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Abstract

We examine three permutations on Dyck words. The first one, α, is related to the Baker and Norine

theorem on graphs, the second one, β, is the symmetry, and the third one is the composition of these

two. The first two permutations are involutions and it is not difficult to compute the number of their

fixed points, while the third one has cycles of different lengths. We show that the lengths of these cycles

are odd numbers. This result allows us to give some information about the interplay between α and β,

and a characterization of the fixed points of α ◦ β.
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1. Introduction

Dyck words are a central object in combinatorics and formal language theory. They are enumerated

by Catalan numbers as many other objects, for instance Chapter 6 of [16] points out the role of Dyck

words (or Dyck paths) in enumerative combinatorics.

From the point of view of formal languages they are generated by a context free grammar, whose

important properties were described in [5].

In this paper we will consider Dyck words on the alphabet A = {a, b} to represent Dyck paths

consisting of up steps, represented by the letter a, and down steps, represented by the letter b. Paths
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are better for the visual intuition and words are better for writing proofs, but of course they represent

in different ways the same combinatorial object. For this reason, almost all the examples of the paper

will be given in the language of Dyck paths, while proofs are mostly written with Dyck words.

We are interested here in transformations that do not modify the length of a word. This kind of

transformations was considered by many authors (see [3], [7], [8], [10], [12], [13], [14]). This paper studies

two new ones. The first one is an involution which we denote by α. It was recently introduced in [6] in

the context of the sandpile (or chip-firing game) model in order to determine the rank of configurations,

as defined by Baker and Norine [1], for the case of the complete graph. It relies on the so called Cyclic

Lemma which was obtained in [9] long time before the name Dyck path was used to speak of these

combinatorial objects. This first involution is added to a very classical one, that is, the symmetry of

paths along a vertical line, denoted β here, to define a new transformation γ.

The main result of the paper shows that the composition γ of the two involutions α and β has cycles

of odd lengths. In order to prove this result, we remarked that it was sufficient to show that for each

word w there exists an odd integer k such that γk(w) = w, since of course this implies that the length

of the cycle of γ containing w is also odd. Then the first ingredient for the proof is to consider a subset

of the set of Dyck words which we call smooth words, namely, Dyck words which do not have aba or

bab as factors. We then associate to any Dyck word a smooth word that we call its skeleton. The last

ingredient is to associate to each Dyck word a sequence of integers which allows to rebuild the word

from its skeleton. A property of the action of γ on the skeleton and the sequence allows to end the

proof.

The paper is organized as follows. In Section 2 we briefly recall the main facts about Dyck words.

Section 3 contains the definition of the involutions α and β, together with a characterization of their

fixed elements. In Section 4 we describe the action of the map γ = α ◦ β, while in Section 5 we define

the skeleton of a Dyck word and examine its interaction with the map γ. Section 6 contains the main

theorem of the paper (Theorem 3) and its consequences about the cycles of γ. Finally, in Section 7 we

give a characterization of the fixed points of γ and deduce an upper bound for their numbers.

2. Dyck words and their parameters

We consider words on the alphabet with two letters A = {a, b}. For a word w, we denote |w|x (where

x ∈ {a, b}) the number of occurrences of the letter x in w. Hence the length of w, denoted |w|, is equal
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Figure 1: A Dyck path

to |w|a + |w|b. We use also the mapping δ associating to any word w the integer δ(w) = |w|a − |w|b.

The word u is a prefix of w if w = uv. This prefix is strict if u 6= w.

We will use the following notation. For any word w = w1w2 · · ·wm where wi ∈ A we denote by w̃ the

mirror image of w, that is, the word obtained by reading w from right to left, hence w̃ = wmwm−1 · · ·w1.

Moreover, we denote by w the word obtained from w by replacing any occurrence of b by an occurrence

of a and vice versa, giving w = w1w2 · · ·wm.

A Dyck word is often defined as a word w such that δ(w) = 0 and δ(u) ≥ 0 for any prefix u of w. We

consider here a slight modification adding a letter b at the end of it. We define for each non negative

integer n the set Dn of words of length 2n + 1 first by considering An to be the set of words on the

alphabet A having n occurrences of the letter a and n+ 1 occurrences of the letter b. Then the set Dn

is the subset of words w in An satisfying

δ(w′) ≥ 0 for any strict prefix w′ of w. (1)

Notice that D0 = {b} and D1 = {abb}.

