
Clique-width and tree-width of sparse graphs

Bruno Courcelle
Labri, CNRS and Bordeaux University∗

33405 Talence, France
email: courcell@labri.fr

June 10, 2015

Abstract

Tree-width and clique-width are two important graph complexity mea-
sures that serve as parameters in many fixed-parameter tractable (FPT)
algorithms. The same classes of sparse graphs, in particular of planar
graphs and of graphs of bounded degree have bounded tree-width and
bounded clique-width. We prove that, for sparse graphs, clique-width is
polynomially bounded in terms of tree-width. For planar and incidence
graphs, we establish linear bounds. Our motivation is the construction of
FPT algorithms based on automata that take as input the algebraic terms
denoting graphs of bounded clique-width. These algorithms can check
properties of graphs of bounded tree-width expressed by monadic second-
order formulas written with edge set quantifications. We give an algorithm
that transforms tree-decompositions into clique-width terms that match
the proved upper-bounds. keywords: tree-width; clique-width; graph de-
composition; sparse graph; incidence graph

Introduction

Tree-width and clique-width are important graph complexity measures that oc-
cur as parameters in many fixed-parameter tractable (FPT) algorithms [7, 9, 11,
12, 14]. They are also important for the theory of graph structuring and for the
description of graph classes by forbidden subgraphs, minors and vertex-minors.
Both notions are based on certain hierarchical graph decompositions, and the
associated FPT algorithms use dynamic programming on these decompositions.
To be usable, they need input graphs of ”small” tree-width or clique-width, that
furthermore are given with the relevant decompositions.

∗This work has been supported by the French National Research Agency (ANR) within
the IdEx Bordeaux program ”Investments for the future”, CPU, ANR-10-IDEX-03-02. Parts
of it have been presented to a worshop on graph decompositions at CIRM (Marseille, France)
in January 2015.

1

Each class of simple graphs of bounded tree-width has bounded clique-width,
hence an algorithm that is FPT for clique-width is FPT for tree-width. How-
ever, the clique-width of a graph can be exponential in its tree-width. Hence an
algorithm that works well for graphs G of ”small” clique-width k may not work
for graphs of tree-width k because these graphs may have clique-width at least
2k/2 [2]. We investigate classes of graphs for which tree-width and clique-width
are polynomially, or even better, linearly related.

Our main results
(1) We prove that tree-width and clique-width are linearly related for planar

graphs, for graphs of bounded degree and for incidence graphs. We also prove
that1 cwd(G) = O(twd(G)q) if G is uniformly q-sparse graphs (also called q-
degenerate if it is undirected) and that cwd(Bip(H)) = O(twd(H)q−1) if H
is a q-hypergraph, i.e., a hypergraph with hyperedges of size at most q and
Bip(H) is the corresponding bipartite graph. We obtain bounds for planar
graphs and uniformly q-sparse graphs that improve similar bounds established
for the corresponding undirected graphs in [15] by means of rank-width. Our
results concern directed as well as undirected graphs. We get very short proofs
by using a characterization of clique-width in terms of partition trees [8].

(2) We also give an algorithm that converts an arbitrary tree-decomposition
(T, f) into a clique-width term2 that witnesses the above bounds on clique-
width ; the syntactic tree of the obtained clique-width term t is (up to a small
transformation) the tree of the given tree-decomposition ; the computation time
is O(q2.k.n) where n is the number of vertices, k is the width of the given tree-
decomposition and q is the width of the produced term t.

Furthermore, the reduced term of t (a notion introduced in [18] for defining
relative clique-width) is a variant T ′ of T . (We omit technical details). This
algorithm determines the relative clique-width of G with respect to T ′.

As a compact data-structure for tree-decompositions, we use normal trees:
a rooted tree T is normal for a graph G if its nodes are the vertices of G and any
two adjacent vertices of G are comparable with respect to the ancestor relation
of T ; it has a width, that is the width of the tree-decomposition it represents.

