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The paper by M. Baker and S. Norine [1] in 2007 introduced a new pa-
rameter in Graph Theory it was called the rank of configurations on graphs.
A configuration consists of giving an integer value to each vertex of the
graph. It was proved 10 years after that the computation of the rank is an
NP-complete problem for general graphs (see [6]). In a paper written with
Yvan Le Borgne [3] we presented a linear time algorithm computing the rank
of configurations in the complete graph. I give here a brief presentation of
the main results of this paper, following the way in which I presented it in
VIASM at Hanoi during october 2016.

1 Definitions and notation

Graphs and configurations

Let G = (X,E) be a connected graph, where X = {x1, x2, . . . , xn} is the
vertex set and E the set of edges. We consider also E as a symmetric matrix
such that ei,j = 1 if there is an edge between the vertices xi and xj , and
ei,j = 0 if not. We assume that G is connected and has no loops, such that
ei,i = 0 for all i.

We will consider configurations on graphs, these are elements of the
discrete lattice Zn, where Z is the set of integers (positive or negative). For
a configuration u = (u1, u2, . . . , un) we will refer to the ui’s as the entries
of u. The symbol ε(i) will denote the configuration in which the value 1 is
assigned to vertex xi and the value 0 is assigned to all other vertices.

The degree of the configuration u is the sum of the ui’s it is denoted by
deg(u).
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To any vertex is associated a Laplacian configuration ∆(i), it is given by:
∆(i) = diε

(i)−
∑n

i=1 ei,jε
(j), where di =

∑n
i=1 ei,j is the degree of the vertex

xi.

L(G)-equivalence

We denote by L(G) the subgroup of Zn generated by the ∆(i), and two
configurations u and v will be said toppling equivalent if u − v ∈ L(G),
which will also be written as u ∼L(G) v.

In the sandpile model and the chip-firing game, the transition from con-
figuration u to the configuration u − ∆(i) is allowed only if ui ≥ di and is
called a toppling. Here we omit this condition and perform topplings even
if ui < di.

Effectiveness

The notion of L(G)-effectiveness introduced in [1] is central in this presen-
tation.

Definition 1.1. A configuration u is effective if ui ≥ 0 for all i. A configu-
ration u is L(G)-effective if there exists an effective configuration v toppling
equivalent to u (recall that this means u− v ∈ L(G)).

Since two L(G)-equivalent configurations have the same degree, it is clear
that a configuration with negative degree is not L(G)-effective. From now
on it will be convenient to denote effective configurations using greek letters
λ, µ and configurations with no particular assumptions on them by letters
u, v, w.

Rank

The notion of rank indicates how far is a configuration L(G)-effective. It is
by subtracting effective configurations to it, and checking if it is still L(G)-
effective.

Definition 1.2. The rank ρ(u) of a configuration u is given by:

• if u is not L(G)-effective then ρ(u) = −1,

• if u is L(G)-effective, then ρ(u) is the largest integer r such that for
any effective configuration λ of degree r the configuration u − λ is
L(G)-effective.
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Denoting P the set of effective configurations and E the set of L(G)-
effective configurations this definition can be given by the following compact
formula which is valid in both cases:

ρ(u) + 1 = min
λ ∈ P, u− λ /∈ E

deg(λ)

An immediate consequence of this definition is that if two configurations
u and v satisfy ui ≤ vi for all i then ρ(u) ≤ ρ(v). Moreover if ui = v − ε(i)
then ρ(v)− 1 ≤ ρ(u) ≤ ρ(v)

The following notion will be useful to prove properties of the rank:

Definition 1.3. An effective configuration µ is a proof for the rank ρ(u) of
an L(G)-effective configuration u if u− µ is not L(G)-effective and u− λ is
L(G)-effective for any effective configuration λ such that deg(λ) < deg(µ).

Notice that if λ is a proof for ρ(u) then ρ(u) = deg(λ)− 1.

