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Graphs

Definition
A graph is given by a set X = {x1, x2, . . . , xn} of vertices and a set
E of m edges, consisting of pairs of vertices.

All graphs considered in this talk are connected graphs.

We consider often here the complete graph Kn having all the
possible m =

(n
2

)
edges, between vertices.

And the wheel graph Wk consisting of a cycle of length k and a
vertex connected by an edge to all the vertices of this cycle
(n = k + 1,m = 2k).



Configurations

Definition

I A configuration is a mapping from X into the ring Z of
integers.

I
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Configuration: u = (ui )i=1,...n

ex: u = (−2, 6, 0, 3,−3, 3).



Configurations

Definition

I A configuration is a mapping from X into the ring Z of
integers.

I The degree of a configuration is the algebraic sum of the
values attributed to the vertices
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Configuration: u = (ui )i=1,...n

ex: u = (−2, 6, 0, 3,−3, 3).

deg(u) =
∑n

i=1 ui = 7



Topplings

In the toppling of vertex xi
I Each neighbor of xi receives 1 from xi .

I The value of the configuration on xi decreases by the number
of neighbors of xi

I

u →
i
u′

{
u′i = ui − di
u′j uj + ei ,j if i 6= j

I Where ei ,j is the number of edges between xi and xj . And
di =

∑n
j=1 ei ,j .

I The degree of the configuration is invariant.



Example of topplings
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Example of topplings
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Example of topplings
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Example of topplings
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Positive/Effective configurations

Definition
A configuration u is effective if ui ≥ 0 for all 1 ≤ i ≤ n, it is a
sandpile configuration if ui ≥ 0 for all 1 ≤ i < n.

Remark
For any configuration u there exists a sequence of topplings leading
to a sandpile configuration.



Positive/Effective configurations

Definition
A configuration u is effective if ui ≥ 0 for all 1 ≤ i ≤ n, it is a
sandpile configuration if ui ≥ 0 for all 1 ≤ i < n.

Remark
For any configuration u there exists a sequence of topplings leading
to a sandpile configuration.



∆-Effective configurations

Definition
A configuration u is ∆-effective if there exists a sequence of
topplings leading from u to an effective configuration.

Question:

Given the configuration u determine if it is ∆-effective.



Some linear algebra: the Laplacian matrix ∆

The rows ∆i of the Laplacian matrix are given by:
∆i = (ei ,1, · · · , −di , · · · , ei ,n)

↑
i

A toppling :

u →
i
u′

is such that
u′ = u + ∆i



∆-equivalence

Equivalence: u ≡∆ v ⇐⇒ u = v +
∑n

i=1 ai∆i

Question:

Given the configuration u determine if there is an effective v such
that u ≡∆ v .



Classes of the ∆-equivalence

Main results:

I For the configurations of given degree the number of
equivalence classes is equal to the number of spanning trees
of the graph.

I One can test ∆-equivalence by an algorithm in polynomial
time.



Stable configurations

Definition
A sandpile configuration u is a stable configuration if u satisfies:

0 ≤ ui < di for all i < n

Remark
For any configuration u there exists at least one stable
configuration v such that

u ≡∆ v



Stable configurations

Definition
A sandpile configuration u is a stable configuration if u satisfies:

0 ≤ ui < di for all i < n

Remark
For any configuration u there exists at least one stable
configuration v such that

u ≡∆ v



Superstable configurations

Definition
A stable configuration u is a superstable configuration if the
toppling of any subset of vertices {xi1 , xi2 , . . . , xik}
which is a subset of {x1, x2, . . . , xn−1} gives a vertex with negative
value.

More precisely: ∀I ⊂ {1, 2, . . . , n − 1}, I 6= ∅:

v = u +
∑
i∈I

∆i

is such at that there exists j with vj < 0.
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Main facts on superstable configurations

Proposition(Dhar)
Any class of the toppling equivalence contains a unique superstable
configuration.



Algorithm to obtain the superstable configuration

1: While ∃i < n, ui < 0 do

2: Topple xn and perform subsequent topplings

3: While ∃ an I -toppling leaving the ui ≥ 0 do
4: Topple all the xi for i in I



Main Theorem for testing ∆-effectiveness

Theorem
(Baker, Norine) A superstable configuration is ∆-effective if and
only if un ≥ 0.