Applications
(3) These results apply to the algorithms based on fly-automata3 developped

in [5, 6] and implemented in the system AUTOGRAPH. This system can check
properties expressed in monadic second-order (MS) logic of graphs given by
clique-width terms. It can even compute values attached to such graphs, e.g.,
the number of p-colorings. Hence, if a graph is given by a tree-decomposition of

1We denote the clique-width of a graph G by cwd(G) and its tree-width by twd(G).
2Clique-width is defined algebraically from terms that define graphs. See Definition 3.
3The finite automata arising from monadic second-order formulas are much too large to

be implemented in the usual way by lists of transitions. To overcome this difficulty, we use
fly-automata: their states and transitions are not tabulated but described by means of an
appropriate syntax. Each time a transition is necessary, it is (re)computed. Only the transitions
necessary for a given term are computed.

2

”small” width k and the associated clique-width term t has width f(k) for some
reasonable function f , AUTOGRAPH can be used for it, by taking t as input.

(4) Furthermore, the clique-width of the incidence graph Inc(G) of a graph
G of tree-width k is less that 2k + 4, and a graph property expressed by a
monadic second-order formula using edge quantifications (an MS 2 formula, cf.
[7, 4]) is an MS property of Inc(G). This shows that AUTOGRAPH can also
be used (through the transformation of a tree-decomposition of an input graph
G into a clique-width term denoting Inc(G)) for checking such graph properties
for graphs of ”small” tree-width. This extension is developped in [4].

Summary of the article.
After a preliminary section devoted to a review of definitions, notation and

known results, we give in Section 2 our main construction : it transforms a
normal tree that encodes a tree-decomposition into a partition tree that repre-
sents a clique-width term. In Section 3, we prove that cwd(G) = O(twd(G)) for
planar graphs and that cwd(G) = O(twd(G)q) for uniformly q-sparse graphs.
In Section 4, we consider q-hypergraphs. A q-hypergraph H can be viewed as a
bipartite graph Bip(H) whose vertices of one side have degree at most q, hence,
it is uniformly q-sparse. We improve for these bipartite graphs the construction
of Section 3 and we prove that cwd(Bip(H)) = O(twd(H)q−1). We also handle
incidence graphs. In Section 5, we detail the algorithm of Section 2.

Acknowledgement : I thank I.Durand, S.Oum and M. Kanté for their useful
comments.

1 Preliminaries

1.1 Definitions and basic facts

Most definitions are well-known, we mainly review notation. We state a few
facts that are either well-known or easy to prove.

A partition π of a set X is a set of nonempty pairwise disjoint sets whose
union is X. These sets are called the parts of π. We say that π refines partially
a partition π′ of X ′ ⊇ X if every part Y of π is included in some part Y ′ of
π′. We denote this by π vp π

′. It refines π′ if π vp π
′ and X ′ = X. The

equivalence classes of an equivalence relation on X form a partition of this set.
The union of two disjoint sets is denoted by].

If 0 < m < k, we define γ(k,m) as the number of subsets of {1, ..., k} of
cardinality at most m. This number is 1 + k+ ...+

(
k
m

)
< m.

(
k
m

)
< km/(m− 1)!

if m > 1, and is 1 + k if m = 1.
All trees, graphs and hypergraphs are finite.

Trees
Trees are always rooted; NT denotes the set of nodes of a tree T and ≤T is its

ancestor relation, a partial order on NT ; the root is the unique maximal element,

3

the leaves are the minimal elements and an inner node is a node that is not a
leaf. We denote by pT (u) the father (the closest ancestor) of a node u, by LT

the set of leaves of T , and by LT (u) the set of leaves below or equal to u ∈ NT .
We omit the subscript T if the tree T is clear from the context. We denote by
T≤(u) the set {w ∈ NT | w ≤T u}, by T<(u) the set {w ∈ NT | w <T u}, and
similarly for T>(u) and T≥(u).

Graphs

Graphs are simple (i.e., loop-free and without parallel edges), either directed
or undirected. A graph G has vertex set VG and edge set EG. If G is directed,
EG can be identified with the binary, irreflexive edge relation edgG ⊆ VG × VG.
While being simple, G can have pairs of opposite edges. If G is undirected, then
edgG is symmetric and |edgG| = 2. |EG| . The undirected graph underlying G is
Und(G) with edgUnd(G) := edgG ∪ edg−1G .