2 Laplacian configurations in the complete graph

In the complete graph Kn each vertex has degree n− 1 and for any two ver-
tices there is an edge between them. Hence the Laplacian group is generated
by the n configurations:

∆(i) = (−1, . . . ,−1, n− 1, . . . ,−1)

For each i = 1, 2, . . . , n we have:

∆
(i)
j =

{
n− 1 if i = j
−1 if i 6= j

We notice that all the entries in these configuration are equal (mod n),
hence this is also true for any configuration in the Laplacian subgroup since
its elements are linear combinations of the ∆(i). Notice that the converse
statement is also true giving the following:

Proposition 2.1. A configuration u = (u1, u2, . . . , un) in Kn belongs to the
Laplacian subgroup L(Kn) of the complete graph Kn if and only if the two
conditions below are satisfied:

deg(u) = 0, (1)

ui ≡ uj (mod n) for all 1 ≤ i, j ≤ n (2)
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Proof. We only have to prove that if conditions (1) and (2) are satisfied,
then u ∈ L(Kn). We proceed by induction on

∑n
i=1 |ui|. It is trivial to

notice that if this sum is 0 then u = 0 which is in L. Suppose that the result
is proved when this sum is less than p and let u be such a configuration for
which the sum is equal to p+ 1. Let j be an index such that |uj | is maximal
among the |ui|. We may suppose that ui > 0 since u and −u both satisfy
the same conditions.

Let v = u−∆(j), and consider the case when uj ≥ n− 1. Then we have
|vj | = |uj |− (n−1), since the degree of u is 0, there exits at least one k such
that uk < 0. This gives vk = uk + 1 and |vk| = |uk| − 1, for the i 6= j, k, the
difference between |vj | and |uj | is at most 1. Hence:

n∑
i=1

|vi| ≤
n∑

i=1

|ui| − (n− 1)− 1 + (n− 2) =

n∑
i=1

|ui| − 2 < p

Applying the induction hypothesis we have that v ∈ L(Kn) and u =
v + ∆(j) ∈ L(Kn).

If yj < n− 1, then u is such that k among the entries are equal to k− n
and n− k are equal to k, giving

u =
∑
i∈I

∆(i)

where I is the subset of {1, 2, · · · , n} consisting of those i such that fi = k.
Clearly u ∈ L(Kn)

This Proposition shows that to check a property on a configuration u
which depends only on the class of u with respect to the Laplacian sub-
group, one can consider a configuration v equivalent to u and satisfying
vi = ui (mod n) for i 6= n and vn = deg(u) −

∑n−1
i=1 vi. Then we have

u ∼L(Kn) v and since 0 ≤ vi < n for i 6= n it may be more convenient to
consider v instead of u .

In the sequel we will say that a configuration u such that 0 ≤ ui ≤ n for
i 6= n is reduced.

What we have seen gives an algorithm allowing to build a reduced con-
figuration L(Kn)-equivalent to a given configuration in Kn. It is described
below, the variable deg contains the value to add to un in order that u and
v have the same degree.
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Input: A configuration u on Kn

Output: A configuration v L(Kn)-equivalent to u such that
0 ≤ vi < n for any i < n

deg ← 0;
for (i = 1, . . . , n− 1) do;

• vi ← ui (mod n)

• deg ← deg + ui − vi

vn ← un + deg

3 Superstable configurations

An almost effective configuration is a configuration u such that ui ≥ 0 for
i < n. It is easy to see that any configuration is equivalent by L(G) to an
almost effective configuration. This is very easy to prove for the complete
graph (add sufficiently many times ∆(n) when ui < 0 for some i < n). Notice
that this is also true for any graph.

Definition 3.1. A configuration u is superstable if it is almost effective and
if for any non empty I ⊂ {1, 2, . . . , n− 1} the configuration u−

∑
i∈I ∆(i) is

not almost effective.

To check if a configuration u of the graph Kn is superstable one we have
the following

Proposition 3.1. Let u be an almost effective configuration in Kn and let
v be the configuration obtained from u by sorting in increasing order the
elements u1, u2, . . . , un−1, then u is superstable if and only if vi < i for all
i < n.

