
The atomic decomposition of strongly connected

graphs

Bruno Courcelle
LaBRI, Bordeaux University and CNRS

Email : courcell@labri.fr

July 2, 2013

Abstract

We define and study a new canonical decomposition of strongly con-
nected graphs that we call the atomic decomposition. We can construct it
in linear time from the decomposition in 3-connected components of the
considered graph. In a companion article, we use it to characterize, up
to homeomorphism, all closed curves in the plane having a given Gauss
word.

1 Introduction

There are many types of hierarchical graph decompositions. They are useful for
studying the structure and properties of certain graphs and for building efficient
graph algorithms. These algorithms exploit the tree structure of the considered
decomposition of the input graph. Here are some examples. The modular decom-

position [MoRad] (also called substitution decomposition) has been introduced
by Gallai [Gal] for studying comparability graphs and their transitive orienta-
tions. The split decomposition introduced by Cunnigham [Cun] (its definition is
in Section 4) helps to understand and recognize circle graphs [Cou08, GPTCb].
Tree-decompositions are essential for the proof by Robertson and Seymour of
the Graph Minor Theorem (see [Die] for an overview). They yield the notion of
tree-width, an integer graph invariant that can be used as parameter in many
fixed parameter tractable (FPT) algorithms (see the books [CouEng, DF, FG]).
Clique-width is another integer graph invariant based on hierchical decomposi-
tions, that can also be used as parameter in FPT algorithms [CouEng, CMR].
Each type of decomposition is based on a set of elementary graphs and of oper-
ations on graphs. A decomposition of a graph is an expression of this graph in
terms of these elementary graphs and operations (hence a labelled tree). Here
are examples of graph operations used in decompositions : substitution to a
vertex, disjoint union, concatenation of two graphs at distinguished vertices.
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Figure 1: An atomic decomposition.

A decomposition is canonical if it is unique for each graph. The modular
decomposition, the split decomposition and the decomposition of a graph in
3-connected components ([Tut], we call it the Tutte decomposition, its exact de-
finition is recalled in Section 2.1) are canonical. They exhibit a certain intrinsic
structure of the considered graphs. The decompositions related to tree-width
and clique-width are not, and they are also more difficult to construct than
the three mentioned canonical ones as they raise NP-complete problems (see
[CouEng] for references).

We define and study a new canonical decomposition of strongly connected
(directed) graphs and of 2-edge connected undirected graphs (they are the undi-
rected graphs having a strongly connected orientation). We call it the atomic

decomposition. The underlying composition operation is as follows : if G and H
are disjoint directed graphs, e : x → y is an edge of G and f : u → v is one of
H, then K := G⊞e,f H is the union of G and H where e is redirected towards
v (hence e : x → v in K) and f is redirected towards y. A typical example of
atomic decomposition is shown in Figure 1. The graphs G1, ..., G7 are atoms,
i.e., they cannot be decomposed.

The underlying structure is not a tree. It is a strongly connected graph whose
biconnected components are directed cycles (hence, "almost" a tree). We call
it a cactus. Using a cactus instead of a tree is important to obtain a canonical
expression, because the composition operation that we use satisfies the following
circular associativity :

(G1 ⊞e1,e2 G2)⊞e2,e3 G3 = (G3 ⊞e3,e1 G1)⊞e1,e2 G2.
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Figure 2: Curves with Gauss word aabb.

A cactus represents a class of the congruence relation on expressions gen-
erated by circular associativity. In a similar way, in presence of an associative
binary operation, we can get canonical terms by considering this operation as
of variable arity. The corresponding trees (the syntactic trees of terms) are
unranked and ordered (no fixed outdegree and a linear order on sons of a node).

The atomic decomposition is based on a set of bipartitions of the vertex set
of a strongly connected graph, as is the split decomposition of the same graphs
[Cun]. It is different but can be seen as a preliminary step in the construction of
the split decomposition. The Tutte decomposition is also related to the atomic
decomposition, and this fact yields a linear time algorithm for constructing the
latter.

The definition of atomic decompositions is motivated by the study of Gauss
words: they are finite words that encode the self-intersections of closed curves in

the plane (with no triple intersection). Each crossing is named by a letter, and a
word with two occurrences of each letter is obtained by following the curve and
writing the letter seen at each crossing. These words have been characterized
in several ways (See [FOM, LM, Ros] and the book [GodRoy]). However, the
following question does not seem to have been considered: What is the common
structure of all curves having a same associated word ? A word is unambiguous

if it characterizes a unique curve up to homeomorphism. Otherwise, it is am-

biguous. Figure 2 shows two curves that are not related by any homeomorphism
of the plane or even of the sphere but have the same ambiguous Gauss word
aabb. The word abcabc is unambiguous and Figure 3 shows the corresponding
curve.

For studying these questions, we first observe that self-intersecting closed
curves without triple intersections are plane 4-regular graphs, that we will de-
scribe combinatorially (up to homeomorphisms) by maps. We recall that a map

is a connected graph equipped with a circular order of edges around each vertex
called a rotation (see the book by Mohar and Thomassen [MT], Chapter 3). It
represents an embedding of the graph in a surface. Hence, intersecting closed
curves can be described up to homeomorphism by 4-regular planar maps. The
atomic decomposition works for graphs, for maps and for 4-regular graphs and
maps. Roughly speaking, a strongly connected 4-regular graph can be associ-
ated with a Gauss word w, and from the atomic decomposition of this graph,
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Figure 3: Curve with Gauss word abcabc

one can describe combinatorially all closed curves whose Gauss word is w. (We
do this in [Cou13]).

The article is organized as follows. Section 2 reviews definitions about graphs
and maps. Section 3 defines atomic decompositions of graphs and related maps.
Section 4 is a conclusion where we review related decompositions of graphs (in
particular, one defined by Knuth [Knu]), knot diagrams and matroids. We also
list some open questions. For the reader’s convenience, an appendix reviews the
various equivalence and isomorphism notions used in this article.

2 Definitions

All graphs, trees and related objects will be finite. By saying that (e1, ..., ek) is a
circular sequence, we mean that it can also be specified as (ei+1, ..., ek, e1, ..., ei−1)
and that its properties and associated constructions do not depend on the initial
element e1.

A class of an equivalence relation is nontrivial if it has at least two elements.
Otherwise, we call it a singleton class.

2.1 Graphs

A directed graph G is defined as a triple (VG, EG, vertG) consisting the set of
vertices VG, the set of edges EG (with VG ∩ EG = ∅) and a mapping vertG :
EG → VG × VG that defines incidences. If vertG(e) = (x, y), we say that x
is the tail of e, denoted by α(e), that y is its head, denoted by β(e), we also
write e : x→ y and we say that x and y are the ends of e. If G is undirected,
then vertG(e) is a set {x, y} of one or two vertices, called the ends of e and we
write e : x − y. In both cases, e is a loop if x = y. We say that an edge links

two disjoint sets of vertices if it has one end in each of them. Two directed
or undirected edges are parallel if they have the same ends. A graph without
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parallel edges is simple. A bond is a loop-free graph with 2 vertices and at least
2 parallel edges. (Some books, e.g. [Die], use this term for a different notion).
A k-bond is a bond with k edges. A graph, directed or not, is k-regular if each
vertex has degree k, where an incident loop is counted for 2.

We denote by Und(G) the undirected graph obtained from a directed one by
taking as incidence function vertUnd(G)(e) = {x, y} whenever vertG(e) = (x, y).
Note that we do not identify an edge with the pair or the set of its ends.

Subdividing an edge e : x → y (or e : x − y) consists in replacing it by a
directed path of length 2 from x to y (or by an undirected path of length 2
linking x and y). The opposite operation is the fusion of two consecutive edges.
It is nothing but the contraction of one of two such edges.

We call nodes the vertices of a tree, and we adapt notation accordingly.
This convention is useful when we discuss simultaneously a graph and a tree
representing a decomposition of this graph.

Walks and paths.

Let G be a graph and x,y ∈ VG. A walk from x to y is a sequence
(x0, e1, x1, e2, ..., en, xn) such that x0, x1, ..., xn ∈ VG, x0 = x, xn = y, e1, ..., en
∈ EG, ei : xi−1 → xi (ei : xi−1 − xi if G is undirected) for each i = 1, ..., n, and
ei 	= ej if 1 ≤ i < j ≤ n. It is a path if we (also) have xi 	= xj for 0 ≤ i < j ≤ n,
except possibly if i = 0 and j = n. A walk is closed if x0 = xn. A circuit is
a closed path in a directed graph. A cycle is similar in an undirected graph
(a cycle with two vertices consists of two parallel edges). An edge never occurs
twice in a walk. A vertex never occurs twice in a path except if x0 = xn. A walk
(x0, e1, x1, e2, ..., en, xn) of a directed graph can be described without ambiguity
by the sequence (e1, e2, ..., en). A walk, a path or a circuit in a directed graph
is said to be undirected if its edges can be traversed in any direction (i.e., with
ei : xi−1 → xi or ei : xi → xi−1 in the above definition).

4-regularity.

A 4-regular graph is a graph whose vertices have all degree 4. A (2,2)-
regular graph is a directed, 4-regular graph, each vertex of which has 2 incoming
edges and 2 outgoing edges. For convenience, we include connectedness in the
notation: G4 denotes the class of connected and undirected 4-regular graphs
and G2,2 denotes the class of connected (2,2)-regular graphs. Each graph in
G4 ∪ G2,2 has an Eulerian tour, i.e., is covered by a closed walk (covered means
that the walk goes through all edges); the walk is directed if the graph is. (See
[Die], Section 1.8, where the proof given for undirected graphs extends easily to
directed ones). Every graph in G2,2 is strongly connected. Every graph in G4 is
Und(G) for some G ∈ G2,2.

Subgraphs

5



We write G ⊆ H (resp. G ⊆i H) if G is a subgraph (resp. an induced
subgraph) of H. If F ⊆ VG ∪ EG, then G − F is the subgraph of G obtained
by deleting the edges and vertices in F and the edges incident with a vertex in
F . We write it G − x if F = {x}. If X ⊆ VG, we denote by G[X] the graph
G− (VG −X): it is the induced subgraph of G with vertex set X.

Union and intersection

Let H1 and H2 be two subgraphs of a graph G. Their intersection H1 ∩H2
is the subgraph K of G (and of H1 and H2) such that VK = VH1

∩ VH2
and

EK = EH1
∩ EH2

. Their union H1 ∪ H2 is the subgraph L of G such that
VL = VH1

∪ VH2
and EL = EH1

∪ EH2
. We have H1 ⊆ L and H2 ⊆ L. Two

graphs H1 and H2 are disjoint if VH1
∩ VH2

= ∅ and EH1
∩EH2

= ∅.

Graph gluings

Let G = H1∪H2 with EH1
∩EH2

= ∅.We writeG = H1//uH2 if VH1
∩VH2

=
{u}. If neither H1 nor H2 is reduced to u, we say that u is a separating vertex

of G. Similarly, we write G = H1//u,vH2 if G = H1 ∪ H2, EH1
∩ EH2

= ∅,
VH1

∩ VH2
= {u, v} and u 	= v. If H1 and H2 are connected and have at least 3

vertices, we say that {u, v} is a separating pair. In both cases, we say that G is
a gluing of H1 and H2.

Let G be the union of pairwise edge disjoint graphs H1,...,Hk, k ≥ 3. We
write G =

�
u1,...,uk(H1, ...,Hk) if:

VHi
∩ VHi+1

= {ui+1} for each i = 1, ..., k − 1,

VH1
∩ VHk

= {u1},

VHi
∩ VHj

= ∅ if | i− j |≥ 2 and {i, j} 	= {1, k}.

We will say in this case that G is a circular gluing of H1,...,Hk.

Connectivity

Following [Die], we say that a graph G is k-connected if |VG| ≥ k + 1 and
G−X is connected whenever X is a set of at most k− 1 vertices. A connected
graph with at least 3 vertices is 2-connected if and only if it is not of the form
H1//uH2 where H1 and H2 have at least 2 vertices. A graph with a loop may
be 2-connected and be of the form H1//uH2 where H1 is a loop on u. A 2-
connected graph with at least 4 vertices is 3-connected if and only if it has no
separating pair. A graph G is k-edge connected if G− F is connected for every
set F of at most k − 1 edges.

A graph is strongly connected if it is directed and every two vertices belong
to a closed walk. The corresponding undirected graphs are the 2-edge connected
graphs, equivalently, the connected graphs without bridges (by classical results
due to Robbins and Menger; see [BanGut], Theorem 1.6.2 and [Die], Theorem
3.3.6; a bridge in G is an edge e such that G − e has one more connected
component than G). We denote respectively by SC and 2EC the classes of
strongly connected graphs and of undirected 2-edge connected graphs having
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at least one edge. The graphs with one vertex and at least one loop belong to
these classes.

The tree of 2-connected components of a connected graph

The 2-connected components of a loop-free graph, i.e., its maximal 2-connec-
ted subgraphs form a tree whose nodes are these components and the separating
vertices.