Dyck words in Dn correspond bijectively to Dyck paths of semilength n, namely, lattice paths

consisting of 2n steps a = (1, 1) (up steps) and b = (1,−1) (down steps), starting at (0, 0), ending at

(0, 2n), and never going below the x-axis. Note that, when we see a Dyck word as a lattice path, we

ignore its last letter b.

As an example, the Dyck path corresponding o the Dyck word a a b a b b a b b is drawn in Figure 1.

Many parameters are defined for Dyck words. We recall here the definition of those we use in the

paper. A peak of a Dyck word is an occurrence of the letter a followed by an occurrence of b − or, in

the Dyck path language, the vertex between an up step and a down step. Any word in Dn for n 6= 0

has at least one peak and at most n peaks.

The height of a Dyck word w is the maximum value of δ(u), as u ranges over all prefixes of w.
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The number of elements of Dn are given by the Catalan numbers which satisfy the formula

Cn =
(2n)!

n!(n+ 1)!
. (2)

An elegant way to obtain the above formula is to use the so-called Cyclic Lemma (see. e.g. [9]) which

will be used very often in this paper. This Lemma considers the set An and uses the operation of

conjugation. Two words w and w′ on an alphabet A are conjugate if there exist u and v such that

w = uv and w′ = vu. In other terms, if you write a word w in counterclockwise order, wrapped

around a circle, the conjugates of w are then all words obtained by starting reading at any letter in

counterclockwise order and making a full circle.

Lemma 1. (Cyclic Lemma) Any word w of An has exactly one decomposition into two factors w = uv

such that vu is an element of Dn. Moreover the decomposition into two factors w = uv is such that u

is the smallest prefix of w attaining the minimal value for δ(u).

It is well known that the number of different conjugates of a word w divides its length and that if a

word uv is equal to one of its conjugates vu, where u, v 6= ∅, then there exist a word q and an integer

k > 1 such that uv = qk (see [15, Paragraph 1.3]). Since the words in An contain n occurrences of the

letter a and n + 1 occurrences of b, it follows that an element in An has 2n + 1 different conjugates.

Clearly the number of elements of An is
(
2n+1
n

)
. This proves Formula (2).

3. Involutions for words of Dn

3.1. The involution related to the Baker Norine theorem on graphs

We define an involution α on Dyck words in Dn by setting α(w) to be the unique conjugate of w̃

which belongs to Dn. Recall that w̃ denotes the mirror image of w, that is, if w = w1w2 · · ·w2n+1, then

w̃ = w2n+1w2n · · ·w2w1.

Observe that this map was introduced in [6] in order to compute the rank of configurations in

complete graphs where it was proved that it keeps invariant the dinv parameter (extensively studied in

[11]).

Example 1. Let w = aabaababbbabb then w̃ = bbabbbabaabaa. This decomposes as w̃ = (bbabbb)(abaabaa)

and the conjugate (abaabaa)(bbabbb) is in Dn, hence

α(aabaababbbabb) = abaabaabbabbb.
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Proposition 1. The mapping α is an involution.

Proof. Let w be a word in Dn and set v = α(w). Consider the word w̃ and decompose it as w̃ = w′w′′,

where w′ is the shortest prefix of w such that δ(w′) is minimal. Then we have v = w′′w′. To compute

α(v) we consider ṽ which is equal to w̃′w̃′′. But since w̃ = w′w′′ we have w = w̃′′w̃′ showing that w

is a conjugate of ṽ which is in Dn. The unicity of such a conjugate given by the cyclic lemma implies

α(v) = w.

In order to determine the number of fixed points of α we need the following characterization.

Proposition 2. The Dyck word w satisfies α(w) = w if and only if w is the concatenation of two

palindromes, namely,

w = v u, with v = ṽ, u = ũ.

Moreover each word in Dn has at most one decomposition as a concatenation of two palindromes.

Proof. Let w ∈ Dn such that w = α(w). Consider its mirror image w̃ and write it as w̃ = u v such that

vu ∈ Dn; then α(w) = v u. On the other hand, using the relation ũ v = ṽ ũ, which is true for any pair

of words u, v, we have: w = ṽ ũ. Since w = α(w) and |v| = |ṽ|, we get

v = ṽ, u = ũ.

Conversely, assume that w = u v is such that v = ṽ, u = ũ. Then w̃ = ṽ ũ = v u. This shows that w is

the unique conjugate of w̃ which lies in Dn, proving that α(w) = w.