Proof. Since the graph Kn has Sn as automorphism group, the property
of being superstable is invariant by permuting the entries ui. Hence v is
superstable if and only if u is.

We first prove that if vi ≥ i for some i, then v is not superstable. Indeed
consider I = {i, i + 1, . . . , n − 1} and let w = v −

∑
i∈I ∆(i). The values of

the entries of w satisfy: wj = vj − (n− 1) + n− i− 1 = vj − i, and for j < i
, wj > vj . Since vi ≥ i and vj ≥ vi for j ≥ i, w is almost effective. Hence v
is not superstable.
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Conversely we show that if vi < i for all i < n then for any I ⊂
{1, 2, . . . , n− 1},

w = v −
∑

i∈I ∆(i) is not almost effective. Let j be the smallest element
in I. We will prove that wj < 0. Let k be the number of elements in I, since
I is a subset of {j, j + 1, . . . , n − 2, n − 1} a set having n − j, elements we
have k ≤ n− j. Let us compute wj form vj , we have to subtract n− 1 and
add k − 1 giving:

wj = vj − n+ k ≤ uj − n+ n− j = vj − j

Since vj < j we get the result.

We use the following result which may be considered as a straightfor-
ward consequence of an old result by D. Dhar proving that any class of
Laplacian equivalence contains a unique ”recurrent” configuration. Differ-
ent proofs can be found in: [2, 4, 5]. Since one can show that a configuration
u is recurrent if and only if the configuration u′ such that u′i = di − ui is
superstable (where di is the degree of vertex i) we have:

Theorem 3.2. Any configuration is L(G)-equivalent to a unique superstable
configuration.

4 Words and Dyck words

We consider the alphabet A = {a, b} and the set A∗ of words on A. A prefix
of a word f is a word g such that there exists h such that f = g h, the
prefix g is strict if g 6= f . For any word f the number of occurrences of
the letter x in f will be denoted by |f |x and the length of f by |f |, hence
|f | = |f |a + |f |b. We denote by An the set of words of length 2n− 1 which
have one more occurrence of b than that of a, hence we may write:

An = {f ∈ A∗ | |f |a = n− 1, |f |b = n}

The usual notation on words will be used, two words f and f ′ are conju-
gate if there exists g, h such that f = g h and f ′ = h g. The mirror image of
a word f = f1f2 . . . fm will be denoted f̃ it is equal to f = fmfm−1 . . . f2f1.

In this paper we call Dyck word a word f satisfying |f |a = |f |b − 1 and
such that for any strict prefix g of f the number of occurrences of a is not
less than the number of occurrences of b. It is useful to define the function
δ assigning to any word f of A∗ the integer δ(f) = |f |a−|f |b then f is Dyck
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word if δ(f) = −1 and δ(g) ≥ 0 for any strict prefix of f . Notice that the
Dyck words are very often considered with the last b omitted. We decided
to add an additional b in order to have a simple statement for the following
simple Cyclic Lemma which we will use constantly. The subset consisting
of Dyck words of length 2n− 1 will be denoted Dn.

One of the appealing results in combinatorics of words is:

Lemma 4.1. Any word f in An can be decomposed in a unique way as
f = g h such that h g is a Dyck word.

From this lemma one has that the number of elements in Dn is the
Catalan number:

1

2n− 1

(
2n− 1

n

)
=

(2n− 2)!

n!(n− 1)!

Definition 4.1. The sequence of heights η = (η1, η2, . . . , ηn−1) of f ∈ Dn is
given by ηi = δ(f (i)), where f (i) the prefix of f preceding the i-th occurrence
of a in f .

Notice that for a sorted and superstable configuration u the heights for
the Dyck word f such that φ(u) = (w, k) satisfy ηi = i − 1 − ui. Indeed
for a prefix g(i) of f preceding the i-th occurrence of the letter a, we have
|g(i)|a = i− 1 and |g(i)|b = ui.