A cactus is a loop-free connected graph whose 2-connected components are
cycles if the graph is undirected, and circuits if it is directed. (Some authors
allow a cactus to have bridges, but we do not). A graph reduced to one vertex
is a cactus, and a cactus with two vertices consists of two parallel edges. A
loop-free directed graph G is a cactus if and only if, for any two distinct vertices
x and y, there is a unique (directed) path from x to y. (Similarly, a loop-free
undirected graph is a tree if and only if any two distinct vertices are linked by a
unique path). The condition is clearly necessary. For proving the other direction,
observe that G is strongly connected, hence has an ear decomposition (Theorem
7.2.2 of [BanGut]). This means that G can be constructed from a circuit by
adding successively directed paths (new vertices and new edges) linking two
existing vertices, and circuits containing exactly one existing vertex. We use
an induction on the number of such addition steps. Each intermediate graph is
strongly connected and the last step cannot be the addition of a path from u to
v 	= u because there would exist two directed paths from u to v. Hence it is the
addition of a circuit to a graph G′. This graph satisfies also the condition that
there is a unique directed path from x to y for any two distinct vertices x and
y. Hence G′ is a cactus by induction and so is G.

Canonical decomposition of a 2-connected loop-free graph

We review the definition of a decomposition defined by Tutte [Tut]. As in
[Cou99] (and in [Die], Chap.12, Exercise 20), we define it in terms of tree de-
compositions. (A tree-decomposition of a graph G is a pair (T, f) where T is an
undirected tree and f is a mapping from NT the set of nodes of T , to P(VG)
satisfying the three well-known conditions). Let G be loop-free and 2-connected.
Let (T, f) be a tree-decomposition of this graph satisfying the following condi-
tions :

T1: NT = N2T ∪N3T where N2T is the set of nodes x such that |f(x)| = 2
and N3T is the set of those such that |f(x)| ≥ 3.

T2 : the nodes in N2T have degree at least 2; no two nodes, both in N2T or
both in N3T , are adjacent.

T3 : The boxes f(x) (for x ∈ NT ) are pairwise different and f(x) ⊂ f(y) if
x ∈ N2T is adjacent to y (thus y ∈ N3T ).

For every x ∈ N3T , we denote by B(x) the simple undirected graph with
vertex set f(x) such that u and v in f(x) are adjacent if and only if they are
adjacent in G or f(y) = {u, v} for some node y adjacent to x. Then, we require
the following additional conditions:

T4 : Each graph B(x) is 3-connected or is a cycle with at least 3 vertices.
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T5 : If x ∈ N2T has exactly two neighbours y and z (both in N3T by T2), if
u and v such that f(x) = {u, v} are not adjacent in G, then B(y) and B(z) are
not both cycles.

The graph G must have at least 3 vertices. No decomposition is needed for
graphs with one or two vertices. Note that B(x) is not always a subgraph of G
because edge directions are omitted and B(x) may have edges u− v such that
u and v are not adjacent in G. Such an edge of B(x) is called a virtual edge,
as it does not "come from" any edge of G. A theorem of [Tut] (Chap. IV, see
also [CunEdm]) establishes that every loop-free 2-connected graph has a unique
tree-decomposition (T, f) satisfying these conditions (up to isomorphism, i.e.,
up to the denotation of the nodes of T ). We call it the Tutte decomposition of
G. The graphs B(x) are called the 3-blocks of G. They are minors of Und(G).
The graphs B(x) that are cycles are the cycle-blocks. This decomposition can
be constructed in linear time ([HopTar2]).

Figure 4 shows a 4-regular graph with vertex set {a, b, ..., n} and Figure 5
shows its Tutte decomposition. The edges a−b and b−k in Figure 5 are virtual
edges, shown by dotted lines. The edges e − f and m − l are not virtual, but
they are shown by dotted lines in boxes C and G because the corresponding
edges of the graphs are located in boxes D and F. In Figure 5, each edge of
G is put in a unique box of the tree-decomposition; we represent it also with
dotted lines in the neighbour boxes. The cycle-blocks correspond (after fusion of
parallel edges) to the boxes B,C,F and G. The 3-connected blocks correspond
similarly to D and E. To make the figure simpler, the nodes of N2T of degree 2
are omitted (these nodes should be between C and D, E and F and F and G).

It is easy to transform a tree-decomposition satisfying Conditions T1-T4 into
one satisfying also T5: if x ∈ N2T has exactly two neighbours y and z such that
B(y) and B(z) are cycles and the two vertices in f(x) are not adjacent in G,
then one can fuse x, y and z into a single node and merge B(y) and B(z) into
a single cycle. This transformation preserves the validity of T1-T4 and can be
repeated until T5 holds.

Let (T, f) be a tree decomposition of a graphG, and x, y be adjacent nodes of
T . We denote by T (x; y) the subtree of T −x that contains y, and by V (x; y) ⊆
VG the union of the sets f(z) such that z is a node of T (x; y). Let us now
assume that (T, f) is the Tutte decomposition of G. For each x ∈ N3T such that
B(x) is a k-cycle, we get an expression of G of the form

�
u1,...,uk(H1, ...,Hk).

In this expression, Hi = G[V (x; y)] where y is the neighbour of x such that
f(y) = {ui, ui+1} (is {u1, uk} if i = k). The graph Hi is connected and, unless
it is a single edge, its vertices ui and ui+1 have degree at least 2. Similarily,
for each x ∈ N2T , we get an expression of G of the form H1//u1,u2H2//u1,u2 ...
//u1,u2Hk, where k ≥ 2 is the degree of x and f(x) = {u1, u2}. The graphs Hi

are connected but ui and ui+1 may have degree 1 in Hi.
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Figure 4: A 4-regular graph G

Figure 5: The Tutte decomposition of G of Figure 5.
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Sizes

As we will state algorithmic results, we must specify the size measures of
inputs and outputs : graphs and their decompositions.

We define the size of a graph G as �G� = |VG| + |EG|, i.e., as the total
number of vertices and edges. For graphs of bounded degree and for trees, we
take only the number of vertices or nodes, which is possible without modifying
the notion of a linear-time algorithm since, for such graphs, �G� = O(|VG|).

We define the size of a tree-decomposition (T, f) of a graph G as:

�(T, f)� = |NT |+
�

x∈NT

|f(x)|+ |EG|

where. Since we allow graphs with parallel edges, the number of edges is
not bounded in terms of the sum of sizes of boxes. Clearly, �G� ≤ �(T, f)� .
Every tree-decomposition can be transformed into one of the same graph having
the same width and whose tree has at most |VG| nodes (see, e.g., Chapter 2 of
[CouEng]). For such a decomposition of width k, we have :

�(T, f)� ≤ �G�+ (k + 1). |VG| = O(�G�) for fixed k.

The case of square grids shows that we do not have �(T, f)� = O(�G�) for
graphs of unbounded tree-width.

For the Tutte decomposition (T, f) of a 2-connected loop-free graph G, we
define:

�(T, f)�1 = �(T, f)�+
�

x∈N3T

��EB(x)
��

which is larger than �(T, f)� because we also count the edges of the blocks
B(x). Some algorithms use the virtual edges, hence we count them in all boxes
where they occur. So, we have �G� ≤ �(T, f)� ≤ �(T, f)�1. We will prove that
:

�(T, f)�1 ≤ 2. �G�+ 9. |VG| = O(�G�),

so that �(T, f)�1 can be replaced by �G� in upper-bounds to computa-
tion times of algorithms. (This is so because Tutte decompositions are tree-
decompositions with strong constraints.)

It is clear that |N2T | < |N3T | ≤ |VG| . Hence, |NT | < 2. |VG| .
A vertex of G is shared if it belongs to several boxes f(x), which implies

that it belongs to at least one box f(x) with x ∈ N2T . An edge e of a graph
B(x) is shared if its two ends u and v belong to several boxes f(x), and this
implies that {u, v} = f(x) for a unique node x ∈ N2T . We let f ′(x) be the set
of shared vertices of f(x) and E′B(x) be the set of shared edges of B(x).

We must bound the sum
�

x∈NT

|f(x)| +
�

x∈N3T

��EB(x)
��. The total number of

the vertices and edges of the sets f(x) and B(x) that are not shared is
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�

x∈NT

|f(x)− f ′(x)|+
�

x∈N3T

���EB(x) −E′B(x)
���,

clearly at most �G�. Every shared vertex that belongs to f(x) for x ∈ N3T
is the end of a shared edge of the corresponding graph B(x). Hence,

�

x∈NT

|f ′(x)| =
�

x∈N2T

|f ′(x)|+
�

x∈N3T

|f ′(x)|

≤ 2. |N2T |+ 2.
�

x∈N3T

���E′B(x)
��� .

Finally,
�

x∈N3T

���E′B(x)
��� is the number of pairs (e, x) such that e is a shared

edge that belongs to EB(x). But these pairs are in bijection with the edges of

T , which gives
�

x∈N3T

���E′B(x)
��� =

���E′B(x)
���− 1. So we get:

�(T, f)�1 = |NT |+ |EG|+
�

x∈NT

|f(x)|+
�

x∈N3T

��EB(x)
��

≤ 2. |VG|+ |EG|+ �G�+ 2. |N2T |+ 2.(|NT | − 1) + |NT | − 1.
≤ 2. �G�+ |VG|+ 2. |VG|+ 4. |VG|+ 2. |VG| = 2. �G�+ 9. |VG| .

Isomorphisms

An isomorphism of G = (VG, EG, vertG) to G′ = (VG′ , EG′ , vertG′) is a bijec-
tion h : VG∪EG → VG′ ∪EG′ that maps vertices to vertices, edges to edges and
preserves incidences, that is : vertG′(h(e)) = (h(x), h(y)) (resp. {h(x), h(y)}) if
vertG(e) = (x, y) (resp. vertG(e) = {x, y}). It is a v-isomorphism if VG = VG′ .
In this case, one can consider EG and EG′ as different set of names used to des-
ignate the edges of a graph with vertex set VG. If G′ = G, we get the notions
of automorphism and of v-automorphism. The graph of Figure 2 has several v-
automorphisms. We denote by G ∼= G′ the existence of an isomorphism between
G and G′.

An abstract graph is the equivalence class, denoted by [G]iso, of a graph G. In
this article, unless otherwise specified, graphs (and related relational structures)
will be concrete, i.e., will be defined with precise sets of vertices and edges, and
not up to isomorphism. (See [CouEng] for more details on abstract graphs and
relational structures).

An appendix reviews the different notions of isomorphism and equivalence
relations used in this article.

2.2 Maps

Maps are combinatorial objects that represent embeddings of connected graphs
in oriented surfaces, up to orientation preserving homeomorphisms. We review
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the classical definitions (cf. [MT], Chapter 3 for detailed definitions), and we
introduce some new notions.

Embeddings

If E is an embedding of a graph G in a surface, we denote by E(u) the point
representing a vertex u, by E(e) the curve segment representing an edge e, by
E(W ) the union of the curve segments representing the edges of a walk W .

Darts.
To formalize planar embeddings, it is useful to split each directed edge e into

two darts e−, e+ with incidences defined by a function γ such that γ(e−) = x
and γ( e+) = y if e : x→ y. We denote by D+G the set of darts e+, by D−G the
set of darts e− and by DG the set D+G∪D

−
G. It is clear that D+G ⊆ D

+
G′ and D−G

⊆ D−G′ if G ⊆ G′.For an undirected graph H, we fix an arbitrary orientation
of its edges and we specify from it the darts e− and e+. (The "half-edges"
designated by e+ and e− depend thus on the chosen orientation.)

Maps

A map is a pair M = (G, ρ) consisting of a connected and directed graph G
and a bijection ρ : DG → DG such that, for every d inDG, the set {ρi(d) | i ≥ 0}
is the set of darts incident with γ(d). This bijection is called the rotation of M .

From an embedding E of a connected and directed graph G in an orientable
surface, we get a map (G, ρ) by letting ρ(d) be the dart following d in the circular
order, "around the vertex γ(d)" (and according to the orientation of the surface)
of the darts incident with γ(d). For any two embeddings of G in the sphere with
same associated map, there is an orientation preserving homeomorphism of the
sphere that maps E to E ′. (See [MT], Theorem 3.2.4 for the proof, and a more
general statement concerning orientable surfaces.).

If E is an embedding of a connected and directed graph G in the plane with
map M = (G, ρ) and E ′ is the embedding of G that is the image of E by a
symmetry relative to a straight line, then the map of E ′ is the symmetric map

of M , defined as M−1 = (G, ρ−1).
We say that two maps M and M ′ are equivalent if M ′ =M or M ′ =M−1.

They represent homeomorphic embeddings of a same graph.
We denote respectively by M, MSC and M2,2 the classes of all maps, of

those of graphs in SC and of graphs in G2,2.

Submaps

A map M = (G, ρ) is a submap of M ′ = (G′, ρ′) (denoted by M ⊆ M ′) if
G ⊆ G′ and, for every dart d of G, ρ(d) = ρ′i(d) where i is the smallest positive
integer such that ρ′i(d) ∈ DM . By using ⊆i instead of ⊆, we get the notion
of an induced submap. Since the union and the intersection of two graphs are
defined in terms of subgraphs, we get the corresponding notions for maps.