For any graph, there is a polynomial time algorithm determining if
a configuration u is ∆-effective (using J. Van Den Heuvel
algorithm finding the superstable configuration).
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Rank of a configuration

Definition
The rank ρ(u) of a configuration u is given by

ρ(u) = Min(deg(f ))− 1

where the minimum is taken among all the positive configurations
f such that u − f is not ∆-effective.

An effective configuration µ is a proof for the rank ρ(u) of u if
u − µ is not ∆-effective and u − λ is ∆-effective for any effective
configuration λ such that deg(λ) < deg(µ).

Notice that if λ is a proof for ρ(u) then ρ(u) = deg(λ)− 1.
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Determining the rank by exhaustive search

1: For k = 1, 2 · · · n do
For all compositions λ of k do

If u − λ is not ∆-effective ρ(u) = k − 1



Simple facts on the rank

I If two configurations u and v are such that are such that
ui ≤ vi for all i then ρ(u) ≤ ρ(v).

I Moreover if ui = v − ε(i) then ρ(v)− 1 ≤ ρ(u) ≤ ρ(v)

I If λ is a proof for the rank of u, and µ is an effective
configuration such that µi ≤ λi for i = 1, 2, . . . , n then λ− µ
is a proof for the rank of v = u − µ
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Simple facts on the rank

I If two configurations u and v are such that are such that
ui ≤ vi for all i then ρ(u) ≤ ρ(v).

I Moreover if ui = v − ε(i) then ρ(v)− 1 ≤ ρ(u) ≤ ρ(v)

I If λ is a proof for the rank of u, and µ is an effective
configuration such that µi ≤ λi for i = 1, 2, . . . , n then λ− µ
is a proof for the rank of v = u − µ



More facts on the rank

I Let u and v be two ∆-effective configurations then

ρ(u + v) ≥ ρ(u) + ρ(v)

I Moreover :

ρ(u + v) ≤ ρ(u) + deg(v)



Baker and Norine’s Theorem for graphs

M. Baker, S. Norine, Riemann-Roch and Abel-Jacobi theory
on a finite graph (2007) Advances in Maths, 215, 766-788.

Theorem
Let κ be the configuration such that κi = di − 2, so that
deg(κ) = 2(m − n). Any configuration u satisfies:

ρ(u) = deg(u)−m + n + ρ(κ− u)



Consequence of Baker and Norine’s Theorem

I If the degree of u is greater than 2(m − n), then
ρ(u) = deg(u)− (m − n + 1)

I For any configuration u, the rank ρ(u) satisfies

ρ(u) ≥ deg(u)− (m − n + 1)

I we will say that the configuration is of minimal rank if
ρ(u) = deg(u)− (m − n + 1).

I If u has minimal rank then for any effective configuration λ,
u + λ has also minimal rank.



The computation of the rank is an NP-complete problem

V. Kiss and L. Tóthméresz.

Chip-firing games on eulerian digraphs and NP-hardness of
computing the rank of a divisor on a graph.

Discrete Appl. Math., 193:48—56, 2015.



A greedy algorithm for the rank

Input: A configuration u on G , û the superstable
configuration ∆- equivalent to u;

I While ûn ≥ 0 do
I Find i 6= n such that u′ = u − ε(i) is such that û′n is minimal.
I u ← u − ε(i); u ← û
I s ← s + 1;

I od;
Output: s − 1.



The computation of the rank in Kn can be solved in linear
time

R. C. and Y. Le Borgne.

On the computation of Baker and Norine’s rank on the complete
graph

Electronic J. of Combinatorics, 23 P1.31 (2016) .



Main fact for the rank of a configuration on Kn

Theorem
Let u be a superstable configuration on Kn, then there exists i < n
such that ui = 0, and for all such i , the configuration v = u − ε(i)
satisfies

ρ(v) = ρ(u)− 1

Hence the greedy algorithm computes correctly the rank in Kn.



Graph counterexample for the Greedy algorithm
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Compare p = 1 and p = 4.