Lemma 4.2. Any f in Dn has a unique decompostion f = a g h such that
g, h ∈ Dn and g has no proper prefix in Dn. And another decomposition
may be written:

f = a g(1)a g(2) · · · a g(b)b,

where g(i) ∈ Dn, for i = 1 . . . , p.

This first one is called first return to the origin decomposition since a g
is the shortest not empty prefix f ′ of f such that δ(f ′) = 0. We will call
the other one the full decomposition of f , p is the number of prefixes g of
f which satisfy δ(g) = 0. Moreover each such prefix is obtained from the
previous one by concatenating a g(i+1) to it.

5 Configurations and words

Definition 5.1. To any word f in An we build the sequence u = ψ(f) of
length n− 1, such that ui is the number of occurrences of the letter b of the
prefix of f ending with the i-th occurrence of the letter a.
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Notice that we have u1 ≤ u2 ≤ · · · ≤ un−2 ≤ un−1 ≤ n
Conversely let u be a reduced configuration of Kn ( meaning 0 ≤ ui ≤ n)

such that the first n− 1 entries appear in increasing order, we associate to
u the word ψ−1(u) given by:

ψ−1(u) = bu1a bu2−u1a bu3−u2a . . . bun−1−un−2a bn−un−1

Definition 5.2. Given any configuration u of Kn we denote φ(u) = (f, k)
the pair consisting of a Dyck word f and an integer k which are obtained
from the superstable configuration v, L(Kn)-equivalent to u by:

• f = ψ(v′), where v′ is obtained by sorting in increasing order the first
n− 1-entries of v,

• p = vn.

We also define the operation ψ′ associating to any pair consisting of a
word f ∈ An and an integer k the configuration u of Kn given by u =
(ψ(f), k).

Notice that this implies that ψ(φ(u)) is a configuration for which there
exists a configuration v L(Kn)-equivalent to a configuration obtained from
u by permuting the first n− 1 entries.

Notice that if f is a Dyck word then u = ψ(f, p) is superstable, since
δ(f (i)) ≥ 0 is equivalent to ui < i for i < n.

We now consider the relationship between two configurations obtained
from two conjugate words words f g and g f .

Lemma 5.1. Let f, g be two words such that fg ∈ An and let k, k′ be
two integers, then there exists a configuration w obtained by permuting the
entries of u = ψ′(f g, k) which is L(Kn)-equivalent to v = ψ′(g f, k′) if and
only if the following holds:

k′ = k + |f |b|g|a − |f |a|g|b = k + n(|f |b − |f |a)− |f |b (3)

Proof. We first examine the entries of u and v. Denote p = |f |a then u may
be written

u = (u1, u2, · · · , up, up+1, · · · , un−1, k)

Since we have taken off the sequence u′p+1, · · · , u′n−1 of to put in front of the
word we have:

v = (u′p+1, · · · , u′n−1, u′1, u′2, · · · , u′p, k′)

where u′j = uj − |f |b if j > p, similarly u′j = uj + |g|b if j ≤ p.
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Now we prove that the condition is necessary by computing the degree
of the two configurations and expressing the fact that the equality of degrees
is a necessary condition to be equivalent. Notice also that permuting the
entries of a configuration does not affect the value of its degree.

The degree of v is given by

deg(v) =
n−1∑
i=1

ui − |g|a|f |b + p|g|b + k′

and that of u by:

deg(v) =

n−1∑
i=1

ui + k

Equating these two values gives equation (2). The last part of the equality
is obtained by using the following relations: |g|b = n − |f |b and |g|a| =
n− 1− f |a.

We now suppose k′ = k+|f |b|g|a−|f |a|g|b and consider the configuration
u′ = (u′1, u

′
2, . . . , u

′
p, u
′
p+1, . . . , u

′
n−1, k

′) it has the same degree as u and:

u′i − ui =

{
|g|b if i > p
−|f |b if i ≤ p

Since |g|b+|f |b = n all these values are equal (mod n) showing that u′ ∼L(Kn)

u. Moreover v is obtained from u′ by permuting circularly its elements,
proving the Proposition.