Undirected maps

12



Figure 6: Three planar maps M,N,P ∈M2,2

A map of an undirected graph H is a map (G, ρ) such that H = Und(G).
Two maps M = (G, ρ) and M ′ = (G′, ρ′) of an undirected graph H are Und-
equivalent, if there exists a bijection h : DG → DG′ such that {h(e+), h(e−)} =
{e+, e−} for every e ∈ EG and ρ′(h(d)) = h(ρ(d)) for every d ∈ DG. Formally,
a map of an undirected connected graph is an equivalence class of maps with
respect to Und-equivalence. We call it an undirected map.

We denote respectively by UM, M2EC and M4 the class of all undirected
maps, of those of graphs in 2EC and of graphs in G4. Since every graph H in
G4 (resp. in 2EC) is Und(G) for some graph G in G2,2 (resp. in SC), the maps
of M4 (resp. M2EC) are equivalence classes of maps in M2,2 (resp. in MSC).

We denote by P2EC and PG4 the classes of planar undirected graphs in 2EC
and G4 respectively, and by PM2EC and PM4 the corresponding classes of
undirected maps.

3 Atomic decompositions of graphs and maps

We define a decomposition of strongly connected graphs and prove that it is
canonical. Then we extend the definition to maps either planar or not.

3.1 Circular composition of directed graphs and maps

We define an operation that composes graphs and maps. We will actually use
it mainly to decompose these objects. We denote respectively by D and U the
classes of directed and undirected graphs.

Definition 1 : Circular composition.

We let G1, ..., Gk be paiwise disjoint graphs in D and ei be an edge of Gi
for each i. We define ⊞e1,...,ek(G1, ..., Gk) as the graph H such that VH =
VG1

∪ ...∪VGk
, EH = EG1

∪ ...∪EGk
and the incidence function vertH is defined

as follows (α and β are defined in Section 2.1):

13



Figure 7: G (to the right) is the circular composition of G1, ..., G4.

vertH(ei) = (α(ei), β(ei+1)) if 1≤ i ≤ k − 1,

vertH(ek) = (α(ek), β(e1)),

vertH(e) = vertGi
(e) if e ∈ EGi

− {ei }, 1 ≤ i ≤ k.

We call H a circular composition of G1, ..., Gk. If k = 2, we will also write
G1 ⊞e1,e2 G2 instead of ⊞e1,e2(G1, G2).

Here are examples. We denote respectively by G,H,K the graphs (of the
maps M,N,P ) of Figure 6. We have K = G ⊞b,c H. The left part of Figure
7 shows graphs G1, ..., G4 with distinguished edges e1, ..., e4 (note that e2 is a
loop). The right part part shows ⊞e1,...,e4(G1, G2,G3, G4).

In this article, we will only apply this operation to strongly connected graphs,
leaving for future work its application to other types of graphs. It is clear that
H is strongly connected if G1, ...,Gk are so. We now consider how circular
composition acts on certain subclasses of SC and on related classes of maps.

We recall that G2,2 ⊆ SC. If G1, ..., Gk are connected and (2,2)-regular (i.e.,
if they belong to G2,2), then so is their circular composition. For pairwise disjoint
maps M1, ...,Mk, we define a map N = ⊞e1,...,ek(M1, ...,Mk) with underlying
graph H = ⊞e1,...,ek(Graph(M1), ...,Graph(Mk)) and rotation ρN defined as
follows:

ρN(e
+
i ) = ρMi+1

(e+i+1) if 1 ≤ i ≤ k − 1,

ρN(e
+
k ) = ρM1

(e+1 ),

ρN(d) = e
+
i−1 if 1 ≤ i ≤ k, d ∈ DMi

− {e+i } and ρMi
(d) = e+i ,

ρN(d) = e
+
k if d ∈ DM1

− {e+1 } and ρM1
(d) = e+1 ,

ρN(d) = ρMi
(d) if 1 ≤ i ≤ k , d ∈ DGi

and the above cases do not
apply.
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Figure 8: Composition of planar maps

It is clear that N is a map. If M1, ...,Mk belong to M2,2, then N belongs to
the same class. For the maps of Figure 6, we have the equality P =M ⊞b,c N .
Figure 7 shows the circular composition of four planar maps represented in the
plane, with distinguished edges drawn "on the outer face". Figure 8 shows the
composition G1⊞e1,e2G2 of two planar maps G1 and G2 , represented similarly,
but with e2 not on the outer face.

In all these cases, circular composition is a partial operation because of the
disjointness conditions on the arguments. It can be made total in the usual way:
if graphs or maps are not disjoint, one replaces them by isomorphic copies that
meet the requested disjointness conditions. So, the result is well-defined only up
to isomorphism, hence on abstract graphs and maps, i.e., on isomorphism classes
of such objects. (See Chapter 2 of [CouEng] for more details on abstract graphs
and related notions.) In the present article, we will use circular composition
to decompose given maps and graphs. That is, for given H, we will try to find
graphs (or maps) G1, ..., Gk such that H = ⊞e1,...,ek(G1, ..., Gk). Hence, we will
not need to take isomorphic copies.

What about undirected graphs?

We could define G = H⊞e,fK ifH andK are undirected as Und(H′
⊞e,fK

′)
where H ′ and K′ are orientations of H and K. However, G is not well-defined
because we get (in general) two different graphs. In order to get a unique graph,
we could use an operation ⊞e,u,f,w where u is the end of e in H that becomes in
G an end of f, and w is the end of f in K that becomes an end of e. This is too
complicated and we prefer to define only circular compositions of directed graphs
(that can be orientations of undirected graphs). However, the two graphs of the
initial definition of H⊞e,fK have the same cycle matroid. Circular composition
is actually well-defined on matroids. See Section 4 on this point.
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Proposition 2 :
(1) Let M be a map (resp. a map in M2,2) such that

Graph(M) = ⊞e1,...,ek(H1, ...,Hk)

for some graphs H1, ...,Hk. There are unique rotations ρ1, ..., ρk such that

M = ⊞e1,...,ek(N1, ..., Nk)

where, for each i, Ni = (Hi, ρi) is a map (resp. is in M2,2 ).
(2) If G = ⊞e1,...,ek(H1, ...,Hk) where G,H1, ...,Hk are graphs or maps, then

G is planar if and only if H1, ...,Hk are.

Proof : Assertion (1) are easy to prove from the definitions.
(2) For proving the "if" direction, we observe that a planar embedding of the

graph or map⊞e1,...,ek(H1, ...,Hk) can be built by combining planar embeddings
of H1, ...,Hk such that the edges e1, ..., ek are on the outer face.

For the "only if" direction, we observe that if G = ⊞e1,...,ek(H1, ...,Hk) then
each Hi can be obtained from G by a sequence of deletions of edges and of
isolated vertices and of fusions of consecutive edges. These operations preserve
planarity. (See [CouDus] for the general notion of a map minor, of which we
use here a particular case). The result follows. �

We now state some equational properties of circular composition that are
valid for directed graphs and maps.

Proposition 3 : Let G1, ..., Gk be pairwise disjoint directed graphs or maps,
and ei ∈ EGi

for each i. We have the following equalities (in each case, both
handsides are defined):

(1) G1 ⊞e1,e2 G2 = G2 ⊞e2,e1 G1,

(2) (G1⊞e1,e2 G2)⊞f,e3 G3 = G1⊞e1,e2 (G2⊞f,e3 G3) if f is an edge
of G2, f 	= e2,

(3) (G1 ⊞e1,e2 G2)⊞e2,e3 G3 = (G3 ⊞e3,e1 G1)⊞e1,e2 G2.

Let H = ⊞e1,...,ek(G1, ..., Gk). Then, we have :

(4) H = (...(G1 ⊞e1,e2 G2)⊞e2,e3 G3)...⊞ek−1,ek Gk),

Proof : Straightforward from Definition 1.�

Property (3) is called: circular associativity. From these equalities, we get
the following ones:

Corollary 4 : With the same hypotheses as in Proposition 3:
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(1) G1 ⊞e1,e2 (G2 ⊞e2,e3 G3) = G3 ⊞e3,e1 (G1 ⊞e1,e2 G2),

(2) H = ⊞ei,...,ek,e1,...,ei−1(Gi, ...,Gk,G1, ..., Gi−1) for 2 ≤ i ≤ k,

(3) H = G1 ⊞e1,ek (⊞e2,...,ek(G2, ..., Gk)),

(4) H = ⊞e1,...,ei(G1, ..., Gi)⊞ei,ek (⊞ei+1,...,ek(Gi+1, ...,Gk))

for 2 ≤ i ≤ k.

To illustrate Property (4) consider the graph H at the right of Figure 7: we
have H = ⊞e1,...,e4(G1, G2, G3, G4) = (G1 ⊞e1,e2 G2)⊞e2,e4 (G3 ⊞e3,e4 G4).

From now on, we will only consider strongly connected graphs, their maps,
and the associated undirected graphs and maps.

Terms defining graphs and maps.

Definition 5: Atoms and terms.

An atom is a graph G in SC that cannot be decomposed as G = G1⊞e1,e2G2.
An atomic map is a map whose underlying graph is an atom. By Proposition
2, it cannot be expressed as a composition (by ⊞) of two maps. The graph
Graph(M) = Graph(N) where M,N are at the left of Figure 6 and the graph
H to the left of Figure 12 (cf. Section 3.2) are atoms.

Let C be a set of pairwise disjoint graphs or maps. A term over C is a term
t built with cicular composition and elements of C used as constants, each of
them having at most one occurrence in the term. It defines a graph or a map,
depending on the types of the elements of C. We denote this object by val(t):
it is the value of t. We say that t uses C if each element of C has one (and only
one) occurrence in t.

Every strongly connected graph or map G can be defined by a term over
atoms (of the corresponding type): if it is defined by a term t using G1, ..., Gk
such that Gi is not an atom, then Gi = H ⊞h,k K and Gi can be replaced in t
by H ⊞h,kK. By starting from the trivial term reduced to G, and by repeating
this splitting step at most |VG| times, we obtain a term over atoms that defines
G. We get in this way a polynomial-time algorithm for constructing t from G,
but we will give below a linear-time one.

Proposition 3 shows that different terms (even over atoms) can have the
same value. We will say that two such terms are equivalent. For example, the
following two terms define the graph shown in Figure 9:

t = ⊞e1,e2,e3(G1, [(G2 ⊞h2,h7 G7)⊞f2,f4 (⊞g4,g5,g6(G4, G5, G6)], G3))

t′ = G7 ⊞h7,h2 [⊞e1,e2,e3(G1, G2, G3)⊞f2,f4 (⊞g4,g5,g6(G4, G5, G6))].
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Figure 9: The graph definied by term t.

We will first prove that every graph G in SC can be expressed by a term
using a unique set of atoms. Then, we will define a canonical representation of
G, not by a term, but by a cactus (cf. Section 2.1), whose vertices are labelled by
the atoms of G. These results extend to maps by Definition 1 and Proposition
2.

3.2 Atomic sets of vertices and atoms

We will prove that every two terms over atoms that define the same strongly
connected graph G use the same set of atoms, and we will characterize these
atoms directly from G, independently of any decomposition process.

Definition 6: Splits, 2-cuts and atomic skeletons.

(a) Let G be any graph, directed or not. A set of vertices X is a split if
there are exactly two edges linking this set and its complement. (Hence VG−X
is also a split.) The two edges linking X and VG − X form a 2-cut, and are
called 2-cut edges. Two vertices x and y are separated by a split X if x ∈ X
and y /∈ X or vice versa. They are equivalent, which we denote by x ∼G y, if
no split separates them. This is an equivalence relation. (For transitivity, let
x ∼G y and y ∼G z. If a split X contains x and not z, then either y ∈ X and
y ≁G z or y /∈ X and x ≁G y. Both cases are impossible, hence x ∼G z.) Its
equivalence classes form the atomic partition of VG, denoted by A(G) and are
the atomic sets of vertices. It is clear that an atomic set is the intersection of
all splits that contain it.
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More generally, a splitX separates two nonempty sets U and V if U ⊆ X and
V ⊆ VG−X or vice versa. (The splits defined here are not those of Cunnigham
[Cun]; in Section 4, we will compare the different notions.)

(b) We now use these notions for G ∈ SC. Let X be a split. One of the two
associated edges is directed from X to VG −X and the other from to VG −X
to X. Furthermore the graphs G[X] and G[VG−X] are connected. (They may
be reduced to one vertex possibly with loops).

It is clear that if G = H ⊞e,f K, then VH is a split with 2-cut {e, f} such
that e is directed from VH to VK = VG− VH and f from VK to VH = VG− VK .
Conversely, if X is a split of G, we define G{X} as the graph G[X] augmented
with the edge e whose head is redefined as that of f . We call e the handle of

G{X}. It is clear that G = G{X}⊞e,f G{VG−X}. Hence, the splits of a graph
G are in bijection with its expressions of the form H ⊞e,f K.

Note also that G ∈ SC is an atom if and only if it has no split. Hence, it is
an atom if and only if it has no 2-cut, if and only if it is 3-edge connected (by a
theorem by Menger, see [Die]). We will investigate in more detail the structure
of atoms in Section 3.5.2.

(c) Let G ∈ SC, let EcutG be the set of its 2-cut edges, i.e., of those whose
two ends are not equivalent.

