending of objects

class DefaultLevelSender impements LevelSender {
public void send(Object m, int node) { … }
public void broadcast(Object m) { … }
public void deepBroadcast (Object m) { … }

}

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 200314

A brief introduction to HiMM (8)
interaction among components

HOST

HOST
HM

HiM Node

Configurator

N o d e M g r

GUI

EE

LS MC

Send a command

Co n s o le

N o d e En g in e

class Appl i ca t ion im plem ent s Execu t ion Env i ronmen t {
void ini t (NodeMgr nm) t hr ows … {

nodeMgr = nm;
}
void sta r t() {

…
nodeMgr . downLeve l Sender ().send (msg, node);
nodeMgr . downLeve l Mgr(). addNode(…);
Obj ect o = nodeMgr.d ownLevelMs gConsumer(). re ceiv e() ; …

}}

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 200315

Integration HiMM / ProActive (1)

The implementation of P/H has been made easy thanks
to the particular organization of both software systems

ProActive is heavily based on the Adapter Pattern
HiMM is implemented following the Component Framework
approach.

N E on node x

P ro A ctiv e
M essage

C o n sum erL e v e l Se n de r

E P s

O b je c t A

B P r o x y

N E o n n o d e y

ProActive
M essage

C o n sum erLevel Sen der

EPs

Object B
A B o d y

L N

R e s u lt

Exec ution Environm ent

L N

N M

a c c e s s to G r id f e a tu r e s

HiMM T r a n sp o r t la y e r
(T C P, R U D P , F M)

H B A

H B A idH B A id

F u tu r e P o o l

H B A
H B o d y

G l ob al U ID fo r H i M M G lob al O b jects

ProActive co m p on en t o f an act iv e o b ject

HiMM A dap ters

H B A = H B od y A d ap t er
H B A id = H B od y A d ap t er s t ub
 co n tain s o n ly th e G U ID o f th e rem o te ad ap ter

H B od y = H al fB o d y

A B od y = A ct iveB od yS tu b g en erated b y B cel

R eferen ce
In v ocat io n o r d ata t rans fer

H N A

H N A = H N od eA d ap ter

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 200316

Integration HiMM / ProActive (2)
publi c c l ass M atr i xMul ti pl y ex t ends

ProActiveExecutionEnvironment {
pri vat e No deMgr n odeMgr ;
pri vat e vo l at il e b oole an s to p = f al se;
publ i c v oi d init (NodeMgr nm) {

super . in i t (nm) ; n odeMgr = nm;
NodeFact or y .s et Fac to r y(“ hi mm” , n ew HNodeFact or y());

}
publ i c v oi d start() {

s t op = f al se;
i f (nodeMgr.isRoot()) {

HMat ri x [] mDxAct iv eGro up=nul l ; i nt d i m=0;
Syst em. out. pr i nt ln (" In se r t mat r i x s i ze: ") ;
<r ead di m>;
Mat r ix m Dx = n ew Mat ri x(dim) ;
LevelM gr lm = nodeMgr.downLevelMgr();
i nt si ze = lm.size()- 1;
Obj ect [] po = n ew Obje ct []{ mDx. get Tab() } ;
mDxAct i veGroup = new Mat r ix [s i ze];
f or (in t i =0; i <si ze; i+ +)
mDxAct i veGroup[i] = (HMat ri x)

Pr oActi ve. newAct iv e(HMat r i x . cl ass .g et Name() ,
po, N odeFact or y . getN ode(“ hi mm:/ / ” +(i +1)) , null ,
HMet aObj ec t Fac t ory .n ewI nst ance ()) ;

Mat r ix m Sx = n ew Mat ri x(dim) ;

whi l e (! s to p) {
Matr i x [] r esul ts = mul t ip l y(mSx, m DxAct i veGroup) ;
Matr i x re sul t = Matr ix . re bui l d(r esult s , d i m);
. . .

}
}

}

…

}

public clas s HMatrix exte nds M at r ix imp l ement s I nitAc t ive, RunA ct i ve, En dActi ve {

priv ate H Matr i x[] subMat s;

publ i c vo i d initActivity(Body body){

HBodyAdapte r hba =(HBodyAdapt er) body.ge t RemoteAd apter ();

NodeMgr nod eMgr = hba.getNodeMgr();

if (nodeMgr.isCoordinator()) {

Level Mgr l m = nodeMgr.downLevelMgr();

i nt s i ze = lm.size()- 1; subMats = new Matr i x[si ze];

Objec t [] po = { tab};

f or(i nt i =0; i <siz e; i+ +) {

sub Mats [i] = (HMa t rix) Pr oActive . newActiv e(HMat rix. c lass . getName() , po ,
NodeFact ory.g etNod e(“ himm:/ / ” +(i +1)) , null ,