If G is directed and x ∈ VG, then N+
G (x) is the set of vertices such that

x→G y (i.e., there is an edge from x to y), N−G (x) is the set of those such that
y →G x and NG(x) := N+

G (x) ∪ N−G (x) is the set of neighbours of x. If G is
undirected, then NG(x) is the set of neighbours of x. For a set X, N+

G (X) is the
union of the sets N+

G (x), x ∈ X, and similarly for NG and N−G .
If G is directed, X ⊆ VG, Y ⊆ Xc := VG−X, we define on X the equivalence

relation:

x ∼X,Y x′ :⇐⇒ N+
G (x) ∩ Y = N+

G (x′) ∩ Y
and N−G (x) ∩ Y = N−G (x′) ∩ Y.

We denote by Ω(X,Y) the corresponding partition of X and by Ω(X) the
partition Ω(X,Xc). If G is undirected, these definitions apply with NG = N+

G =
N−G .

Let G be undirected and Y be a set of vertices of cardinality k. Then
|Ω(X,Y)| ≤ 2k. If furthermore 1 < m < k and |NG(x)| ≤ m for all x ∈ X,
then |Ω(X,Y)| ≤ γ(k,m) < km/(m− 1)!. If G is directed, each edge of Und(G)
between x and y can come from three possible configurations of edges between
these vertices, hence, if |Y | = k, we have |Ω(X,Y)| ≤ (1 + 3)k = 4k, and if∣∣NUnd(G)(x)

∣∣ ≤ m < k for all x ∈ X, we have |Ω(X,Y)| < 3m.km/(m− 1)!. In

both cases, We define λG(Y) := |Ω(Y c)| and, for an integer k, we define λG(k)
as the maximum value of λG(Y) for a set Y of cardinality at most k. (These
definitions are as in [15] where actually, only undirected graphs are considered.)

Sparse graphs
A graph G is uniformly m-sparse if |EH | ≤ m. |VH | for every (undirected)

subgraph H of Und(G). An undirected graph G is uniformly m-sparse if and
only if it has an orientation of indegree at most m, i.e., is m-degenerate. This
fact is proved in [16] and in [7], Proposition 9.40.

4

Every planar graph is uniformly 3-sparse. An undirected graph is uniformly
dd/2e-sparse if its maximum degree is d because 2. |EG| is the sum of degrees of
its vertices and the same holds for its subgraphs.

We denote by Kr the class of graphs G such that Und(G) does not contain a
subgraph isomorphic to the complete bipartite Kr,r. Every uniformly m-sparse
graph belongs to K2m+1, but for every r and m, there are graphs in Kr that are
not uniformly m-sparse (because there is a constant c such that, if r ≥ 3, there
is a graph having n vertices and at least c.n2−2/(r+1) edges, see [10], Section
7.1).

Definitions 1: Tree-decompositions and normal trees.
(a) The tree T of a tree-decomposition (T, f) of a graph G is always rooted;

we say that (T, f) is 1-downwards increasing ([7], Definition 2.66) if, for each
node u of T , |f(u)− f(pT (u))| = 1. We denote by u the unique vertex in f(u)−
f(pT (u)). Every tree-decomposition can be transformed into a 1-downwards
increasing tree-decomposition of the same graph and that has the same width
(proof sketch: we first contract the edges u − pT (u) of T such that f(u) ⊆
f(pT (u)); if |f ′(u)− f ′(pT ′(u))| > 1 for some node u of the resulting tree-
decomposition (T ′, f ′), we add intermediate nodes between u and pT ′(u), and we
do this for all such nodes u). Hence, there is no loss of generality in considering
only 1-downwards increasing tree-decompositions, which we will do. For such a
tree-decomposition (T, f), we will always identify a node u of T and the vertex
u of G, hence, we will have NT = VG. With this convention, each vertex x in
f(u) satisfies u ≤T x. It is thus the maximal node w such that x ∈ f(w).

(b) A tree T is normal for a graph G if NT = VG and the two ends of each
edge are comparable under <T . A depth-first spanning tree is thus normal, but
in a normal tree T , we do not require that two adjacent nodes of T are adjacent
in the graph.