The atomic skeleton of G is the graph Sk(G) = (A(G), EcutG , vertSk(G))
whose vertices are the atomic sets of vertices, whose edges are the 2-cut edges
and whose incidence function is defined as follows, for every e in EcutG :

vertSk(G)(e) = (X,Y ) if and only if X and Y are the (distinct)
atomic sets containg respectively the vertices u and v such that
vertG(e) = (u, v).

If G′ is any other strongly connected orientation of Und(G), then A(G) =
A(G′) because the definition of a split does not depend on the orientation of the
considered graph, and so ∼G=∼G′ . It follows that Und(Sk(G)) = Und(Sk(G′)).
Hence, the atomic skeleton of a graph H ∈ 2EC can be defined as Sk(H) =
Und(Sk(G)) where G is any strongly connected orientation of H. �

The main technical result on which is based the notion of atomic decompo-
sition is the following one:

Theorem 7: The atomic skeleton of a strongly connected or 2-edge con-
nected graph is a cactus.

Proof: We first consider the case of a graph G in SC. We let X and Y be
two distinct atomic sets of vertices.

First, we prove that there is a path in Sk(G) from X to Y . Let u ∈ X and
v ∈ Y . There is in G a path from u to v. First we contract the edges of this
path whose two ends are in a same atomic set. Then we replace every vertex by
the atomic set containing it. We get a walk in Sk(G) from X to Y . By deleting
from it some closed subwalks, we get a path from X to Y .
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If Sk(G) is not a cactus, there are distinct atomic sets X and Y with
several paths from X to Y . Let X and Y be two such sets with a path
P = (Z0, e1, Z1, e2, ..., ep, Zp) such that Z0 = X, Zp = Y (we may have p = 1)
and another path P ′ = (W0, f1,W1, f2, ..., fq,Wq) in Sk(G) such that W0 = X
and Wq = Y . Let us furthermore assume that P is of minimal length among
all such paths, for all atomic sets X and Y . There is a split S such that
α(e1) ∈ S and β(ep) ∈ VG − S. Each atom Z0, Z1, ..., Zp,W0, ...,Wq is con-
tained either in S or in VG − S. Hence some edge ei goes from S to VG − S.
Similarly, some edge fj goes from S to VG − S. Hence we must have ei = fj
because S is a split, hence there are no two edges from S to VG − S. Hence
we have Zi−1 = Wj−1 and Zi = Wj .We cannot have p = 1 because then
P = P ′. If i = 1, then P is not of minimal length because it can be re-
placed by (Z1, e2, ..., ep, Zp). Similarly i 	= p, hence 1 < i < p. We must have
(Z0, e1, ..., ei−1, Zi−1) = (W0, f1, ..., fj−1,Wj−1) otherwise P is not of minimal
length. Similarly, (Zi, ei+1, ..., ep, Zp) = (Wj , fj+1, ..., fq,Wq). But then, P = P ′.
We get again a contradiction, which shows that Sk(G) is a cactus.

If H ∈ 2EC, then Sk(H) defined as Und(Sk(G)) where G is a (any) strongly
connected orientation of H, is also a cactus.�

A graph isomorphic to Sk(G) is obtained by fusing any two ∼G-equivalent
vertices and by removing all loops (those resulting from the fusions and the ones
of G).

In order to relate Sk(H⊞e,fK) to Sk(H) and Sk(K), we need some lemmas,
and first an observation. If e, f are two distinct edges of G ∈ SC that are not
loops, we define W (e, f) as the set of vertices on the walks from β(e) to α(f)
that contain neither e nor f . Since e and f belong to a closed walk, W (e, f) is
not empty and it contains β(e) and α(f). It is clear that VG =W (e, f)∪W (f, e),
and that {e, f} is a 2-cut if and only if W (e, f) ∩W (f, e) = ∅.

Lemma 8 : Let G ∈ SC be of the form H ⊞e,f K. A set X is a split of H if
and only if it is nonempty, not VH and is Y ∩ VH for some split Y of G.

Proof : Let X is a split of H. We have H = H1 ⊞h1,h2 H2 where X = VH1
.

Hence G = (H1 ⊞h1,h2 H2)⊞e,f K. There are four cases.
If e ∈ EH2

− {h2}, then, by Proposition 3(2), G = H1 ⊞h1,h2 (H2 ⊞e,f K)
and X is a split of G, the conclusion holds.

If e = h2 ∈ EH2
, then, by Proposition 3(3), G = (K ⊞f,h1 H1)⊞h1,e H2 and

X = VH ∩(VG−VH2
) where VG−VH2

is a split of G, hence the conclusion holds.
If e ∈ EH1

− {h1}, then, by Proposition 3(1,2), G = H2 ⊞h2,h1 (H1 ⊞e,f K)
and X = VH ∩ (VG − VH2

) where VG − VH2
is a split of G and the conclusion

holds.
If e = h1 ∈ EH1

, then, by Proposition 3(1,3), G = (K ⊞f,h2 H2) ⊞h2,e H1
and X is a split of G, the conclusion holds.
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For proving the other direction, we let G = H ⊞e,f K and Y be a split of G
such that X = Y ∩VH is not empty and properly included in VH . We let {g, g′}
be the 2-cut corresponding to Y. We distinguish several cases.

Case 1 : {g, g′} ∩ {e, f} = ∅ and g ∈ EH , g′ ∈ EK .
Every closed walk containing e and f must contain g and g′, and vice versa.

The setsW (f, g) andW (g, e) form a partition ofW (f, e) = VH , the setsW (e, g′)
and V (g′, f) form a partition of W (e, f) = VK . The set Y is either W (g′, f) ∪
W (f, g) or W (g, e)∪W (e, g′). Then X is either W (f, g) or W (g, e) and, in both
cases, it is a split of H.

Case 2 : {g, g′}∩{e, f} = ∅ and g, g′ ∈ EH . There is a closed walk containing
e and f and also g and g′. Without loss of generality, we assume that we have
f, g, g′ and e in this order on this walk. Then, Y is either W (g, g′) (included in
VH) or W (g′, g). In the first case, X = Y and is a split of H. In the second one,
X = Y ∩ VH =W (g

′, g) ∩ VH is also a split of H.
Case 3 : g′ = e, g 	= f . We must have g ∈ EH otherwise X = VH , and then,

X is either W (f, g) or W (g, e). In both cases, it is a split of H.
We cannot have {g, g′} = {e, f} otherwise X is VH or the empty set. All

cases have been considered up to exchanging g and g and/or H and K. �

Corollary 9 : Let G be strongly connected.
(1) If G = H ⊞e,f K, then A(G) = A(H) ∪A(K).
(2) Let G be defined by a term t, and let H occur in t as a constant. Then

H is an atom if and only if VH is atomic in G.
(3) If G is defined by a term t over atoms, then its atomic partition consists

of the vertex sets of the atoms occurring in t.

Proof: (1) An atomic set of vertices of G must be included in VH or in
VK . By Lemma 8, a subset of VH is atomic in H if and only if it is atomic
in G, and this gives the desired equality. (Hence, we have the equality ∼H=
∼G ∩(VH × VH)).

(2) By induction on the structure of t with help of (1).
(3) Immediate consequence of (2).�

The vertex sets of the atoms used in every two equivalent terms over atoms
that define a graph G are the same as they form the atomic partition of G.

Algorithm 10 : Constructing the atomic skeleton from a term over atoms.
Given a term t over atoms that defines a graph G in SC, we want to obtain

Sk(G). This construction can be done by induction on the structure of t. There
is nothing to do if the term is a constant denoting an atom.

For the inductive step, we need only construct the atomic skeleton of G =
H⊞e,fK from those ofH andK. Hence, given Sk(H) = (A(H),EcutH , vertSk(H))
and Sk(K) = (A(K), EcutK , vertSk(K)) we will construct Sk(G) = (A(G), EcutG ,
vertSk(G)).
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Figure 10: Case 2 of the proof of Algorithm 10

We know by Corollary 9 that A(G) = A(H)∪A(K). For defining EcutG and
vertSk(G), we distinguish three cases.

Case 1 : e /∈ EcutH , f /∈ EcutK .
Then e has its ends in someX ∈ A(H) and f has its ends in some Y ∈ A(K).

So we have EcutG = Ecut
H ∪EcutK ∪ {e, f} and vertSk(G) is defined by:

vertSk(G)(g) = vertSk(H)(g) if g ∈ EcutH ,

vertSk(G)(g) = vertSk(K)(g) if g ∈ EcutK ,

vertSk(G)(e) = (X,Y ),

vertSk(G)(f) = (Y,X).

Case 2 : e ∈ EcutH , f /∈ EcutK .
We let Y be as above and e link X to Z such that X,Z ∈ A(H). Then we

have EcutG = EcutH ∪Ecut
K ∪ {f} and vertSk(G) is defined by:

vertSk(G)(g) = vertSk(H)(g) if g ∈ EcutH − {e}

vertSk(G)(g) = vertSk(K)(g) if g ∈ EcutK ,

vertSk(G)(e) = (X,Y ),

vertSk(G)(f) = (Y,Z).

This case is illustrated in Figure 10. (The left part shows fragments of Sk(H)
and Sk(K). The right part shows how they are combined to yield Sk(G)). The
case where e /∈ EcutH , f ∈ EcutK is similar.

Case 3 : e ∈ EcutH , f ∈ EcutK .
We let e link X to Z as in the previous case and e link Y to U such that

Y,U ∈ A(K). Then we have EcutG = EcutH ∪EcutK and vertSk(G) is defined by:
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Figure 11: Case 3 of Algorithm 10.

vertSk(G)(y) = vertSk(H)(y) if y ∈ EcutH − {e},

vertSk(G)(y) = vertSk(K)(y) if y ∈ EcutK − {f},

vertSk(G)(e) = (X,U),

vertSk(G)(f) = (Y,Z).

This case is illustrated in Figure 11.

The construction of Sk(H ⊞e,f K) depends only on Sk(H), Sk(K) and the
knowledge of the atomic sets of H and K where are the ends of e and f . Hence,
we can write:

Sk(H ⊞e,f K) = Sk(H)⊞e,f Sk(K)

where Sk(H) and Sk(K) are the concrete graphs defined above and not the
corresponding abstract graphs (their isomorphism classes). We assume that e
and f are given with their ends. The correctness of the construction is clear
from Corollary 9(1) and the definitions. �

Note that the construction of Sk(H ⊞e,f K) is defined for H,K in SC, not
in 2EC.

The knowledge of Sk(G) brings some structural information about G but
does not allow to reconstruct it. We will equip Sk(G) with additional informa-
tion, and define the atomic decomposition of G, from which we will be able to
build terms over atoms that define G.

Definition 11: Equivalent edges.

Let G ∈ SC∪2EC. Two edges are equivalent if they belong to the same closed
walks (closed and directed if G ∈ SC). This relation is an equivalence denoted
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by ≈G. By a class of edges of G, we mean an equivalence class of ≈G . A class
is nontrivial if it is not singleton. Each loop forms a singleton class of edges.

Proposition 12: Let G ∈ SC∪2EC. Two distinct edges are equivalent if
and only if they form a 2-cut if and only if they belong to the same 2-connected
component of the cactus Sk(G).

Proof: Let G ∈ SC and e and f be distinct edges. If any of them is a loop,
then they do not form a 2-cut, they are not equivalent and each of them is a
2-connected component of Sk(G). We now exclude this case.

If they form a 2-cut, every closed walk going through e must go through f ,
hence e ≈G f . Conversely, assume that e and f are equivalent. The setsW (e, f)
and W (f, e) are disjoint, otherwise one can build a closed walk going through e
that avoids f . Hence, e and f form a 2-cut (with split W (e, f)).

If e and f belong to a 2-connected component of Sk(G), then they form a
2-cut. Conversely, let e and f form a 2-cut. There is a path in G from β(e) to
α(e) that goes through f and yields a path in Sk(G) (cf. the proof of Theorem
7) from the atomic set containing β(e) to the one containg α(e), hence e and f
belong to a 2-connected component of Sk(G).

The same equivalences hold for Und(G) in 2EC. �

The set EcutG of 2-cut edges of G is thus the union of the nontrivial classes
of ≈G.

Lemma 13: Let G ∈ SC be of the form H ⊞e,f K and g, g′ ∈ EG. We have
g ≈G g′ if and only if:

g ≈H g
′ or g ≈K g

′ or

g ≈H e and g′ ≈K f or vice versa (by exchanging g and g′).

Proof: Assume that g, g′ ∈ EH and g ≈H g
′. Consider a closed walk W in

G containing g. If it does not contain e, then it is a closed walk in H, hence it
must contain g′. IfW contains e, it contains a subwalk of the form (e,A, f) with
A ⊆ EK . If one deletes (A, f) from W , one gets a closed walk W ′ of H (recall
that the head of e in H is that of f in G). Hence it must contain g′, and so
does W . Hence, g ≈G g

′. All other parts of the proof use similar arguments.�

Definition 14 : The atoms of a strongly connected graph

Let G ∈ SC and X ∈ A(G). If X = VG then G is an atom and is its unique
atom. Otherwise, we make G[X] into a graph G{X} ∈ SC by adding new edges.
Let F be a nontrivial class containing an edge with an end in X. There exists
one because otherwise G is not connected. By Proposition 12, F has exactly
two edges, e and f , such that α(e) /∈ X, β(e) ∈ X, α(f) ∈ X and β(f) /∈ X.
We make f into a new edge of G{X} by changing its head into β(e). We call f
the F -handle of G{X}. We construct G{X} by adding to G[X] the F -handles
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Figure 12: An atom H (to the left) of a graph G.

for all such nontrivial classes F . It is clear that G{X} belongs to SC and is an
atom. We say that it is an atom of G. It is (2,2)-regular if G is.