We have the following propositions which are not difficult to deduce from
the Lemma above:

Proposition 5.2. For two configurations u and u′, φ(u) = φ(u′) if and only
if u′ is L(Kn)-equivalent to a configuration obtained by a permutation of the
first n− 1 entries of u.

Proposition 5.3. Let u = ψ′(f, k) where f ∈ An then φ(u) = (g, k′) where
g is the conjugate of f which belongs to Dn, and :

k′ = deg(u)− deg(ψ(g)). (4)

.
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6 Interpretation of the involution u←→ (κ− u) on
Dyck words

The configuration κ on any graph, was defined in the paper of Baker and
Norine paper setting κi = di−2, where di is the degree of the vertex xi. For
the complete graph Kn we have κ = (n−3, n−3, . . . , n−3). The Baker and
Norine theorem of graphs gives a formula allowing to determine the rank of
u when one knows that of κ− u.

It seems interesting to express φ(κ− u) in terms of φ(u). In fact we get
the following:

Proposition 6.1. Let φ(u) = (f, k) and φ(κ − u) = (f ′, k′) then f ′ is the
element of Dn which is the unique conjugate belonging to Dn of f̃ , the
mirror image of f .

Proof. The mirror image of the word f = f1 f2 · · · fm−1 fm, of length m
(where the fi are letters) is the word

fm fm−1 · · · f3 f2 f1

We remark that ψ(f) = u and ψ(f̃) = v satisfy vi = n − ui. Since we
have defined ψ′(f, k) for any word in An we can calculate v = ψ′(f̃ , n−un),
it is clearly equal to :

(n− un−1, . . . , n− u2, n− u1, n− un)

Reordering the entries of v we get

v′ = (n− u1, . . . , n− u2, . . . , n− un−1, n− un)

Since

κ− u = (n− 3− u1, . . . , n− 3− u2, . . . , n− 3− un−1, n− 3− un)

applying Proposition 2.1 we have the result.

7 Main fact for computing the rank

In order to determine the rank of a configuration u one may use the ex-
haustive search method, it consists of determining all compositions λ of the
integer k into n parts for k = 1, 2, 3 · · · . Then to subtract each of those λ
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from u and determine if the configuration u− λ obtained is L(G)-effective.
The algorithm stops when one non L(G)-effective is found, the rank being
one less than the value of k a that point. This is not an efficient algorithm.
Another technique is to guess a configuration λ which we will call a proof for
the rank of u, satisfying the following property. First it is effective (λi ≥ 0
for all i, and u−λ is not L(G)-effective). Then try to show that any effective
configuration µ with degree strictly less than that of λ is such that u − µ
is L(G)-effective. When such a configuration is obtained not only the rank
of u is determined but also all the ranks of the configurations u − µ where
µ is any configuration such that 0 ≤ µi ≤ λi for all i. Of course such a
configuration has rank deg(λ)− deg(µ)− 1 because of the following:

Proposition 7.1. If λ is a proof for the rank of u, and µ is an effective
configuration such that µi ≤ λi for i = 1, 2, . . . , n then λ − µ is a proof for
the rank of u− µ.

Proof. The condition µi ≤ λi implies that λ−µ is an effective configuration,
moreover we have that (u−µ)−(λ−µ) = (u−λ) hence it not L(G)-effective.
Now let ν be an effective configuration such that deg(ν) < deg(λ− µ) then
µ+ν is such that deg(µ+ν) < deg(µ)+deg(λ−µ) = deg(λ), hence u−µ−ν
is L(G)-effective which writes (u− µ)− ν showing the result.