(c) If T is a normal tree for G and u ∈ NT , we define

fT (u) := {u} ∪ (T>(u) ∩NG(T≤(u)))

i.e., fT (u) consists of u (that is also a vertex of G) and its ancestors that are
adjacent to some vertex x ≤T u. We define its width as the maximal cardinality
of a set T>(u) ∩ NG(T≤(u)). Then (T, fT) is a 1-downwards increasing tree-
decomposition of G : if y ∈ fT (u)∩ fT (v), then u, v ≤T y and y belongs to each
set fT (w) such that u ≤T w ≤T y or v ≤T w ≤T y, hence y belongs to each set
fT (w) for w on the undirected path between u and v. The other conditions are
obvious to check. The width of the tree-decomposition (T, fT) is that of T .

Lemma 2 : Let (T, f) be a 1-downwards increasing tree-decomposition of
a graph G.

(1) T is normal for G; if x and y are adjacent, then x <T y and y ∈ f(x) or
y <T x and x ∈ f(y).

(2) fT (u) ⊆ f(u) for each u ∈ NT .

5

(3) If u ∈ NT , x ∈ VG and x ≤T u, then NG(x) ⊆ T<(u)] fT (u) ⊆
T<(u)] f(u).

Proof : (1) Let x, y be adjacent. Then, x, y ∈ f(u) for some u ∈ NT and,
as observed above, u ≤T x and u ≤T y. Hence, x and y are comparable under
≤T . Then, either x <T y and y ∈ f(x) because x is on the path between u and
y in T or, similarly, y <T x and x ∈ f(y).

(2) Let y ∈ fT (u). If y = u, then y ∈ f(u). Otherwise, we have x ≤T u <T y
for some x adjacent to y. Then, y ∈ f(x) by (1), hence, y ∈ f(u) because
x ≤T u <T y, y ∈ f(y) and u is between x and y in T .

(3) Let u ∈ NT , x ∈ VG be such that x ≤T u, and y ∈ NG(x). If y <T x,
then y ∈ T<(u). Otherwise, x <T y. If y <T u, then y ∈ T<(u), otherwise, as u
and y are comparable, u ≤T y, and so y ∈ fT (u) by the definition of fT . The
sets T<(u) and f(u) are disjoint by the fact that x ∈ f(u) implies u ≤T x. �

Figure 1 shows a graph G and the tree T of a 1-downwards increasing tree-
decomposition (T, f). The function f is defined in the following table. The
function fT is as f except that fT (g) = {c, e, g} ⊂ f(g) and fT (h) = {e, h} ⊂
f(h). The set fT (c) contains vertex a because of the edge a− e. Clearly, (T, f)
is not optimal, as (T, fT) has smaller width.

u f(u) u f(u)

a a e a, c, e
b a, b g a, c, e, g
c a, c h c, e, h
d a, d i c, i

Normal trees offer very compact encodings of 1-downwards increasing tree-
decompositions of the form (T, fT) : the tree T can be represented by the
mapping pT : VG → VG or any appropriate data structure. The family of sets
fT (u) for u ∈ VG can be computed in time O(n(r+ 1)) where n = |VG| and r is
the number of edges of G not in T .

As explained in Example 5.2(4) of [7], the relational structure 〈VG, edgG, sonT 〉
where sonT is the binary son relation of T is encodes in a compact way the graph
G and a tree-decomposition (T, fT) of it : a monadic second-order formula ψ
can express that T defined by 〈VG, sonT 〉 is actually a normal tree for G defined
by 〈VG, edgG〉 and another monadic second-order formula ϕ(u, x) can express
that, if ψ is true, then x belongs to fT (u).

Definition 3 : Clique-width
(a) The clique-width of a graph is defined from operations that construct

graphs equipped with vertex labels. Let C be a finite set of labels. A C-graph
is a triple G = (VG, edgG, πG) where πG is a mapping: VG → C. We define FC

as the following set of operations on C-graphs: ⊕ is the union of two disjoint
C-graphs, the unary operation relabh changes every vertex label a into h(a)

where h is a mapping from C to C, the unary operation
−−→
adda,b, for a 6= b, adds

6

Figure 1: A graph G, a tree T and the tree T ′ of Proposition 7.

an edge from each a-labelled vertex x to each b-labelled vertex y (unless there
is already an edge x→ y) and for each a ∈ C, the nullary symbol a denotes an
isolated vertex labelled by a. For building undirected graphs, we use adda,b to
add undirected edges. It is useful to write a(x) instead of a in order to indicate
the corresponding vertex x.