We will denote by Atom(G) the set of atoms of G.

For an example consider Figure 7. Let us assume that the vertex sets VG1
, ...,

VG4
of the graph G are atomic. The corresponding atoms are shown to the left.

Another example is in Figure 12 which shows a graph G ∈ SC with atomic set
X = {x, y} such that G[X] has no edge, hence is not in SC. The corresponding
atom H = G{X} ∈ SC is the 4-bond shown to the left.

A vertex with at least one loop (resp. exactly two loops) is an atom of SC
(resp. of G2,2). As other atoms of SC, we have the k-bonds with one pair of
opposite edges and k ≥ 3 . The atoms of G2,2 that are bonds are the 4-bonds
with two pairs of opposite edges (see the left part of Figure 12).

Proposition 15 : Let G ∈ SC.
(1) If H is an atom of G and Y1, ...., Yk are the vertex sets of the connected

components of G− VH , then, each set Yi is a split and we have:

G = (..(H ⊞f1,e1 G{Y1})⊞f2,e2 G{Y2})...)⊞fk,ek G{Yk}

where f1, ..., fk are the handles of H and each ei is the unique handle of
G{Yi}.

(2) Conversely, if

G = (..(H ⊞f1,e1 G1)⊞f2,e2 G2)...)⊞fk,ek Gk,

if f1, ..., fk are edges of H and VH is atomic, then H is an atom with handles
f1, ..., fk.
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(3) If G = H ⊞e,f K then, the atoms of H are those of G having a vertex
set included in VH .

Proof : (1) This is a consequence of Theorem 7. The set VH is atomic and
each set Yi is a union of atomic sets. The edges of Sk(G) incident to VH form
a set {e1, ..., ek, f1, ..., fk} such that for each i, fi has its tail in VH , ei has its
head in VH , ei is equivalent to fi and is not equivalent to ej if j 	= i. They
can be numbered in such a way that ei and fi have their other ends in Yi. The
equality follows then from the definitions, and clearly, Y1, ...., Yk are splits (VH
is the intersection of their complements).

(2) Let G = (..(H⊞f1,e1G1)⊞f2,e2G2)...)⊞fk,ekGk where f1, ..., fk are edges
of H and VH be atomic. Each graph Gi is connected because G is connected
and for each i, ei and fi belong to a same closed walk. Let H ′ = G{VH}. We
have an expression of G following from (1) and it is easy to see that H = H ′.
Hence, H is an atom of G.

(3) A consequence of Corollary 8(1) and the previous properties.�

Note that, in Assertion (1), the vertex sets Y1, ...., Yk correspond to the
nontrivial classes having edges with an end in VH .

3.3 The atomic decomposition of a strongly connected

graph.

There are many terms over atoms that define a given graphG ∈ SC, and all these
terms use the same set of atoms. We now define a canonical structure, called
the atomic decomposition of G that expands Sk(G) by indicating the atom that
corresponds to each vertex of Sk(G). The graph G can be reconstructed from
it. Terms over atoms that define G can also be constructed from this structure.

Definition 16: Atomic decomposition.
(a) An atomic decomposition is a 4-tuple D = (V,E, vert , atom) such that:

(i) the triple (V,E, vert) is a directed cactus C,

(ii) for each u ∈ V , atom(u) is an atom in SC that is disjoint from
atom(v) for every v 	= u and is such that V ∩Vatom(u) = ∅.

(iii) each edge e ∈ E that links u to v in C is (also) an edge of
atom(u) (with different tail and head).

The last condition implies that, if vert(e) = (u, v), then vertatom(u)(e) is a
pair of vertices of atom(u). If w 	= u, then vertatom(w)(e) is undefined because
e is not an edge of atom(w).

(b) The graph G = G(D) that is decomposed by D is defined as follows:
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VG =
�
{Vatom(u) | u ∈ V },

EG =
�
{Eatom(u) | u ∈ V },

vertG(e) = vertatom(u)(e) if e ∈ Eatom(u) −E,

vertG(e) = (x, y) if e ∈ E∩Eatom(u), vert(e) = (u, v), vertatom(u)(e) =
(x, x′), vertatom(v)(f) = (y

′, y) where f is the edge of C with tail v
that follows e on the circuit that is the 2-connected component of C
containing e.

Clearly, G ∈ SC. For an example, consider the graph G of Figure 7 and
assume that G1, ..., G4 are atoms. It has an atomic decomposition whose cactus
is the circuit (e1, ..., e4). For another example, consider the graph G of Figure
12 where, again, G1, ..., G4 are atoms. It has an atomic decomposition whose
cactus has vertices z, g1, ..., g4 and edges ei : gi → z and fi : z → gi for
i = 1, ..., 4. Furthermore, atom(z) is the graph H shown at the left of Figure 12
and atom(gi) = Gi for i = 1, ..., 4.

It is clear that each set Vatom(u) is atomic inG. It follows that C = (V,E, vert)
is isomorphic to the atomic skeleton of G (by the mapping h such that h(u) =
Vatom(u) and h(e) = e). Furthermore, the graphs atom(u) are the atoms of G.

(c) Two atomic decompositions D = (V,E, vert , atom) and D′ = (V ′, E′,
vert ′, atom′) (with corresponding cactus C′) are isomorphic, denoted by D ∼=
D′, if there is a mapping h : V ∪ VG(D) ∪ EG(D) → V ′ ∪ VG(D′) ∪ EG(D′) such
that:

its restriction to V ∪E is a graph isomorphism : C → C′,

its restriction to Vatom(u) ∪ Eatom(u) is an isomorphism atom(u) →
atom′(h(u)) for each u ∈ V .

Note that for every e ∈ E, we have vert ′(h(e)) = (h(u), h(v)) if vert(e) =
(u, v) and also, vert ′

atom′(u)(h(e)) = (h(x), h(y)) if x, y are such that vertatom(u)(e)

= (x, y). It is clear that h induces also an isomorphism: G(D)→ G(D′). In the
special case where h is the identity on E and on each graph atom(u), then we
say that h is a vertex renaming of D and, clearly, G(D) = G(D′).

Theorem 17 : Every strongly connected graph has a unique atomic decom-
position, where unicity is understood up to a vertex renaming.

Proof : Let G ∈ SC. We construct a decomposition D = (V,E, vert , atom)
from the atomic skeleton of G: we let V = A(G), E = EcutG and, for each e ∈ E,
we let vert(e) = (X,Y ) if X,Y ∈ A(G) and e links X to Y in G (necessarily,
X 	= Y ). For X ∈ V, we define atom(X) = G{X}. Conditions (i) and (ii)
clearly hold, hence, D = (V,E, vert , atom) is an atomic decomposition. It is
also clear from Definitions 14 and 16 that G(D) = G.
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Now we prove the unicity. Assume that G = G(D) = G(D′) where D and D′

are two atomic decompositions. There is a unique bijection h : V → V ′ such
that atom(u) = atom′(h(u)) for each u ∈ V . Theorem 7 shows that E = EcutG ,
hence E = E′. This shows that h is a vertex renaming : D → D′. �

All atomic decompositions of a given graph G are isomorphic. However,
the atomic decomposition AD(G) defined as (A(G), EcutG , vert , atom) such that
vert(e) = (X,Y ) if e links X to Y in G and atom(X) = G{X} is constructed
(in a unique way) from vertices and edges of G (This observation is useful in
view of a formalization in logic, see Section 3.9).

Constructing terms from atomic decompositions

Algorithm 10 (in Section 3.2) constructs the atomic skeleton of a strongly
connected graph from a term over atoms that defines it. From the atomic skele-
ton one gets the atomic decomposition AD(G). We now consider the converse
construction.

Algorithm 18 : Constructing a term from the atomic decomposition.

Let be given an atomic decomposition D and let G = G(D). We define a
term tG that defines G by using an induction on the size of the cactus C of D.

If C has a unique vertex, then G is an atom and tG is the term reduced to
this atom as a constant.

Otherwise, we let (u1, e1, u2, e2, ..., uk, ek, u1) be the circuit of some (arbi-
trarily chosen) 2-connected component of C. (Here we list also the vertices
u1, u2, ..., uk of the circuit). Let Xi = Vatom(ui) and Yi be the split of G de-
fined by the 2-cut {ei−1, ei} that contains Xi (the 2-cut {e1, ek} if i = 1). We
let also Gi = G{Yi}. Clearly, G = ⊞e1,...,ek(G{Y1}, ..., G{Yk}).

The connected component of C − {ei−1, ei} that contains ui is a cactus,
denoted by Ci, and we let Di be the restriction of D to it. It is an atomic
decomposition of G{Yi}. The induction gives a term tGi

using the atoms of
G{Yi} (they are the atoms of G whose vertex set is included in G{Yi}). Hence,
we can take tG = ⊞e1,...,ek(tG{Y1}, ..., tG{Yk}).

This construction takes linear time in term of the size ofD = (V,E, vert , atom)
that we define in a natural way as |V |+ |E|+

�

u∈V

��Vatom(u)
��+
��Eatom(u)

�� ; this

size is proportional to
��EG(D)

��.�

3.4 The atomic skeleton of a 2-edge connected undirected

graph

We now extend to undirected graphs the previous constructions. We recall that
a graph H is Und(G) for some strongly connected graph G (i.e., for G in SC) if
and only if it is 2-edge connected (i.e., is in 2EC), if and only if it is connected and
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has no bridge. Such a graph H has several strongly connected orientations but,
fortunately, most of the notions defined in the previous sections are invariant
under a change of strongly connected orientation.

We have observed that if G,G′ ∈ SC and Und(G) = Und(G′), then ∼G=
∼G′ ,≈G=≈G′ and A(G) = A(G′), so that G and G′ have the same atomic
skeleton. However, the atoms need not be the same in the atomic decompositions
of G and G′. We may have Und(G) = Und(G′) with G = H ⊞e,f K, G′ =
H′
⊞f,e K

′, for atoms H,K,H ′ and K′ such that VH = VH′ , with e directed
from H to K in G and from K′ to H ′ in G′. In this case, VH is an atomic set
of G and G′ but the corresponding atoms are respectively H and H ′, and they
are not the same since e is an edge of H and not of H′. However, Und(H) and
Und(H ′) are v-isomorphic (cf. Section 2.1).

Definition 19 : The atoms of a graph in 2EC

We define an atom of H = Und(G) as Und(K) where K is an atom of
G ∈ SC. This definition depends on G that is not unique. However, if G′

belonging to SC is another orientation of H, then the atoms of H defined from
G are v-isomorphic to those defined from G′; (a v-isomorphism is the identity
on vertices, cf. Section 2.1). For checking that, we recall from Definition 14
that an atom K is obtained from G[X] where X is an atomic set of vertices by
adding new edges; for each nontrivial class of edges F having an edge f with tail
in X, we add f to G[X] as an edge of K and we change its head into the head
of the unique edge e in F (hence, equivalent to f), with head in X. Let G′ be
as above and F be a nontrivial class of edges of G. Either the edges of F have
all the same orientation in G′ as in G, or they have all the opposite orientation.
In the latter case, e instead of f is added to G[X] to build an atom K′ of G′,
but its two ends are the same as those of f in K. It follows that Und(K) and
Und(K′) are v-isomorphic.

We defineAtomiso(H) where thatH = Und(G), as the set of v-isomorphism
classes of the graphs Und(K) for K in Atom(G). The subscript iso is to recall
that the atoms of H are defined up to v-isomorphisms.

Examples of atoms in 2EC are the cliques Kn for n ≥ 4, the (undirected)
k-bonds for k ≥ 3, the wheels with at least 4 vertices (see [Die]; K4 is the one
with 4 vertices), the single vertices with at least one loop.

What could or should be an atomic decomposition of a 2-edge connected

undirected graph ?

The first possibility is to take the atomic decomposition of any strongly
connected orientation of the considered graph. It is not unique, but its skeleton
is, as we have seen.

Another possibility is to define, for every atomic decomposition D = (V,E,
vert, atom) of a graph G in SC, the tuple Und(D) as (V,E, vert , atom) where,
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for e ∈ E and u ∈ V , vert(e) = {x, y} if vert(e) = (x, y) and atom(u) =
Und(atom(u)) (hence is isomorphic to an atom of the graph Und(G)). We
could call it an atomic decomposition of Und(G). With this definition, two
atomic decompositions D = (V,E, vert , atom) and D′ = (V ′,E′, vert ′, atom′)
of a graph H in 2EC are isomorphic in the following sense:

there is a graph isomorphism h : (V,E, vert)→ (V ′, E′, vert ′), and

for each u ∈ V, there is a graph isomorphism hu : atom(u) →
atom′(h(u)).