The main result allowing to compute the rank of a configuration in Kn,
using a polynomial time algorithm is the following:

Theorem 7.2. Let u be a superstable configuration of Kn such that the first
n−1 entries are sorted in increasing order. Then the rank of u and the rank
of u− ε(1) are related by the formula:

ρ(u) = 1 + ρ(u− ε(1)) (5)

Proof. Let u be a configuration satisfying the conditions above and let λ be
a proof for ρ(u), we will build a proof for ρ(u− ε(1)). If λ1 > 0 then by the
remark above λ − ε(1)) is a proof for ρ(u − ε(1)) = ρ(u) − 1. If not, since
f − λ is non L(G)-effective, there is at least one j such that λj > uj . We
will check that

λ′ = (λj − uj , λ2, . . . , λj−1, uj , λj+1, λn)

is also a proof for ρ(u) satisfying λ′1 > 0. Since deg(λ′) = deg(λ) we have
that for any effective configuration µ with degree less than deg(λ′), the
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configuration u−µ is L(G)-effective. We just have to prove that u−λ′ is not
L(G)-effective. We consider a configuration obtained from u by subtracting
a part of the λj to u, that is we let v be:

v = u− (λ1, λ2, λj−1, uj , λj+1 . . . , λn).

We check that this configuration is such that v1 = vj = 0 and we notice
that subtracting the configuration (λj − uj)ε

(j) from it we obtain u − λ
which is not L(G)-effective. Using the property of symmetry of Kn this
implies that subtracting (λj−uj)ε(1) to it we obtain also a non L(G)-effective
configuration. Since v − (λj − uj)ε(1) = u− λ′ this shows that u− λ′ is not
L(G)-effective, ending the proof.

This result allows to obtain the rank of u by using the following algo-
rithm. This algorithm uses the functions superstable(u) which computes
the superstable configuration L(Kn)-equivalent to a given configuration u
and sort(u) which sorts in weakly increasing order the first n− 1 entries of
the configuration u.

Input: A superstable configuration u on Kn such that un ≥ 0 .
Output: The rank of u

rank ← 0 ;
While (un ≥ 0)

• u1 ← −1

• u← superstable(u)

• u← sort(u)

• if un < 0 return rank

• else rank ← rank + 1

8 Translating the subtraction u→ u− ε(1) in terms
of Dyck words

We have seen that a superstable configuration u such that the first n − 1
entries are in increasing order may be represented by a pair φ(u) = (f, k)
where f is a Dyck word and k = un. It is interesting to describe how to
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obtain φ(u−ε(1)) knowing φ(u) = (f, k). This will lead us to a more efficient
algorithm computing the rank. We will also obtain a formula for this this
rank using some parameters on the Dyck word f . To do that we need, the
classical decomposition of a Dyck word:

Proposition 8.1. Let u be a superstable configuration where the n− 1 first
entries are in increasing order. Let φ(u) = (f, k) and let f = a g h be the
first return to the origin decomposition of f then:

φ(u− ε(1)) = (h′ a b g, k − |a g|a) (6)

where h′ is given by h = h′ b.

Proof. Let u = (u1, u2, · · · , un−1, k), where u1 = 0, we have to determine
the superstable configuration L(Kn)-equivalent to

u′ = u− ε(1) = (−1, u2, · · · , un−1, k)

First we subtract ∆(n) from u′, giving:

u′ ∼L(Kn) (0, u2 + 1, · · · , un−1 + 1, k − (n− 1))

This configuration is such that u′ = ψ(abgh′, k − (n − 1)), where h = h′b.
In order to find a superstable configuration which is a rearrangement of the
superstable configuration L(Kn)-equivalent to u′ we must take the conju-
gate of abgh′ which belongs to Dn. This conjugate is: h′abg. Moreover by
Proposition 5.1, we have to prove that:

k − |a b g|a = k − n+ 1 + n(|a b g|b − |a b g|a)− |a b g|b

Since a b g ∈ Dn, we have: |a b g|b − |a b g|a = 1, giving the result.

Remark 8.1. The first observation we can make is that we are able to check
that, for a Dyck word f , the rank of the configuration ψ(f, k) is 0. This
happens if and only if 0 ≤ k < |a g|a. Since the value of k−|a g|a is negative.