Every term t in T (FC), called a clique-width term, denotes a C-graph val(t)
(for details see [7] or [5]). The clique-width of a graph G, denoted by cwd(G),
is the least integer k such that G is isomorphic, up to vertex labels, to val(t)
for some t in T (F{1,...,k}). Our proofs will use a characterization of clique-width
not using vertex labels (see Definition 4).

(b) Relative clique-width. As disjoint union is associative and commutative,
one can make it into an operation of variable arity and define ⊕(t1, ..., tm) for
m ≥ 2 as t1 ⊕ (...⊕ tm)...) or with any other arrangement of parentheses, even
after permuting the arguments. We denote by F+

C the set FC augmented with
the operations ⊕(...). The notion of clique-width is not modified by using F+

C

instead of FC . When writing terms over F+
C , we will denote with prefix notation

the occurrences of ⊕ of arity 2, as those of larger arity.
Let t ∈ T (F+

C) denote a C-graph val(t) = G. Let red(t) be the correspond-
ing reduced term: it is obtained from t by removing the unary operations and
replacing each nullary symbol a(x) by the corresponding vertex x of G. For ex-
ample, if t = adda,b(⊕(addb,c(⊕(b(1), c(2))), adda,c(⊕(a(3), c(4))),a(5))), then
red(t) = ⊕(⊕(1, 2),⊕(3, 4), 5)). We will also consider red(t) as a rooted tree

7

whose leaves are the vertices.
If G is a graph and r is a reduced term whose set of nullary symbols is VG,

we denote by rcwd(G, r) the minimum number of labels in a term t ∈ T (F+
C)

such that val(t) = G up to vertex labels and red(t) = r. This value is called
the relative clique-width of G with respect to r. Its computation is NP-complete
[19]. The present definition is a small generalization of that of [18] because we
do not restrict ⊕ to be binary and we allow graphs to be directed.

Replacing ⊕(t1, ..., tm) by t1⊕(...⊕tm))...) modifies the relative clique-width.
Consider for an example the graph H (the ”house”) consisting of the cycle
1−2−3−4−5−1 augmented with the edge 1−3. Let r = ⊕(2,⊕(1, 3),⊕(4, 5)).
It is not hard to see that cwd(G, r) = 5. If r′ = ⊕(2,⊕(⊕(1, 3),⊕(4, 5))), then
cwd(G, r′) = 4.

(c) Rank-width is a complexity measure for undirected graphs defined and
investigated in [15, 20, 21, 22]. The rank-width rwd(G) of an undirected graph
G satisfies the inequalities:

rwd(G) ≤ twd(G) + 1 and rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1.

We will use rank-width only through these inequalities and the results of
[15]. The rank-width of directed graphs is defined and studied in [17]. It is also
equivalent to clique-width.

Definition 4 : Partition trees.
A partition tree of a graph G is a pair (T,$) such that T is a rooted tree

whose set of leaves is VG, all inner nodes have at least two sons, and $ is a
mapping that associates with every node u of T a partition $(u) of LT (u), the
set of vertices of G below u, that satisfies the following conditions, for every
inner node u of T with sons u1, ..., up:

1) Refinement : the partition $(u1)] ...] $(up) of LT (u) refines
$(u) and

2) Adjacency : if (x, y) ∈ edgG, if X and Y are parts of $(u) such
that x ∈ LT (ui) ∩X, y ∈ LT (uj) ∩ Y and i 6= j, then X 6= Y and
X × Y ⊆ edgG.

The width of (T,$) is the maximal cardinality of $(u) for some node u of T .
The article [8] establishes that the clique-width of a graph is the minimal width
of a partition tree of this graph. The proof transforms a partition tree (T,$)
of G of width p into a clique-width term t using p labels such that T = red(t)
and G = val(t). This result is proved in [8] for undirected graphs, but its proof
extends to directed graphs in a straightforward manner.

Remark : If (T,$) is a partition tree of G, then for each node u of T ,
the partition $(u) refines Ω(LT (u)) : consider x, x′ in some part of $(u) and
y ∈ VG − LT (u) such that (x, y) ∈ edgG or (y, x) ∈ edgG. The adjacency

8

condition applied to x, y and the least common ancestor of u and y shows that
(x′, y) ∈ edgG, or, respectively, (y, x′) ∈ edgG. Hence, x, x′ are in a same part
of Ω(LT (u)).