Consider for an example the graph G ∈ SC of Figure 7 defined by the
term ⊞e1,...,e4(G1, ..., G4) where G1, ..., G4 are atoms. Let G′ ∈ SC be ob-
tained from G by reversing the directions of e1, ..., e4 and of some other edges
of G1, ..., G4. We obtain two "atomic decompositions" for Und(G). The di-
rected cactus of G is the circuit (u1, e1, u2, e2, u3, e3, u4, e4, u1) and that of G′ is
(u1, e4, u4, e3, u3, e2, u2, e1, u1). The corresponding (undirected) cycles are thus
equal.

However, this definition is not satisfactory because we cannot reconstruct
Und(G) in a unique way from Und(D). Consider G = H ⊞e,f K, where H and
K are atoms, e : u → u′, f : v′ → v. The cactus of its (canonical) atomic
decomposition D is the 2-bond consisting of e : VH → VK and f : VK → VH .
From Und(D), we know the corresponding undirected cactus and we know that
e links u and u′ in Und(H) and that f links v and v′ in Und(K), but nothing
indicates that, in Und(G), e links u and u′ rather than u and v′. (We observed
that already at the end of Definition 1). Hence, for graphs in 2EC, we will
only use their atomic skeletons and the atomic decompositions of their strongly
connected orientations.

3.5 From Tutte decompositions to atomic skeletons

In this section, we show that the atomic skeleton of a graph in SC ∪ 2EC can
be obtained from its Tutte decomposition. This construction will yield a linear-
time algorithm and help us to understand the structure of atoms. Relevant
notation and definitions are reviewed in Section 2.1. We recall that the Tutte
decomposition of a graph does not depend on edge directions. It is defined for
graphs with at least three vertices. (We need not decompose small graphs).

We recall that if G is loop-free and 2-connected, if (T, f) is its Tutte decom-
position and B(x) is a cycle-block of the form (e1, ..., ek) (with k ≥ 3), then G is
the circular gluing

�
u1,...,uk(H1, ...,Hk) where each graph Hi is (as usual with

circular sequences, we let uk+1 be another notation for u1) :

(a) either the edge ei of G linking ui and ui+1,

(b) or a bond linking ui and ui+1,
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(c) or, if (a) and (b) do not hold, then Hi = G[V (x; y)] where y is
the unique neighbour of x such that f(y) = {ui, ui+1}.

In Cases (a) and (b), we have Hi = G[{ui, ui+1}].

Definition 20 : Potential 2-cut edges and splittable cycle-blocks.
An edge ei as in Case (a) is a potential 2-cut edge. A cycle-block is splittable

if it has at least two potential 2-cut edges. In Case (b), we say that Hi is a
bond of the block B(x) (as well as of G). In Cases (b) and (c), ui and ui+1
have degree at least 2 in Hi. Furthermore, if G is strongly connected, then all
potential 2-cut edges are directed all from ui to ui+1 or all from ui+1 to ui.

It is clear that VHi
and VHi′

, such that 1 ≤ i < i′ ≤ k are separated in G
(which means that there is a split X such that VHi

⊆ X and VHi′
⊆ VG −X)

if and only if there are j and j′ such that ej and ej′ are potential 2-cut edges,
i ≤ j ≤ i′ − 1 and, either 1 ≤ j′ ≤ i− 1 or i′ ≤ j′ ≤ k.

Lemma 21 : Let G ∈ SC ∪ 2EC be loop-free and 2-connected with Tutte
decomposition (T, f).

(1) Two edges form a 2-cut if and only if they are potential 2-cut edges in a
same cycle-block.

(2) If this is the case, their common equivalence class is the set of potential
2-cut edges of this cycle-block.

Proof : (1) We first consider G ∈ SC.
"Only if". Let e be a 2-cut edge of G. This means that G has a split X

such that e links X to VG −X and that some other edge e′ links VG − X to
X. The edges e and e′ are not parallel edges because, otherwise, G would not
be 2-connected (it has at least three vertices). Hence, G can be expressed as a
circular gluing of e,e′ and one or two connected subgraphs. It follows that the
Tutte decomposition of G has a cycle-block that contains e and e′. Hence e and
e′ are potential 2-cut edges in a same cycle-block.

"If". Conversely, let e be a potential 2-cut edge in a cycle-block B. Then
B can be ordered as a sequence of consecutive edges e1, e2, ..., ek with e = e1
and k ≥ 3. By the initial remark, we have G =

�
u1,...,uk(H1, ...,Hk) where H1

is e1. If Hi (for i > 1) is an edge, hence, is another potential 2-cut edge, then
{e1, ei} is a 2-cut of G. This completes the proof if G ∈ SC. If G ∈ 2EC, the
proof is the same except that the edges e, e′, e1, e2, ..., ek are undirected.

(2) is an immediate consequence of (1). �

Figure 5 in Section 2 shows the Tutte decomposition of a 4-regular undirected
graph that is shown in Figure 4. We can see that the 2-cut edges of G are a− c
and b− d in cycle-block B, a− e and b− f in C, b− l and k−m in F , as stated
by Lemma 21.
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3.5.1 An algorithm for the atomic decomposition.

In this section, we describe a linear-time algorithm that constructs the atomic
decomposition of a strongly connected graph. It yields a linear-time algorithm
that constructs the atomic skeleton of a 2-edge connected undirected graph,
because one can construct in linear time, by using a depth-first traversal, a
strong orientation of it.

The case of a 2-connected loop-free graph.
We first consider the case of G ∈ SC that is loop-free and 2-connected. The

first step consists in constructing its Tutte decomposition (T, f). This can be
done in linear time by using the algorithm of [HopTra2]. By Lemma 21, the
nontrivial classes of edges are obtained from the splittable cycle-blocks, which
are easy to recognize. We now determine the atomic sets of vertices.

Definition 22 : Let G ∈ SC be loop-free and 2-connected with Tutte
decomposition (T, f). Two sets of vertices U and V are separated at a cycle-block

B if they are separated by a split relative to two potential 2-cut edges of B.

Note that two vertices in a box f(x) for x ∈ N2T , or in a 3-connected
block or in a cycle-block that is not splittable, are not separated. Here is a
complementary statement.

Lemma 23 : Let P be a path in T that links two nodes x and y in N3T .
(We may have x = y and then P is reduced to x). Let u, v ∈ VG such that
u ∈ f(x) and v ∈ f(y).

(1) If u and v are separated at a cycle-block, then this cycle-block is on P
(i.e., it is B(z) for some node z of P ).

(2) Let z be a node of P such that B(z) is a cycle-block whose corresponding
expression of G is

�
u1,...,uk(H1, ...,Hk). Then, u and v are separated at B(z)

if and only if, for some i, j (as usual, uk+1 = u1) :
(2.1) u = ui, v = uj and u and v are separated at B(z), or
(2.2) u ∈ VHi

− {ui, ui+1}, v = uj and {ui, ui+1} and uj are separated at
B(z), or

(2.3) the similar condition holds where u and v are exchanged, or
(2.4) u ∈ VHi

−{ui, ui+1}, v ∈ VHj
−{uj , uj+1} and {ui, ui+1} and {uj , uj+1}

are separated at B(z).

The verification of Conditions (2.2), (2.3) and (2.4) uses the following ob-
servation:

if u /∈ {u1, ..., uk}, then u ∈ VHi
− {ui, ui+1} where {ui, ui+1} is

f(x′) and x′ is the node of N2T on the subpath of P between x and
z that is adjacent to z.
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Proof (1) Let u and v are separated at a cycle-block B(z) whose corre-
sponding expression of G is

�
u1,...,uk(H1, ...,Hk). Assume that z is not on P .

Let t be the node of N2T that is adjacent to z on the path in T between x and
z and on the one between y and z. Then f(t) = {ui, ui+1} for some i and thus,
u and v belong to VHi

. Hence they are not separated at B(z). It follows that z
must be on P .

(2) The "if" direction is clear. For proving the converse, consider u, v and z
as in the statement, where u and v are separated by a split X relative to two
potential 2-cut edges of B(z). Then, in each of the four cases, it is trivial or
easy to check that the same split separates ui and uj , or {ui, ui+1} and uj , or
{ui, ui+1} and {uj , uj+1}. �

For an example, look at the Tutte decomposition of Figure 5. The cycle-
blocks are B,C,F and G. The splittable ones are B,C and F . The atomic sets
are {a, b, i, j, k}, {c, d}, {e, f, g, h} and {l,m, n}.

Proposition 24 : Let G ∈ SC be loop-free and 2-connected with Tutte
decomposition (T, f).

(1) Let u ∈ f(x), for some x ∈ N3T . The atomic set of vertices that contains
u is the set of vertices v belonging to f(y) for some y ∈ N3T such that u and v
are not separated at any cycle-block on the path in T between x and y.

(2) The atomic partition of G can be computed from G and (T, f) in linear
time.

Proof : (1) By Lemma 21(1), two vertices are separated in G if and only if
they are so at some cycle-block. And this cycle-block, if it exists, must be on
the path between x and y by Lemma 23(1). This proves the first assertion.

(2) The algorithm is based on a traversal of T that defines an increasing
sequence of subtrees : T1 ⊆ T2 ⊆ ... ⊆ Tp = T where T1 is just one node in
N3T and, for each i, Ti+1 is Ti with one more node xi+1 linked to some node
of Ti. For each i, we let Vi ⊆ VG be the union of boxes f(x) such that x is
a node of Ti. It follows from Lemma 23 that two vertices u and v in Vi are
separated in G if and only if there is in Ti a path with a cycle-block witnessing
that. Hence the partition Ai of Vi consisting of the nonempty sets of the form
Vi ∩ X for X ∈ A(G) can be determined from Ti. This can be done in the
following inductive way.

Initial step: A1 = {V1} if the block f(x1) is 3-connected or not splittable. If
this block is splittable, then A1 is the corresponding partition of V1, according
to Lemma 23(2).

Inductive step: We construct Ai+1 from Ai as follows.
If xi+1 ∈ N2T , then Ai+1 = Ai because the two vertices of f(xi+1) are

already in Vi (and they belong to a same class of Ai because they are not
separated in G).

If xi+1 ∈ N3T and B(xi+1) is 3-connected or not splittable, then, we add its
vertices not already in Vi to the class of Ai that includes the set f(y) where y
is the node of Ti (necessarly in N2T ) adjacent to xi+1.
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If xi+1 ∈ N3T and B(xi+1) is splittable, then, by using Lemma 23(2), we
build Ai+1 by adding new classes to Ai, and if necessary, we add some vertices
of B(xi+1) to the class of Ai that includes the set f(y) where y is as in the
previous case.�

With the same hypotheses:

Corollary 25 : One can construct in linear time the Tutte decompositions
of all atoms of G that have at least three vertices.

Proof : First we observe that the atoms of a 2-connected graph are 2-
connected (because if u is a separating vertex of a graph H, it is also one
of H ⊞e,f K), hence, they also have Tutte decompositions.

Let W ∈ A(G) and (T, fW ) be the tree-decomposition of G[W ] such that
fW (x) = f(x) ∩W for every x ∈ NT . If W has one or two vertices, there is
nothing to do.

Otherwise, Definitions 14 and 16 imply that each edge in EG{W} − EG[W ]

has its two ends in some box of (T, f). Hence, (T, fW ) is a tree-decomposition
of G{W}. It may not be its Tutte decomposition because some boxes may be
empty. We remove the corresponding nodes from T , and we obtain a tree T ′. But
T ′ with the corresponding restriction of fW is not always a Tutte decomposition
because a splittable block B(x) may become reduced to two vertices. (Such two
vertices constitute the box f(y) for some y ∈ N2T adjacent to x). In this case,
we can delete x and y because f(y) ⊆ f(z) where z is any other neighbour of
y. By performing this deletion step as many times as necessary, one reaches
a tree-decomposition that satisfies conditions T1-T4 but perhaps not T5. As
observed in Section 2.1, it can be transformed into a Tutte decomposition.

We can of course repeat this construction for each set W ∈ A(G) (we know
how to get them by Proposition 24(1)). However, we can do better. Consider
again the inductive construction of Proposition 24(2). Together with Ai we can
maintain, for each set W of Ai, the subtree Ti,W of Ti consisting of the union
of all paths P between nodes x and y in Vi ∩ N3T such that f(x) and f(y)
contain respectively a vertex u and a vertex v, both in W . (Hence, u and
v are not separated on P by a cycle-block). At the end, we obtain a subtree
Tp,W of T and thus, a tree-decomposition (Tp,W , fp,W ) of G[W ] by defining
fp,W (z) = W ∩ f(z) for every node z of Tp,W . As in the case of the initial
observation, it is actually a tree-decomposition of G{W}. Its boxes are all non
empty, however, we may have splittable blocks reduced to two vertices, and we
can use the same transformations to get the desired Tutte decomposition.

The number of vertices (resp. of edges) of a graph is equal to the sum of the
corresponding numbers for its atoms. It follows that these computations can be
done in linear time in the size of the input graph. The size of the output is also
linear in that of the input graph. �
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The general case.
We now extend this algorithm to all graphs in SC by using an induction on

the number of separating vertices.

Lemma 26 : Let G in SC be H//uK where H and K are not reduced to
u, so that u is a separating vertex.