Small rank determination

We suppose here that the configuration u with φ(u) = (f, k) is such that
|a g|a ≤ k < n − 1 then we may apply a few times the operation above in
order to determine the rank of u. Indeed we have:
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Corollary 8.2. Let, u, f, k be as above, write

f = ag(1)ag(2) . . . ag(p)b

for the full decomposition of f . Then the values |ag(1)|, |ag(2)|a . . . a|g(p)|a,
satisfy that the rank r is such that:

r∑
i=1

|a g(i)|a ≤ k and

r+1∑
i=1

|a g(i)|a > k

Proof. Let g(i) = h(i) b then we have ρ(ψ(f, k)) = 1 + ρ(ψ(f ′), k − |a g(1)|a)
Where f ′ = ag(2) . . . ag(p)a bh(1)b. Since k ≥ |a g(1)|a, we may repeat this
operation getting: ρ(ψ(f, k)) = 2 + ρ(ψ(f”), k − |a g(1)|a)− |a g(2)|a) where
f” = a g(3) . . . ag(p)a b h(1)a b h(2)b.

We may repeat this transformation until we get a negative value for
k −

∑i
j=1 |a g(i)|a .

Remark 8.2. The value of r may also be determined using ηi the sequence of
heights of f . Indeed, |a g(i)|a is the length of the sub-sequence of η beginning
with the i-th occurrence of 0 and ending just before the (i+1)-th (or ending
with ηn−1 if there is i occurrences of 0 in η). This shows that in order to
compute r one may count the number of occurrences of 0 in the sequence
η1, η2, . . . , ηk+1 and subtract 1 to this value.

The calculation of the rank in that case becomes easy, it needs only the
computation of the sequence of heights.

Input: A Dyck word f and an integer k; such that φ(u) = (f, k),
where u is a configuration on Kn satisfying k < n− 1
Output: The rank of u

Procedure smallrank

Compute η the sequence of heights of f
rank ← −1 ;
for (i = 1, . . . , k + 1) do

• if (ηi = 0) then rank ← rank + 1

return rank
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The determination of the rank in the general case

Applying p times Proposition 8.1, (where p is the number of factors in the
full decomposition of f) we obtain a more interesting result:

Proposition 8.3. Let u be a superstable configuration where the n − 1
first entries are in increasing order and let φ(u) = (f, k). Consider f =
ag(1)ag(2) . . . ag(p)b the full decomposition of f if k ≥ n− 1. Then

ρ(u) = ρ(ψ(f ′, k − (n− 1)) + p,

where f ′ = h(1)a b h(2)a b · · ·h(p)a b b, and the words h(i) are given by g(i) =
h(i) b.

Proof. Performing p times the previous transformation one has to subtract
|a g1|a from k then |a g2|a from it and so on until |a gp|a is subtracted. Notice
that in total n−1 that is subtracted from k. Moreover during the procedure
we did p times the subtraction of 1 p from the rank and replaced a g , by
h′ a b g.

This procedure will allow to obtain in a very efficient way the rank of
u if we are able to determine at each step the number of words in the full
decomposition of the word f . Notice that this word is modified at each step.
However this can be obtained by using the sequence of heights of f , since
we have:

Remark 8.3. The number of elements in the full decomposition of f is
equal to the number of times 0 appears in its sequence of heights. Moreover
the sequence of heights η′ of f ′ = h(1)a b h(2)a b · · ·h(p)a b b is obtained from
the sequence of heights of f by:

η′i =

{
0 if ηi = 0

ηi − 1 if ηi 6= 0

We thus have a procedure which computes the rank by applying as many
times as possible the full decomposition of the Dyck word f . This subtracts
n − 1 from k, adds p (the number of words in the full decomposition of f
) to the rank, and transforms f by replacing ah(i) b by h(i) a b. When the
value of gets less than n− 1, the small rank procedure is used. Notice that
it is not necessary to compute the words f ′ at each step of the algorithm
since it suffices to know their height sequences. This gives a procedure
which performs the calculus of the rank using the parameters η and k when
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k ≥ n−1, which is described below. To obtain the rank of the configuration
it is necessary to determine the total number of η′is equal to 0 during the
execution of the algorithm below. This includes the situation in the for loop
and in the call of the procedure smallrank.