The unicity of the decomposition of w as a concatenation of two palindromes comes from the fact

that if w = u′v′ , where u′ and v′ are two palindromes different from u, v, then w̃ = ṽ′ũ′ = v′u′, thus

w̃ would have two different decompositions vu and v′u′ such that uv = u′v′ ∈ Dn, contradicting the

Cyclic Lemma.

Then we have, as done in [2, Theorem 4]:

Corollary 1. The Dyck word w satisfies α(w) = w if and only if w is the conjugate of a palindrome.

Proof. If w has a conjugate which is a palindrome then it can be written as w = w′w′′, and w′′w′ is a

palindrome. Since the length of w is odd we can write w′′w′ = uxũ where x ∈ {a, b}. If |w′′| ≤ |u| we

have u = w′′v for some v and w′ = vxũ. Thus

w′w′′ = vxũw′′. (3)
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But since u = w′′v we have ũ = ṽw̃′′, whence

w = w′w′′ = vxṽw̃′′w′′, (4)

that is, w is the concatenation of the palindromes vxṽ and w̃′′w′′.

If |w′′| > |u| we have w′′ = uxv and ũ = vw′, hence

w = w′w′′ = w′uxv = w′w̃′ṽxv,

which is the concatenation of two palindromes.

Conversely, suppose that w is the concatenation of the two palindromes u and v. Since w is of odd

length, then one of u, v is of odd length and the other one of even length. Suppose u is of odd length.

Then u = u′xũ′ where x ∈ {a, b} and v = v′ṽ′. We have

w = uv = u′xũ′v′ṽ′. (5)

This shows that the conjugate of w equal to ṽ′u′xũ′v′ is a palindrome. A similar construction holds if

v is of odd length, and u of even length.

Theorem 1. The number of fixed points of α in Dn is equal to the central binomial coefficient
(
n
bn2 c
)
.

Proof. We give a bijection between words of length n with bn2 c occurrences of a and words in Dn which

are fixed by α. Let w be any word of length n with with bn2 c occurrences of a and consider the word

wxw̃ where x = a if n is odd and x = b if n is even. This word has n occurrences of a and n + 1

occurrences of b in both cases. By the cyclic Lemma, it has a unique conjugate in Dn. All these words

are obviously distinct and by Proposition 2 they are fixed points of α.

Example 2. Consider the 10 words of length 5 with 2 occurrences of a:

aabbb, ababb, abbab, abbba, baabb, babab, babba, bbaab, bbaba, bbbaa.

Building waw̃ for each of these words, we obtain:

aabbbabbbaa, ababbabbaba, abbabababba, abbbaaabbba, baabbabbaab

bababababab, babbaaabbab, bbaababaabb, bbabaaababb, bbbaaaaabbb.
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Figure 2: The paths w and β(w)

Now computing the conjugate of each of these words which belongs to D5 we get:

aaaabbbabbb, abaababbabb, aabbabababb, aaabbbaabbb, aabbaabbabb

abababababb, aaabbabbabb, aababaabbbb, abaaababbbb, aaaaabbbbbb.

The words above can be decomposed as the concatenation of two palindromes as follows:

(aaaa)(bbbabbb), (abaaba)(bbabb), (aa)(bbabababb), (aaa)(bbbaabbb),

(aabbaa)(bbabb), (ababababa)(bb) (aaa)(bbabbabb),

(aababaa)(bbbb), (abaaaba)(bbbb), (aaaaa)(bbbbbb).

3.2. Symmetry

The easiest involution on Dyck paths is the symmetry, denoted β here. It consists in seeing the path

from right to left and replacing each up step by a down step, and vice versa. We translate this definition

to the words of Dn by setting for w = w1w2, · · ·wm, where m = 2n+ 1,

β(w) = wm−1wm−2 . . . w2w1wm.

Recall that wi means changing a into b and b into a.

Example 3. If w = aabbaababbb, then

β(w) = aababbaabbb.

The corresponding Dyck paths are given in Figure 2.
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Notice that this symmetry is such that for w ∈ Dn we have β(w) ∈ Dn, and that w and β(w) have

the same number of peaks and the same height.

Proposition 3. The number of elements w of Dn such that w = β(w) is the central binomial coefficient(
n
bn2 c
)
.

To prove this we consider the words u of length n which are prefixes of a Dyck word of length 2n+1.

It is well known (see, e.g., [4]) that the number of such words is
(
n
bn2 c
)
. To each such word we associate

the word ũ obtained by reversing u and exchanging a into b. Then the word w is such that w = β(w) if

and only if w = uũb.