(1) Let x, y ∈ VG. Then x ∼G y if and only if either x ∼H y or x ∼K y or
x ∼H u and u ∼K y.

(2) Let e, f ∈ EG. Then e ≈G f if and only if either e ≈H f or e ≈K f .

Proof : (1) Let X be a split of G that contains u. Then, VG−X is a split of
H or of K. The proof is as follows: if VG−X contains vertices of H and of K,
then its 2-cut consists of a bridge of H and one of K so that G is not strongly
connected. Hence, either VG −X ⊆ VH and it is a split of H or VG −X ⊆ VK
and it is a split of K. Conversely, if X is a split of H that contains u, then,
VG−X is a split of G, and similarly for K. The claimed assertion follows from
this fact.

(2) Let us observe that if e ∈ EH and W is a closed walk of G including
edges of K, then it goes at least twice through u and it has a subwalk that
includes e but no edge of K. Hence, if e, f ∈ EG and e ≈G f, we cannot have
e in H and f in K. The claimed assertion follows easily. �

We define a "gluing" of atomic decompositions. Let G = H//uK and let A
and B be the atoms of H and K respectively that contain u. Then A//uB is an
atom of G. We use Lemma 33 to build the atomic decomposition D of G from
those, D′ = (V ′, E′, vert ′, atom′) and D′′ = (V ′′, E′′, vert ′′, atom′′) of H and K
respectively. Without loss of generality, we assume that V ∩V ′ = {w} where w
is, in D and in D′, the vertex corresponding to A and B respectively. Then, we
define :

the cactus C of D as C′//wC
′′, i.e., as the gluing at w of the cactuses

C and C′,

the mapping atom by

atom(w) = A//uB,

atom(x) = atom′(x) if x ∈ V ′ − {w},

atom(x) = atom′′(x) if x ∈ V ′′ − {w}.

It is clear that G(D) = G(D′)//uG(D
′′) = G.

The decomposition of a connected graph in 2-connected components can be
constructed in linear time ([HopTar1]). The gluing of two atomic decompositions
can be done in constant time. Hence, we have proved the following theorem.

Theorem 27 : There exist linear-time algorithms that construct the atomic
decomposition of any graph in SC and the atomic skeleton of any graph in 2EC.

35



Proof : The algorithm for graphs in SC has been described above. For a
graph H in 2EC, we construct first a strongly connected orientation G of it by
means of a depth-first traversal. This step takes linear time. Then we construct
the atomic skeleton of G which gives the one of H.�

Remark : Let us consider the particular case of G = H//uK ∈ G2,2. The
vertex u cannot have degree 1 in H or K and degree 3 in the other because the
sum of the degrees of the vertices of H must be even and all vertices except u
have degree 4. Hence, u has degree 2 in H and in K. Moreover, by a similar
counting argument we can see that u has indegree and outdegree 1 in H and in
K.

We first assume thatH andK are not loops. We let e1 : x→ u and f1 : u→ y
be the edges of H with end u and e2 : x

′ → u and f2 : u → y′ be the similar
edges of K. We have G = G1 ⊞e1,f1 8(u, f1, f2)⊞f2,e2 G2 where 8(u, f1, f2) has
vertex u and loops f1 and f2, G1 = G{VH − {u}} and G2 = G{VK − {u}}.
The graphs G1 and G2 have fewer separating vertices than G. Their atomic
decompositions, obtained by way of induction, can be combined to yield the
one of G by Algorithm 10.

If H and K are loops, then G is atomic and there is nothing to do. If K is a
loop f2 on u, then we have G = G1 ⊞e1,f1 8(u, f1, f2) and G1 = G{VH − {u}}.
Hence, we can also use induction.

For this case, the atoms A and B of the general construction are loops on
vertex u, and A//uB = 8(u, f1, f2). So, we get the same result.�

3.5.2 The structure of atoms

The graph Graph(M) where M is the first map of Figure 6 is the unique atom
in G2,2 with a unique vertex. The graph H of Figure 12 is also an atom in G2,2.
We know that a graph in SC ∪ 2EC is an atom if and only if it has no 2-cut,
hence, if and only if it is 3-edge connected. For 4-regular graphs, we have a bit
more.

Proposition 28: The loop-free atoms in G4 (hence also those in G2,2) are
4-edge connected.

Proof: Let u, v be two distinct vertices of an atom G ∈ G4. Since G has no
split, they are linked by three edge-disjoint paths ([Die], Theorem 3.3.6). Let
us remove the edges of two of these paths. Some connected component of the
resulting graph contains u and v: its vertices have degree 2 or 4. Hence, it has
an Eulerian tour from which we can extract two edge-disjoint paths between
u and v by removing some closed subwalks if necessary. Hence, there are four
edge-disjoint paths between u and v and G is 4-edge connected. �

By Lemma 23, a graph in SC ∪ 2EC is an atom if and only its Tutte decom-
position has no splittable cycle-block. We now examine what these conditions
give for graphs in G2,2 ∪ G4.
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Since a graph in G4 is an atom if and only if it has an orientation in G2,2 that
is an atom (and if and only if it all its orientations in G2,2 are atoms), and since
Tutte decompositions do not depend on edge directions, we need only consider
atoms in G4.

Let G in G4 be of the form
�

u1,...,uk(H1, ...,Hk) where each graph Hi is
connected and k ≥ 3. Then, we have one of the following two cases:

(i) for each i = 1, ..., k, the vertices ui and ui+1 have degree 2 in

Hi, (as usual uk+1 = u1),

(ii) k is even, Hi is an edge for each even i, and ui and ui+1 have
degree 3 in Hi for each odd i, or similarly, Hi is an edge for each
odd i, and ui and ui+1 have degree 3 in Hi for each even i.

This fact follows from the observation that the sum of degrees of a graph is
even and that all vertices of VHi

− {ui, ui+1} have degree 4 in Hi. If G ∈ G2,2,
we have more constraints. For example in Case (i), either ui has outdegree 2 and
ui+1 has indegree 2 in Hi for all i, or ui has indegree 2 and ui+1 has outdegree
2 in Hi for all i, or ui and ui+1 have indegree and outdegree 1 in Hi for all i.

We will apply this observation to the expressions of graphs as circular gluings
associated with cycle-blocks.

A bond edge in a 3-connected block B is an edge coming from the fusion
of the edges of a bond of the decomposed graph G (cf. Section 2.1 for the
definition).

Proposition 29 : The Tutte decomposition (T, f) of a loop-free atom G in
G4 satisfies the following properties:

P1 : Every node x ∈ N2T has degree 2 and at most one of its neighbours is
a cycle-block; if f(x) = {u, v}, then u− v is a virtual edge.

P2 : Let B(y) be a cycle-block expressed as a sequence of consecutive edges
(e1, ..., ek). We know that it is not splittable. Each edge ei is either virtual or
comes from the fusion of the edges of a 2-bond of B(y).

P3 : In a 3-connected block B(z), no vertex is comon to two virtual edges, to
two bond edges or to a bond edge and a virtual edge. Each vertex of B(z) has
degree 4 where we count a virtual edge or a bond edge for two parallel edges.

Condition P3 means that in B(x), a vertex is incident to four edges of G or
to two edges of G and a single, virtual or bond edge.

Proof : P1 : Let x ∈ N2T and f(x) = {u, v}. The graphG can be expressed
as H1//u,vH2//u,v... //u,vHk where k ≥ 2 is the degree of x. The graphs Hi

are connected. It follows that k ≤ 4. Assume that k ≥ 3; then u and v have
degree at most 2 in all components Hi and u has degree 1 in one of them, say
Hj . Hence, v has also degree 1 in Hj (it cannot have degree 3). But then, the
two edges of Hj incident with u and v form a 2-cut, which is impossible since

37



G is an atom. Hence, k = 2 and u and v have degree 2 in H1 and in H2. There
is no edge in G between u and v, because otherwise, H1 or H2 would have one
edge incident with u and one edge incident with v that would form a 2-cut.
Hence, u− v is a virtual edge in the two blocks B(y) and B(z) such that y and
z are the neighbours of x in T . By Condition T5 of the definition of a Tutte
decomposition, at most one of them is a cycle-block.

P2: Since G is an atom, a cycle-block B(y) is not splittable, hence the
corresponding expression of G as

�
u1,...,uk(H1, ...,Hk) is of type (i) of the

initial observation. This yields the result.
P3: Let B(z) be a 3-connected block. It has no vertex of degree 2, otherwise,

it would not be 3-connected. Hence, it has no 3-bond (because an atom has no
three parallel edges unless it is the 4-bond). Hence the bonds of B(z) must have
two edges. Consider now an edge e : u − v of B(z) such that f(x) = {u, v}
for some neighbour x of z (hence, x ∈ N2T ). By P1, e is a virtual edge and
its ends u and v have degree 2 in H1 and in H2 (cf. the proof of P1). If u is
an end in B(z) of another virtual edge or of a bond edge, then it would have
degree 2 in B(z), which we have excluded. Similarly, if e : u− v is a bond edge,
then u cannot be the end of another bond edge. The last assertion of P3 is a
consequence of these facts. �

We can actually describe the atoms of G4 in terms of 3-connected graphs.
We will denote by U2 (resp. U4) any undirected 2-bond (resp. 4-bond) having
the appropriate ends so that an expression like H//u,vU2 is well-defined. In
other words, H//u,vU2 is H with two more edges between u and v. (We will
not need to designate precisely these edges).

Corollary 30 : A loop-free graph G in G4 is an atom if and only if it is of
the following types:

either it is isomorphic to U4,

or it is 3-connected,

or G =
�

u1,...,uk(H1, ...,Hk) where, for each i, Hi//ui,ui+1U2 is an
atom,

or G = (...((L//u1,v1H1)//u2,v2H2)//u3,v3 ...//uk,vkHk where

u1, v1, ..., uk, vk are pairwise distinct vertices of L,

(...((L//u1,v1U2)//u2,v2U2)//u3,v3 ...//uk,vkU2 is a 3-connected

atom in G4 that is not isomorphic to U4,

H1//u1,v1U2, ..., and Hk//uk,vkU2 are atoms in G4

not isomorphic to U4.

This is a consequence of Proposition 29. Note that H1, ...,Hk and L are of
smaller size than G. Hence, this desciption can be used in an inductive proof
for properties of atoms, or similarly, an inductive construction.
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This corollary shows that an atom in G4 is isomorphic to Und(8), to U4 or
is 2-connected (which is actually easy to check directly).

3.6 Atomic decompositions of maps and related objects

We have defined the atomic decomposition of every graph in the class SC (which
includes G2,2). We now examine the particular case of (2,2)-regular graphs, of
planar graphs and we extend atomic decompositions to maps. This extension
is actually a consequence of Definition 1 and Proposition 2, from which we get
the following facts, that yield Theorem 31.

Fact 1 : If a graph in SC is planar, its its atoms are planar and conversely.

Fact 2 : If G = Graph(M) for a mapM , then its atoms have a corresponding
structure of map. Any term over atoms that defines G can be made in a unique
way into a term over atomic maps that defines M . Conversely, if we equip the
atoms of the atomic decomposition of a graph G ∈ SC (or the graphs occurring
as constants in a term defining G) with rotations (cf. Section 2.2), then, since
the circular composition of maps is well-defined, we make G into a map M such
that G = Graph(M). The restriction to planar maps works as for planar graphs.

Theorem 31: Let C be any of the classes PSC, G2,2,PG2,2, MSC, PMSC,
M2,2 or PM2,2. Each element of C has a unique atomic decomposition over
C that is based on the atomic decomposition of the corresponding underlying
graph in SC. From it, we get terms over C that define the considered graph or
map and vice versa.

A similar statement holds for the corresponding undirected graphs and maps
in 2EC, G4, P2EC, M4, PM4 etc. with the notion of atomic skeleton instead of
that of atomic decomposition. (See Definition 19 and the following discussion).

A graph or a map is labelled if some of its vertices and edges have a label.
Circular composition extends to labelled graphs and maps because it does not
modify vertices and edges (it modifies only incidences). In particular, it does
not fuse vertices or edges (which would raise the question of choosing a new
label for a vertex or an edge resulting from a fusion). It follows that all results
about circular composition and atomic decompositions extend in a straightfor-
ward manner to labelled objects. In particular, this extension of Theorem 31 is
applicable to knot diagrams (see Section 4 about applications to knot diagrams).
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3.7 Tree-width

If G ∈ SC ∪ 2EC we denote by twdatom(G) the maximum tree-width of its
atoms. This notion is well-defined for graphs in 2EC because their atoms are
well-defined up to isomorphism. In particular, twdatom(Und(G)) = twdatom(G)
if G ∈ SC.

Proposition 32 : The tree-width of a graph G ∈ SC ∪ 2EC is twdatom(G)
if this number is at least 2. Otherwise it is 1 or 2.

Proof : It is enough to consider the case of graphs in SC since tree-width
does not depend on edge directions and the function twdatom is invariant under
the replacement of G ∈ SC by Und(G).