The wheel graph Wk
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Figure: The Wheel Graph W5



Superstable configurations on the wheel

Proposition

A configuration is superstable if and only if the following
conditions are satisfied

I There exists at least one i < n such that ui = 0

I If ui = uj = 2 there exists one p in the interval [i , j ] such that
up = 0.
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Figure: Configuration on the Wheel Graph with rank 0



Subtracting 1 from a vertex xi such that ui = 0 may not
modify the rank
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Figure: Configuration on the Wheel Graph with rank 0



Subtracting 1 from a vertex xi such that ui = 0 may not
modify the rank
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Figure: Configuration on the Wheel Graph with rank -1



Toppling equivalence for the complete graph

Lemma
The configuration u is such that u ≡∆ 0 if and only if deg(u) = 0
and

∀i , j ui = uj mod n

Corollary

Two configurations u, v are such that u ≡∆ v if and only if
deg(u) = deg(v) and

∀i , j ui − vi = uj − vj mod n



Toppling equivalence for the complete graph

To determine the parking configuration equivalent to u replace
each ui for i < n by u′i = ui mod n then set

u′n := deg(u)−
n−1∑
i=1

u′i

Then perform subset topplings while the ui with i < n are non
negative.



Superstable configurations in Kn

Definition
A configuration u in Kn is superstable if and only if the sequence
(u1, u2, . . . , un−1) is a parking function.

Meaning that sorting it one obtains a sequence (u′1, u
′
2, . . . , u

′
n−1)

satisfying 0 ≤ u′i < i for all i .



Superstable configurations in Kn

Definition
A configuration u in Kn is superstable if and only if the sequence
(u1, u2, . . . , un−1) is a parking function.

Meaning that sorting it one obtains a sequence (u′1, u
′
2, . . . , u

′
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Dyck words

We consider the alphabet A = {a, b}.
I An is the set of words with n occurrences of b and n − 1

occurrences of a. The number of elements of An is
(2n−1

n

)
.

I The mapping δ is defined by:

δ(f ) = |f |a − |f |b

I Dn is the subset of An consisting of the words f such that
δ(g) ≥ 0 for each decomposition f = gh and g 6= f .



Drawings for words in Dn

a a a b a a a b b b a b b b a a b b a b b



Drawings for words in Dn

a a a b a a a b b b a b b b a a b b a b b



Word associated to a parking configuration u of Kn

I Sort the first n − 1 coefficients of u in weakly increasing order
giving u′ .

I The word f has n− 1 occurrences of a and n occurrences of b.

I The prefix of f ending with the i-th occurrence of a contains
u′i occurrences of b

I Associate also the last coefficient s = un.

I Example: u = (1, 4, 0, 0, 7, 1, 0, 9, 1, 7, 17),

u′ = (0, 0, 0, 1, 1, 1, 4, 7, 7, 9, 5)

f = a a a b a a a b b b a b b b a a b b a b b

s = 17
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Main objects here

A word in Dn and an in integer s ∈ Z.

So that we consider the set:

Dn × Z



Left active cells

A cell with label c is left active for s ∈ Z and a word f ∈ Dn, if the
following two conditions hold:

I c ≤ s

I it lies on the left of the path determined by f .



Left active cells

A cell with label c is left active for s ∈ Z and a word f ∈ Dn, if the
following two conditions hold:

I c ≤ s

I it lies on the left of the path determined by f .

The number of left active cells is denoted by left(f , s)
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Rank and left active cells

Theorem
Let u be a parking configuration on Kn and f be the Dyck word
associated to it, then the rank of u is given by

ρ(u) = left(f , un)− 1

Corrolary

There is an algorithm computing the rank of a configuration in
O(n).



An Involution on Dyck words

I The mirror image of a word f = f1f2 · · · fp is f̃ = fpfp−1 · · · f2f1
I For any f in Dn define Φ(f ) as the conjugate of f̃ which is an

element of Dn.



About Φ

I For f in Dn let m = maxright(f ) the maximal value of the
label of a cell on the right of path determined by f .

I Then we have:

Proposition

The involution Φ is such that:

maxright(Φ(f )) = maxright(f )

left(f , s) = right(Φ(f ),m − 1− s)



Open problems?

I Find families graphs for which the rank can be computed in
polynomial time

I Approximate algorithms?

I Baker Norine’s formula allowed to introduce new operations
on Dyck words and Parking Functions

I better understanding of Baker Norine’s formula for some other
families of graphs