4. The permutation γ

The permutation γ is defined on Dn as the composition of α and β:

γ(w) = α(β(w)).

In order to give a direct determination of γ(w) we need to introduce the following:

Definition 1. The principal prefix of a word w ∈ Dn is the shortest prefix u of w such that δ(u) is

maximum.

Proposition 4. For w = w′b ∈ Dn, the word γ(w) is the unique conjugate of the word w′b belonging

to Dn. Moreover, if w = uvb, where u is the principal prefix of w, we have:

γ(w) = vbu.

Proof. By definition of α, α(β(w)) is the unique conjugate of the mirror image of β(w) which is in Dn.

Denoting w = w′b we have that the mirror image of β(w′b) is equal to bw′ which has the same conjugates

as w′b. The shortest prefix v′ of w′b such that δ(v′) is minimal is equal to u, where u is the principal

prefix of w.

Example 4. Consider the Dyck path

w = .
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Here u = and v = . Hence,

γ(w) = .

The following result is an immediate consequence of Proposition 4.

Corollary 2. Let w ∈ Dn. The word γ(w) has the same height and the same number of peaks as w.

We point out that the definition of the map γ and the fact that α and β are involutions imply

immediately the following commutation rules:

β ◦ γ = γ−1 ◦ β, α ◦ γ = γ−1 ◦ α.

Hence, α and γ generate a dihedral group.

5. Smooth words and skeleton for words in Dn

Consider a Dyck word w ∈ Dn, w = w1w2...wm, where wi ∈ {a, b} and m = 2n+ 1.

Definition 2. An integer i, i = 1, 2, . . . , 2n + 1, is said to be an active site of w if both wi−1wi and

wiwi+1 are different from ab.

In other words, if we see w as a lattice path, the integer i is an active site for w if the i-th vertex of

w is neither a peak nor the vertex preceding a peak.

The number of active sites of a Dyck word w depends only on the length and the number of peaks

of w. In fact, we have the following result, whose proof is straightforward.

Proposition 5. If w is a Dyck word of length 2n+ 1, then the number of active sites of w is 2n+ 1−

2 peak(w), where peak(w) denotes the number of peaks of w. In particular the number of active sites of

w is always odd.

Recalling that the map γ preserves the number of peaks of a word (Corollary 2), the previous

Proposition implies that γ preserves also the number of active sites.
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Example 5. In the following Dyck path the white vertices are the active sites.

Definition 3. A Dyck word w is said to be smooth if w may be written as

w = ai1bj1ai2bj2 · · · aikbjk ,

where k is the number of peaks of w and is > 1, jt > 1 for all s, t.

Roughly speaking, w is smooth whenever it can not be obtained from a shorter word by adding one

peak in any active site.

Definition 3 implies immediately that a Dyck word w is smooth if and only if it does not contain

any sequence bab or aba. As a consequence, if w is smooth so is γ(w).

Given a smooth word

w = ai1bj1ai2bj2 · · · aikbjk ,

consider the operation θ which decreases by 1 all the exponents, giving

θ(w) = ai1−1bj1−1ai2−1bj2−1 · · · aik−1bjk−1.

As a consequence, if at least one of the exponents is equal to 2, then θ(w) is not smooth. However

we have:

Lemma 2. Let w be a smooth word in Dn. Then,

i) γ(θ(w)) = θ(γ(w)).

ii) θ(w) = θ(w′) implies w = w′.

iii) The words w and θ(w) are in cycles of γ of the same length.

Proof. The first assertion follows from the fact that if ai1bj1ai2bj2 · · · aih is the principal prefix of w then

ai1−1bj1−1ai2−1bj2−1 · · · aih−1 is the principal prefix of θ(w). The second assertion follows immediately

from the definition of θ, and the third one is a consequence of the first two.
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Notice that here we are considering γ as an operator acting on all Dyck words of any length at the

same time. Observe that γ preserves the length of the Dyck word, whereas θ changes the length of a

smooth Dyck word.

Example 6. Consider the Dyck path

w = .

Then

θ(w) =

We now associate to any element w ∈ Dn a smooth word Sk(w), given by:

Definition 4. The skeleton Sk(w) of a word w obtained by deleting iteratively all the factors ab of w

which are followed by a or preceded by b.

Note that the above definition is well posed, since the end result is obviously independent of the

order in which the factors ab are removed.

The following result, whose proof is straightforward, will be useful in the sequel.

Proposition 6. The words w and Sk(w) have the same height and the same number of active sites.