Consider G = H⊞e,fK ∈ SC. Tree-decompositions of H and K of respective
widths p and q can be combined into one of width max{2, p, q}. Then, from
Algorithm 18 that constructs a term from an atomic decomposition D, and
Proposition 3(2) which shows that a circular composition can be expressed in
terms of binary compositions, we get that if G = G(D), then its tree-width is at
most max{2, twdatom(G)}. Since every atom is a minor of G as observed in the
proof of Proposition 2(2), we get that the tree-width of G is at least twdatom(G),
hence it is twdatom(G) if this value is at least 2. The second assertion follows
from these facts. �

Remark : We have no similar upper-bound to the clique-width of a graph,
directed or not, expressible in function of the maximal clique-width of its atoms
(see Chapters 2 of [CouEng] for the definition): consider graphs G built from a
clique Kn for n ≥ 4 by subdividing some edges; they are 2-edge connected and
their atoms are Kn and single vertices with one loop; these atoms have clique-
width 2 and 1 respectively, but the graphs G have unbounded clique-width.
A similar counter-example can be built with strongly connected tournaments
instead of cliques.

3.8 Counting Eulerian orientations

The number of Eulerian orientations of a 4-regular graph is the value at (0,−2)
of its Tutte polynomial, and for a planar 4-regular graph, it is also related to
the value at (3,3) of this polynomial for an associated planar graph (see [LV]).
We consider how to compute it.

Definition 33:

If G is a directed graph and F ⊆ EG, we denote by G(F ) the graph obtained
by reversing the orientation of each edge in F . That is, we let VG(F ) = VG,
EG(F ) = EG and vertG(F ) be defined by:
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vertG(F )(e) = vertG(e) if e /∈ F,

vertG(F )(e) = (y, x) if e ∈ F and vertG(e) = (x, y).

We call G(F ) the reorientation defined by F and say it is a G2,2-orientation
of Und(G) if G(F ) ∈ G2,2. If G ∈ G2,2, we denote by ♯(G) the number of sets of
edges F such that G(F ) ∈ G2,2. We call such a graph G(F ) a G2,2-reorientation
of G. If G ∈ G4, we denote by ♯(G) the number ♯(H) where H is any orientation
of G. For the graph 8 belonging to G2,2 shown twice on the left of Figure 6,
we have ♯(8) = 4 because each loop can oriented in two ways. We now consider
the problem of computing ♯(G) for G ∈ G4.

Proposition 34: For every graph G ∈ G2,2 ∪ G4 with set of atoms A, we
have:

♯(G) = 2.
�

H∈A

(♯(H)/2).

Proof : We consider G ∈ G2,2. We first observe that if G = H ⊞e,f K,
then ♯(G) = ♯(H).♯(K)/2, because changing the orientation of edge e in H
forces to change the orientation of f in K. Apart from this constraint, the
new orientations of H and K can be chosen independently. Since fixing the
orientation of one edge divides by 2 the number of possibilities, we get the
equality. The general case of G expressed by a term over atoms and written
with binary composition operations follows by an induction on the number of
such operations. We have the same equality for G ∈ G4. �

This proposition shows that we need only compute ♯(G) for atoms G. (Ac-
tually, it holds, and the proof is the same, if we replace G2,2 by SC, G4 by 2EC
and we let ♯(G) be the number of strongly connected orientations of G.) For
computing these numbers, we give a (time-consuming) recursive algorithm that
works for all graphs in G4 and not only for atoms. (We would gain nothing by
starting from an Eulerian orientation of these graphs).

We need some notation relative to a graph G ∈ G4. If x is a vertex incident
with a single loop, then G has edges x− y and x− z (with possibly y = z) and
we define G\0x as the graph G − x augmented with an edge between y and z
(a loop if y = z). Otherwise, x is incident with four edges x− y1, x− y2, x− y3
and x− y4 (we may have equalities among y1, y2, y3 and y4) and we define

G\1,2x as G− x augmented with edges y1 − y2 and y3 − y4,

G\1,3x as G− x augmented with edges y1 − y3 and y2 − y4,

G\1,4x as G− x augmented with edges y1 − y4 and y2 − y3.

Proposition 35: Let G ∈ G4. The number ♯(G) can be computed by the
following equalities:
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♯(Und(8)) = 4,

♯(G) = 2.♯(G\0x) if x is incident with a single loop,

♯(G) = ♯(G\1,2x) + ♯(G\1,3x) + ♯(G\1,4x) if x is not incident with a
loop.

Proof : The first equality is an observation. For the second one, consider
x incident with a single loop and two edges x − y and x − z. Every G2,2-
reorientation of G determines (by transitivity over x) a G2,2-reorientation of
G\0x. Conversely, the choice of an orientation of the edge y− z in G\0x deter-
mines an orientation for the two edges x−y and x−z (that gives the orientation
of y−z by transitivity over x). However, the loop can be oriented in two ways.
These facts give the second equality.

For the third one, observe that there are 6 ways to orient in G the edges
incident with x so that x has indegree and outdegree 2. One of them is x← y1,
x ← y2, x → y3 , x → y4 . This particular orientation yields (by transitivity
over x) one orientation of two edges of G\1,3x namely, y1 → y3 and y2 → y4
and one of two edges of G\1,4x namely y1 → y4 and y2 → y3 but none of
G\1,2x. A similar situation holds for each of the 5 other possible orientations of
the four edges of G incident with x. Hence, we get a bijection of the set of all
G2,2-orientations of G and the (disjoint) union of the sets of G2,2-orientations of
G\1,2x,G\1,3x and G\1,4x. Hence, we have the third equality.�

3.9 Using MSO logic

The following remarks are intended for the readers who know how to express
graph properties and graph transformations in monadic second-order logic. We
refer the reader to the book [CouEng] and to the articles [Cou99] and [Cou06]
for constructions related to the topic of the present article.

The property that a set of edges F of a directed graph G defines a strongly
connected reorientation (or a G2,2-reorientation) is expressible by a monadic
second-order formula ϕ(F ) using edge set quantifications (called an MS2 for-

mula). The number ♯(G) is the cardinality of the set {F | F ⊆ EG,G |= ϕ(F )}.
Such a number can be computed by a fixed-parameter linear algorithm parame-
terized by tree-width (where arithmetical operations are considered as taking
unit time).

We now explain how to define atomic decompositions by monadic second-
order formulas. Let G ∈ SC ∪ 2SC. That a vertex set X is a split is expressible
by an MS2 formula and so is the property that two edges are equivalent. The
atomic sets of verticesW can thus be characterized as those that satisfy an MS2
formula ψ(W ) (with W as single free set variable).
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We have shown how the cactus of the atomic decomposition can be con-
structed from the atomic partition of VG and the incidence function vertG.
With the terminology of [CouEng], [Cou99] and [Cou06], this means that the
atomic decomposition of G ∈ SC and the atomic skeleton of G ∈ 2SC can be
defined from G by a monadic second-order transduction whose formulas use
edge set quantifications. (For undirected graphs, MS2 formulas can specify all
orientations, and in particular the strongly connected ones, cf. [CouEng]).

Similar construction have been given in [Cou99], [Cou96] and [Cou06] for,
respectively, the Tutte decomposition (defined in Section 2.1), the modular de-

composition and the split decomposition. However, the transductions of [Cou96]
and [Cou06] use an auxiliary linear order on the vertex set of the considered
graph, whereas here and in [Cou99] this is not needed.

4 Related decompositions and open problems

We now compare the atomic decomposition with two closely related decompo-
sitions of strongly connected graphs. We also mention decompositions of knot
diagrams and matroids.

We first consider graphs in SC′, the class of simple, loop-free and strongly
connected graphs. A graph with one vertex and no edge is in this class.

The split decomposition by Cunnigham.

Cunnigham has defined in [Cun] a canonical decomposition of graphs in SC′

based on the following notion of split: a C-split of a graph is a bipartition {A,B}
of its vertex set such that |A| , |B| ≥ 2, the edges from A to B form a complete
bipartite subgraph and so do those from B to A. A graph is C-prime if it has
no C-split. Hence, if G = H⊞e,f K, |VH| , |VK | ≥ 2, then {VH , VK} is a C-split.
It follows that a C-prime graph (in SC′) of minimal degree at least 3 is an atom.
(We need the degree restriction because if x is a vertex of degree 2, then {x} is
a split but {{x}, VG − {x}} is not a C-split). The decomposition of [Cun] can
thus be considered as a refinement of the atomic decomposition because certain
atoms may be further decomposed. We leave for future work to examine if the
construction of the atomic decomposition is an interesting intermediate step for
the construction of the split decomposition (see [Joe, GPTCa] for algorithms).

An axiomatic description of certain canonical graph decompositions is pre-
sented in [CunEdm]. The Tutte decomposition and the split decomposition are
two instances. Although the atomic decomposition is close to these two ones,
we could not formalize it in that framework.

A decomposition by Knuth
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Figure 13: A graph with several decompositions

Knuth defines in [Knu] a decomposdition of the graphs in SC′ that is close
to, but actually different from, the atomic decomposition. With our terminology
and notation, the basic lemma of [Knu] states that every graph G in SC′

(i) either is reduced to a vertex without loop,
(ii) or has one edge e such that G− e ∈ SC′,
(iii) or can be expressed as G = ⊞e1,...,ek(H1, ...,Hk) where for each i, the

graph Hi − ei belongs to SC′. (Here, ei can be a loop of Hi).
Conditions (ii) and (iii) are not exclusive.
Since G− e and the graphs Hi − ei are in SC′, the same lemma applies to

them, so that we obtain a hierarchical decomposition of every graph in SC′.
This decomposition looks similar to the atomic decomposition, however there
are important differences: its undecomposable elements are the vertices (this is
clear) and, it is not canonical.

For proving the latter point, we define {e} and {e1, ..., ek} as the keys of the
decomposition steps based on cases (ii) and (iii) respectively. A decomposition
is thus represented by a rooted tree whose nodes are the keys of its steps; these
keys form a partition of the set of edges. Consider the graph of Figure 13
with edges a, ..., g. (It is an atom). It can be decomposed by using successively
keys {g}, {a, b, c} and {d, e, f}. Another possibility is to use {f}, {a, b, c} and
{d, e, g}, and yet another one is {g}, {d, e} and {a, b, c, f}. The corresponding
decompositions cannot be unified into a single one.

The algorithmic properties and structural uses of this decomposition remain
to be investigated. Knuth gives two examples of properties of strongly connected
graphs that are provable by induction on this decomposition but are not (or not
so easily) from the atomic decomposition. The reason is that the basic elements
of his decomposition are vertices and not atoms

Knots and Knot diagrams
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The reader will find the definitions and basic facts in the books [Ada, Bol,
GodRoy] (or in Wikipedia, look for "knot theory"). We consider oriented
knots. A knot diagram is essentially a (2,2)-regular planar map whose ver-
tices are labelled by over or under, to indicate the type of crossing (we omit
technical details, see [Cou13]). We let k denote the mapping from a diagram
to the corresponding knot. Knots can be composed by a binary (multival-
ued) operation denoted by # (in [Ada], Section 1.2) such that for every two
knot diagrams D and D′, every edge e of D and every edge f of D′, we have
k(D ⊞e,f D

′) = k(D)#k(D′). It follows that the diagrams of prime knots are
atoms. We leave as a research topic to investigate the relationships between
factorizations of knots and atomic decompositions of knots diagrams.

Matroids

As observed at the end of Definition 1, circular composition is well-defined
on matroids (see [Tru]). For matroids M , N and elements e of M and f of N ,
we define M⊞e,fN as the matroid whose circuits are those of M not containing
e, those of N not containing f and the sets C ∪ D where C is a circuit of M
containing e andD is one of N containing f. This operation is, in a certain sense,
equivalent to a 2-sum of M and N . Determining if this operation is interesting
for matroids remains to be investigated.

Some questions

The numbers of strongly connected orientations and Eulerian orientations
are particular values of the Tutte polynomial ([Bol]). This suggests the following
question:

Does the atomic decomposition of a graph or a matroid help for com-

puting its Tutte polynomial?

We have defined circular composition for directed graphs and used it only
for strongly connected graphs.

Does it yield interesting decompositions for directed graphs of wider

classes ?

We have shown how to construct efficiently the atomic decomposition of a
strongly connected graph from its Tutte decomposition.

Is it possible, conversely, to construct efficiently the former from the

latter?
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In the companion article [Cou13], we use atomic decompositions to describe
(and denumber) the closed curves in the plane that have a given associated
Gauss word.

Acknowledgements : I thank the late M. Las Vergnas for useful comments
and the reference to Knuth’s article.
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Appendix : Index of some definitions.

Isomorphisms

Isomorphism of graphs : notation G ∼= H, Section 2.1.
v-isomorphism of graphs (identity on vertices) : Section 2.1.
Automorphisms and v-automorphisms : Section 2.1.
Isomorphism of atomic decompositions : notation D ∼= D′, Definition 16,

Section 3.3, and discussion after Definition 19

Homeomorphisms

Homeomorphisms that preserve the orientation correspond to the equality
of maps; general homeomorphisms correspond to equivalence of maps : Section
2.2.

Equivalences

Und-equivalent maps, for defining maps of undirected graphs : Section 2.2.
Equivalent terms (same value) : Section 3.1, Definition 5.
Equivalent vertices (not separated by a split) : notation x ∼G y, Section 3.2,

Definition 6.
Equivalent edges (belong to a 2-cut) : notation x ≈G y, Section 3.2, Defini-

tion 11.
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