Procedure allranks

Input: The sequence η of heights of a Dyck word f and an integer k such
that φ(u) = (f, k), where u is a configuration on Kn

Output: The rank of u

rank ← 0 ;
while (k ≥ n− 1) do

• for (i = 1, 2, . . . , n− 1) do

• – if ηi = 0 rank ← rank + 1

– else ηi ← ηi − 1

• k ← k − (n− 1)

return rank + smallrank(η, k)

A direct formula

The expression of the algorithm as above allows to give a formula for the
rank, which in turn will give an algorithm of linear complexity.

Theorem 8.4. Let u be a configuration in Kn, φ(u) = (f, k) and η the
sequence of heights of f . Denote q the quotient in the Euclidean division of
k + 1 by n− 1 and r the remainder in this division so that:

k + 1 = (n− 1)q + r, r < n− 1

Then

ρ(u) + 1 =

r∑
i=1

Max(0, q − ηi + 1) +

n−1∑
i=r+1

Max(0, q − ηi) (7)

Proof. To prove 7 we go back to the algorithm allranks. We remark that
the quotient q of k + 1 by n− 1 is the number of iterations in the for loop
which determines successive values of the sequence of heights η. In order to
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determine the number of occurrences of 0 in total one can consider the initial
values, since they are decremented by 1 each time they are non zero. Hence
the number of steps in which their value is equal to 0 is q−ηi when i > r and
q − ηi + 1 if i ≤ r (since they will be considered in the call of small rank).
However this value is negative when ηi never reaches the vaue 0 during the
execution of the algorithm, so that it has not to be taken into account. This
explains the reason why the function Max(0, q − ηi) is used.

Remark 8.4. Formula (7) may also be written:

ρ(u)+1 = deg(u)−(n− 1)(n− 2)

2
+

r∑
i=1

Max(0, ηi−q−1)+
n−1∑

i=r+1

Max(0, ηi−q)

(8)

Proof. Consider the sum

s =
r∑

i=1

(q − ηi + 1) +
n−1∑

i=r+1

(q − ηi)

Since ηi = i− 1− ui we have

s =
n−1∑
i=1

(q + ui − (i− 1)) + r

giving

s = q(n− 1) + r +
n−1∑
i=1

ui −
(n− 1)(n− 2)

2

Notice that q(n− 1) + r is un + 1 giving

s = 1 + deg(u)− (n− 1)(n− 2)

2

We observe that replacing Max(0, ηi − q − 1) by ηi − q − 1 has the effect to
have subtracted the value q − ηi − 1, when it is positive. Hence we have to
add it to s in order to obtain the rank of u.
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9 Computing the rank by reading a graphical rep-
resentation of a Dyck word

We can illustrate the above formula by a representation of the Dyck word in
the plane starting from the origin, with two steps: an up step from (i, j) to
(i, j+1) representing the letter a and and a right step from (i, j) to (i+1, j)
representing the letter b . We first consider a strip of squares in the plane of
height n− 1 and we number the squares determined by the lines x = i and
y = j, a square with south east corner of coordinates (i, j) will be numbered
nj − (n− 1)i.

0
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3
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7

8

9
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12
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16
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20

21

22

23

24

25

26

27

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

28

29

30

31

32

33

34

35

36

37

Then we draw the path corresponding to the Dyck word, for that we use
the rule above. Notice that the square numbered 0 is always on the left of
the path and all the squares with negative numbers are on the right of the
path.
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Path representing the Dyck word a a a b a a a b b b a b b b a a b b a b b
To determine the rank of u such that φ(u) = (f, k) one has to count the

number p of squares which numbers that are not greater than k and that
appear on the left of the path. To obtain the rank one has to subtract 1
from p. For instance when k = 6 the rank is 0, and when k = 27 the rank
is 13.
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