Example 7. Let

w = a b a a b a b b a a b b a b a b a a a b b b b.

We get:

Sk(w) = a a b b a a b b a a a b b b b,

since we delete the factors ab which are delimited in the equation below by parenthesis:

w = (a b) a a b (a b) b a a b b (a b) (a b) a a a b b b b.
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Figure 3: A Dyck path w and its skeleton. The nine white vertices in each path denote the active sites and the dashed

peaks are removed from w to get Sk(w).

The Dyck words w and Sk(w) correspond to the Dyck paths in Figure 3.

The word w can be obtained from Sk(w) as soon as the positions of the active sites where the factors

ab were deleted are known. This can be done by a sequence (p1, p2, · · · , p`) that gives for each active site

the number of factors ab that were deleted. For our example the number of active sites in this sequence

is 9, and the values are given by:

(1, 1, 0, 0, 2, 0, 0, 0).

In the sequel we will denote this sequence by ins(w). Conversely, a smooth word ŵ and a sequence

I = (i1, i2, . . . i`) of integers, where ` is the number of active sites in ŵ, determine a unique word w such

that Sk(w) = ŵ and ins(w) = I.

We have a first trivial lemma showing the effect of deleting a factor ab in a word when this factor is

followed by an occurrence of a or preceded by an occurrence of b.

Lemma 3. Let w = uabv ∈ Dn be such that u ends with b or v begins with a. Let ins(w) = (i1, i2, . . . , i`)

and set w′ = uv. Then we have

Sk(w) = Sk(w′) and ins(w′) = (i1, i2, . . . , ik+1 − 1, . . . , i`), (6)

where k is the number of active sites of w appearing in u.

The action of γ in relation with the deletion of a factor ab obeys to the rules expressed in the following

Lemma.
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Lemma 4. If w′ is obtained from w by deleting a factor ab followed by an occurrence of a or preceded

by an occurrence of b, then γ(w′) is obtained from γ(w) in the same way. Moreover, let ` be the number

of active sites of w and `0 the number of those situated in its principal prefix. Assume that the factor

ab deleted from w is situated in the i-th active site of w. Then:

• If i ≤ `0 then γ(w′) is obtained from γ(w) by deleting ab in its (`− `0 + i)-th active site.

• If i > `0 then γ(w′) is obtained from γ(w) by deleting ab in its (i− `0)-th active site.

Proof. Assume w = w(1)abaw(2)b and w′ = w(1)aw(2)b. The case w = w(1)bab(2)b and w′ = w(1)bw(2)b

can be treated similarly.

Let u be the principal prefix of w. Then we have w = uvb and γ(w) = vbu.

• If |w(1)a| < |u| then we have u = w(1)abaw(3), with w(3) 6= ∅ since the principal prefix cannot end

with aba, and

γ(w) = vbw(1)babw(3).

We notice that the number of active sites in v is ` − `0 and their number in w(1) is i, giving the

first part of the Lemma, since γ(w′) = vbw(1)bw(3).

• If w(1)a = u, then we have i = `0 + 1 and

γ(w) = abw(2)bw(1)b, γ(w′) = w(2)bw(1)b,

thus γ(w′) is obtained from γ(w) by deleting ab in the first position in accordance with i− `0 = 1.

• If |w(1)a| > |u| then we have w(1)a = uw(3) where w(3) ends with an occurrence of a, thus

w = uw(3)baw(2)b and

γ(w) = w(3)abw(2)bu

The number of active sites in w(3) is i− `0, proving the second part of the Lemma.

Example 8. Consider the following path

w = ,
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where the white vertices are the active sites. Here ` = 7 and `0 = 3. w is obtained from the path

w′ =

by adding a peak in the third active site. Hence i = 3 ≤ `0.

We have

γ(w) =

and

γ(w′) = .

γ(w) is obtained from γ(w′) by adding a peak in the active site number `− `0 + i = 7− 3 + 3 = 7.

We now compare (Sk(w), ins(w)) and (Sk(γ(w)), ins(γ(w)).

We denote by cyc the cyclic shift of a finite sequence. It is given by:

cyc((i1, i2, . . . , in)) = (i2, i3, . . . , in, i1).

Lemma 5. Let w ∈ Dn. Then we have

Sk(γ(w)) = γ(Sk(w)),

and

ins(γ(w)) = cyc`0(ins(w)),

where `0 is the number of active sites contained in the principal prefix of w.