HMet aObj ectFa c tory . newInsta nce()) ;

}

}

}

publ i c vo i d runActivity(Body body) {

Ser vice ser v ice = new Serv i ce(body);

whi le (body . isAc t ive()) {

Reque st r = se r vice . bloc k i ngRemoveOlde s t() ;

HBodyAdap t er h ba =(HBodyAdapter) body. getR emote Adapt er();

NodeMgr n odeMgr = hba.getNodeMgr();

i f(r. getMethod Name() .equ al s ("mult i ply") && nodeMgr.isCoordinator()){
HiMMRequest r r = (HiMMRequest)r;

flo at[] []mSxt ab = (floa t [] [])rr. metho dCal l .get Parameter(0);

Mat r ix mSx = new Matri x (mSxtab);

Mat r ix[] res ults = new Matrix[s ubMat s .le ngth];

Obj ect[] sub SxMat s = mSx.creat eSubMatri xes(s ubMat s .len gt h);

for (int i=0; i< s ubMat s . l ength; i++)

r esul t s[i] = su bMats [i] .multi ply((f loa t [][]) subSxMats [i]);

Mat r ix r esul t = Matrix . r ebuild(r esul t s, mSxta b.len gth);

Obj ect[] par ams = new Obj ect[]{ r esul t };

Cla ss[] clas ses = new Cl ass[]{M atrix . cla ss};

try {

Metho d m = HMat r ix.c l ass.getM ethod ("ge t Resul t", c lass es) ;

r r .me t hodCall = Meth odCall.ge t Meth odCal l(m, para ms);

} c atch (No SuchMethod Exception e){ … }

ser v ice . serv e(rr);

} els e se r vice . serv e(r);

}

}

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 200317

Performance analisys (1)
We have conducted a first analysis to compare RMI with HiMM and P/R with P/H
The benchmark is the invocation of a remote method (with one parameter and an
empty body) and the return of an integer value, for a varying size of the parameter
The figure shows that for a small size (1 byte) of the parameter, RMI RTT (0.9
ms) is smaller than HiMM RTT (1.3 ms), but P/H RTT (7.8 ms) is smaller than P/R
RTT (9.2 ms)

Even if the HiMM transport layer is not optimized, P/H behaves better than P/R due
to the use of asynchronous messaging that allows low-level ProActive operations to
be overlapped with communication

1

10

100

1000

1 10 100 1000 10000 100000

T
hr

ou
gh

pu
t (

m
et

ho
d

in
vo

ca
tio

ns
 /

s)

Parameter Size

RMI
(S-R)/H

P/H
P/R

1

10

100

1 10 100 1000 10000 100000

R
T

T
 (

m
s)

Parameter Size

RMI
S-R/H

P/H
P/R

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 200318

Performance analisys (2)
A further analysis has aimed to measure the speedup factor by running a simple
application benchmark
The benchmark is the product of two square matrixes with different sizes of the
matrixes.
The performance obtained with P/H is slightly better than the one obtained with
P/R, especially when the size of the matrixes is small

This is mainly due to the improvement of remote method invocation implemented by HiMM
When the size of the matrixes is large, the execution time is dominated by the time of the
matrix serialization, which is the same in P/H and P/R

0

1

2

3

4

5

100 200 300 400 500 600 700 800 9001000 1200

S
pe

ed
up

 F
ac

to
r

Matrix Size

P/H 2 nodes
P/R 2 nodes
P/H 4 nodes
P/R 4 nodes
P/H 6 nodes
P/R 6 nodes

0

500

1000

1500

2000

2500

100 200 300 400

E
xe

cu
tio

n
tim

e
(m

s)

Matrix Size

S-R/H
P/H
P/R

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 200319

Conclusions

I have described the integration of ProActive with HiMM to
create a new framework for easily programming Grid
applications with the active object model
The separation of concerns and the use of meta-objects allow
programmers to exploit the underlying features of HiMM to
program distributed aspects of applications without affecting
functional code

This approach enables code reuse and makes the object oriented
approach effective for the development of distributed and parallel
applications

HiMM assures better performance than RMI to ProActive

The overhead introduced by the new framework is small

IPDPS - Work. on Java for Parallel and Distributed Computing - Nice 22 Apr. 200320

Future work

In the future, we will conduct further experiments with a
larger, hierarchical distributed system

characterized by different computational power,
communication hardware and protocols

We will complete the definition and the implementation of
the broker architecture
We will define a framework for automatically transforming
sequential object oriented applications in parallel and
distributed applications when the master/slave parallel
model can be adopted