Proof. This Lemma is obtained by applying the two Lemmas 3 and 4 sufficiently many times.
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6. Orbits of γ

We are now in the position to prove our main result.

Theorem 2. Let w be a word in Dn. Then there exists an odd integer k such that γk(w) = w.

Proof. The proof proceeds by induction on n. The assertion is trivially true for n = 1. Assume that

for any n′ < n and for each word w′ ∈ Dn′ there exists an odd integer k′ such that γk
′
(w′) = w′. Let

w ∈ Dn. We distinguish two cases:

• If w is smooth then w′ = θ(w) is an element of Dn′ with n′ < n. By the inductive hypothesis

there exists an odd integer k′ such that γk
′
(w′) = w′. But by Lemma 2 γ(θ(w)) = θ(γ(w)), hence

γk
′
(w) = w.

• If w is not smooth then its skeleton ŵ belongs to Dn′ with n′ < n. By the inductive hypothesis

we have that there exists an odd integer k′ such that γk
′
(ŵ) = ŵ.

Set ins(w) = (i1, i2, . . . , i`). Denote by `i, 0 ≤ i ≤ k′−1, the number of active sites in the principal

prefixes of w, γ(w), ... γk
′−1(w), respectively, and set L =

∑k′−1
i=0 `i.

By Lemma 5, we have

Sk(γ(w)) = γ(ŵ), ins(γ(w)) = cyc`0(ins(w)),

Sk(γ2(w)) = γ2(ŵ), ins(γ2(w)) = cyc`0+`1(ins(w)),

. . .

Sk(γk
′
(w)) = γk

′
(ŵ) = ŵ, ins(γk

′
(w)) = cycL(ins(w)),

. . .

Sk(γk
′`(w)) = γk

′`(ŵ) = ŵ, ins(γk
′`(w)) = cyc`L(ins(w)).

Now, `L is a multiple of the length of the sequence ins(w), so we have that cyc`L(ins(w)) = ins(w),

giving w = γk
′`(w). Since the two integers ` and k′ are odd we get the assertion.

In the following we denote by Orb(w) the orbit of the word w under the action of the map γ, namely,

the set {γ(w), γ2(w), . . . , γk−1(w)}, where k is the minimum positive integer such that γk(w) = w.

Theorem 3. For every w ∈ Dn the orbit of w has odd cardinality.
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Proof. The assertion is an immediate consequence of the preceding result, since the cardinality of Orb(w)

must divide any k such that γk(w) = w.

In the table below we give for each n the number of cycles of lengths 1, 3, . . . , 2n−3 of the permutation

γ on Dn, and the list of lengths of the cycles which are greater than 2n− 3. This table was obtained by

a computer program that generates all Dyck words in Dn with 2 ≤ n ≤ 10 and determines the cycles of

the permutation γ.

1 3 5 7 9 11 13 15 17 other values

n=2 2

n=3 2 1

n=4 3 2 1

n=5 3 4 4 1

n=6 4 5 11 4 1 21

n=7 2 10 21 14 6 1 21,45

n=8 6 10 44 34 24 6 1 21,27,33,45,77

n=9 5 17 67 83 74 27 8 2 21,27,33,45,55

65,77,117

n=10 4 17 119 162 212 92 44 11 1 21,27,33,45,55

65,77,91,105

117,165,273

Proposition 7. For every odd number 2n+1 there exists a word w ∈ Dn+2 such that Orb(w) has length

2n+ 1.

Proof. Consider the word w = aban+1bn+2. Notice that the principal prefix of w has n active sites. We

have

Sk(w) = an+1bn+2, ins(w) = (1, 0, . . . , 0)︸ ︷︷ ︸
2n+1

.

The word Sk(w) is obviously fixed under γ, hence, by Lemma 5,

Sk(γ(w)) = Sk(w), ins(γ(w)) = cycn(ins(w)).

Since gcd(n, 2n+ 1) = 1, we deduce that |Orb(w)| = 2n+ 1.
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In order to give some additional properties of the orbits of γ we build a graph Gn whose vertices are

the words in Dn. The edges of Gn are all the pairs (w, β(w)) and (w,α(w)), thus the fixed points of β

and α correspond to loops in Gn. Taking the convention that a loop contributes for 1 in the degree of

the vertex adjacent to it, all vertices in Gn have degree 2.

The graph Gn has some elementary properties:

Lemma 6. Each connected component Ci of Gn corresponds to an orbit of the group generated by α

and β and satisfies one of the conditions below:

• Ci has a unique vertex incident with two loops.

• Ci is a path of odd length connecting two vertices each one being incident with a loop.

• Ci is a cycle of length 4p+ 2, where p ≥ 1.

Proof. One of the first trivial results in graph theory states that a graph with no loops whose vertices

have degree 0, 1 or 2 is the union of isolated vertices, paths and cycles. Let G′n be the graph obtained

from Gn by deleting every loop. Notice that the connected components of the graph G′n have the same

blocks of vertices as the connected components of Gn. Thus the graph G′n satisfies the condition stated

above. Let Ci be a connected component of G′n. Then:

• if Ci is an isolated vertex, then it corresponds in Gn to a vertex incident with two loops.

• If Ci is a path, it corresponds in Gn to a path connecting two vertices each one being incident

with a loop. By definition of Gn this path may be written w(1), w(2), · · · , w(p). Without loss of

generality (by exchanging β and α) , we may suppose that β(w(1)) = w(1), β(w(i)) = w(i+1) for i

even and α(w(i)) = w(i+1) for i 6= 1 odd. If p is even, p = 2q, then the cycle of γ containing w(1)

is equal to:

(w(1), w(2), w(4), · · · , w(2q), w(2q−1), · · · , w(3)),

hence it has even length contradicting Theorem 3.

• If Ci is a cycle, it is also a cycle in Gn, hence this cycle may be written Ci = w(1), w(2), · · ·w(p).

The images under β and α alternate in this cycle, hence, p is even. Let p = 2q. Computing the

cycle C of γ containing w(1) we get

C = (w(1), w(3), · · ·w(2q−1)).
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Figure 4: The graph G4

As a consequence of Theorem 3 we have that q is odd, completing the proof.

As an immediate consequence we have:

Proposition 8. Any orbit O of γ satisfies one and only one of the two assertions below:

1. Any w in O satifies β(w) /∈ O, and α(w) /∈ O, moreover there exists an orbit O′ different from O

such that w ∈ O⇔ β(w) ∈ O′ and w ∈ O⇔ α(w) ∈ O′.

2. There exists w′ and w′′ in O such that β(w′) = w′ and α(w′′) = w′′. Moreover for any w ∈ O we

have α(w) ∈ O and β(w) ∈ O.



7 The fixed points of γ 19

Propositions 8 and 2 imply immediately the following.

Corollary 3. The pair of statistics (number of peaks, height) is equidistributed over the set of symmetric

words in Dn and the set of words in Dn that are the concatenation of two palindromes.

7. The fixed points of γ

We are now interested in the fixed points of γ.

Proposition 9. Let w ∈ Dn be such that γ(w) = w, and let p be the length of the principal prefix u of

w. Then we have

wm−p = wm = b,

and for all i 6= m− p

wp+i = wi

where p+ i is taken mod m, where m = 2n+ 1 is the common length of the words in Dn.

Proof. Let u be the principal prefix of w. Then we have w = uvb and γ(w) = vbu, giving:

uvb = vbu,

thus

w1w2 · · ·wpwp+1 · · ·wm−1b = wp+1 · · ·wm−1bw1 · · ·wp.

Hence

wi = wp+i for i = 1, 2, . . .m− p− 1,

wm−p = wm = b and wi = wp+i−m for m− p < i ≤ m.

The result now follows from the fact that p+ i−m ≡ p+ i mod m.

Corollary 4. Let w ∈ Dn be such that γ(w) = w and m = 2n+ 1. Let p be the length of the principal

prefix of w. Then the permutation τ ∈ Sm defined by τ(i) ≡ i+ p mod m has only one cycle. Hence

gcd(m, p) = 1.
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Proof. It is well known that the permutation τ has cycles of the same length, which is equal to m
gcd(m,p) .

Since m is odd this common length cannot be even. By Proposition 9 we have that the letters wi and

wτ(i) of the word w are different except when τ(i) = m. Hence, if a cycle of τ does not contain m, its

elements correspond to occurrences of letters in w alternating between a and b. This implies that such

a cycle must be of even length. We conclude that such a cycle does not exist and that τ has only one

cycle.

Theorem 4. For any p < m such that gcd(m, p) = 1 there is at most one word w in Dn satisfying the

two conditions:

• γ(w) = w.

• The principal prefix of w has length p.

Moreover each such word satisfies

α(w) = β(w) = w.

Proof. We have seen that if w satisfies the condition w = γ(w), the permutation τ has only one cycle

which we can write (i1 = m, i2, . . . , im). With this notation wij is equal to a if j is even and equal to b

if j is odd. We also have ij+1 ≡ ij + p mod m. This gives a unique word.

In order to prove that β(w) = w we have to show that wk = wm−k for any k < m, or equivalently

wij = wm−ij for any j such that ij < m. Note that ij ≡ jp mod m. Hence we have to prove that if k

is such that m − ij = kp, then one of j, k is even and the other one is odd. This follows from the fact

that m is odd and gcd(m, p) = 1, since we have:

kp ≡ m− ij ≡ m− pj mod m,

giving

p(j + k) ≡ 0 mod m.

Since γ = α ◦ β, we get immediately also α(w) = w.

This result implies the following characterization of the fixed points of γ.

Proposition 10. A word w in Dn is fixed under γ whenever the following two conditions are satisfied:
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• γ(Sk(w)) = Sk(w), and

• ins(w) = (i, i, . . . , i) for some i ≥ 0.

Proof. Let w be a Dyck word satisfying the two conditions above. Then by Lemma 5 we get γ(w) = w.

Conversely, take w ∈ Dn such that w = γ(w). Lemma 5 implies immediately that also Sk(w) is fixed

under γ and ins(w) = cyc`0(ins(w)), where `0 is number of active sites in the principal prefix of w. Set

Sk(w) = ai1bj1ai2bj2 · · · aikbjk ,

where k is the number of peaks of w and is > 1, jt > 1 for all s, t. Hence, by Propositions 5 and 6, the

words w and Sk(w) have

` =

k∑
s=1

(is + js) − 2k

active sites, and both their principal prefixes have

`0 =

h−1∑
s=1

(is + js) − 2h+ 1

active sites, for some h ≤ k − 1.

Consider now the word

ŵ = θ(Sk(w)) = ai1−1bj1−1ai2−1bj2−1 · · · aik−1bjk−1.

Observe that by Proposition 2 ŵ is fixed under γ.

It is immediately checked that ŵ has length ` and its principal prefix has length `0. Corollary 4

implies now that gcd(`, `0) = 1. Since the sequence ins(w) has length ` and ins(w) = cyc`0(ins(w)), we

deduce that ins(w) must be a constant sequence.

Theorem 4 gives a way to build all words w ∈ Dn such that γ(w) = w. We use the following

algorithm:

Let m = 2n + 1. Take all integers p such that p ≤ n and gcd(2n + 1,m) = 1. For each such p

consider the permutation τ on {1, 2, · · · ,m} such that τ(i) ≡ i+ p mod m. This permutation has only

one cycle, which may be written (i1, i2, · · · im) with i1 = p, im = m. Let w be the word given by wi = a

if i = ij with j odd and i 6= m, and wi = b if i = m or i = ij with j even. If w is in Dn, then γ(w) = w.
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Figure 5: The three Dyck paths of semilength 5 fixed by the action of γ.

Example 9. Consider n = 5 and p = 4, then m = 11 and the permutation τ is the cycle

(4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11),

thus wi = a for i = 4, 1, 9, 6, 3 and wi = b for i = 8, 5, 2, 10, 7, 11 giving the word w = abaababbabb which

is in Dn and is such that γ(w) = w.

Taking n = 5, p = 3 gives

τ = (3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11).

Since this implies w1 = b, we have w /∈ Dn.

Combining Theorem 4 and Proposition 10 we have:

Corollary 5. The number of words w fixed by γ in Dn is upper bounded by:

min(n, φ(2n+ 1)),

where φ is the Euler totient function.
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[12] G. Kreweras, Sur les éventails de segments, Cahiers du B.U.R.O, 15 (1970), 3–4.

[13] J.-C. Lalanne, Une involution sur les chemins de Dyck, European Journal of Combinatorics, 13,

no. 6, (1992) 477–487.



8 References 24

[14] J.C. Lalanne, Sur une involution sur les chemins de Dyck, Theoretical Computer Science, 117 no.

1-2, (1993) 203—215.

[15] M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications, 17,

(1983), Addison-Wesley Publishing Co., Reading, Mass..

[16] R. Stanley Enumerative Combinatorics, Vol. 2, Cambridge University Press, (2001).


	Introduction
	Dyck words and their parameters 
	Involutions for words of Dn
	The involution related to the Baker Norine theorem on graphs 
	Symmetry

	The permutation 
	Smooth words and skeleton for words in Dn
	Orbits of 
	The fixed points of 
	References