1.2 Tree-width compared to clique-width : a review of
known results

For every graph G, we have twd(Und(G)) = twd(G) and cwd(Und(G)) ≤
cwd(G).

Theorem 5 : For all graphs G, the following hold:
(1) twd(G) is unbounded in terms of cwd(G),
(2) cwd(G) ≤ 3.2twd(G)−1 if G is undirected,
(3) cwd(G) ≤ 22twd(G)+2 + 1 if G is directed.
(4) There is no constant a such that cwd(G) = O(twd(G)a) for all graphs

G.

Proof: Cliques have clique-width 2 and unbounded tree-width, this proves
(1); assertions (2) and (4) are proved in [2]. For assertion (3) see [7], Proposition
2.114. �

For sparse graphs, we have the following results. (Kr is the class of graphs
G such that Und(G) does not contain a subgraph isomorphic to Kr,r).

Theorem 6 : For all graphs G, the following hold:
(1) If G has maximal degree at most d (with d ≥ 1) we have:

(1.1) twd(G) ≤ 3.d.cwd(G)− 1,

(1.2) cwd(G) ≤ 20.d.(twd(G) + 1) + 2.

(2) If r ≥ 2 and G ∈ Kr we have twd(G) ≤ 3.(r − 1).cwd(G)− 1.

Proof : Assertion (2) is from [13] (also [7], Proposition 2.115) and it yields
(1.1). Assertion (1.2) is proved in [3] by means of a strong result of [23]. �

Theorem 6(2) shows that, for each m, twd(G) = O(cwd(G)) if G is uniformly
m-sparse. An opposite (polynomial) bounding will be established in Theorem
12.

2 From tree-decompositions to clique-width terms

Here is our main construction. We will make it into an algorithm in Section 5.
A variant of it is in the proof of Theorem 15.

9

Proposition 7: Let (T, f) be the 1-downwards-increasing tree-decomposition
of a graph G. If |Ω(T<(u), f(u))| ≤ m for every node u of T , then cwd(G) ≤
m+ 1.

Proof : We assume that G has at least 2 vertices, so that the root of T is
an inner node. The tree T is normal for G; we can assume that f = fT , but
this is not necessary for the following construction.

We define a partition tree (T ′, $) of G. We first define T ′ :

i) for each inner node u of T , we define a new node û (”new” means
different from all nodes of T),

ii) NT ′ := NT ∪ {û | u is an inner node of T},

iii) the root of T ′ is r̂ootT , pT ′(û) := p̂T (u) if u is an inner node that

is not rootT , pT ′(u) := û if u is an inner node and pT ′(u) := p̂T (u)
if u is a leaf of T .

Hence T ′ is a rooted tree whose leaves are the nodes of T . See Figure 1 in
the previous section for an example. We now define $:

iv) $(u) := {{u}} if u is a leaf of T ′ (a node of T and also a vertex
of G),

v) $(û) := {{u}} ∪ Ω(T<(u), f(u)) otherwise (u is an inner node of
T and also a vertex of G).

The set LT ′(û) of leaves of T ′ below û is T≤(u) and $(û) is a partition of
this set.

First, we note that Ω(T<(u), f(u)) = Ω(T<(u)) by Lemma 2 because the
neighbours of x ∈ T<(u) not in this set are in f(u). We check the Refinement
Condition of Definition 4. Let û be an inner node of T ′ with sons w1, ..., wp and
u, where each wi is a leaf or an inner node ûi. Let x, y be distinct elements of
some X ∈ $(ûi). We verify that they belong to some Y ∈ $(û). The set X
is a part of some partition Ω(T<(ui), f(ui)) that is equal to Ω(T<(ui)). Since
T<(ui) ⊆ T<(u), we have Ω(T<(ui)) vp Ω(T<(u)), hence x, y belong to some
Y ∈ Ω(T<(u)) = Ω(T<(u), f(u)) ⊆ $(û).

We now check the Adjacency Condition. Let û be an inner node of T ′ with
sons w1, ..., wp as above and wp+1 = u. Consider (x, y) ∈ edgG and X,Y ∈ $(û)
such that x ∈ X ∩ LT ′(wi), y ∈ Y ∩ LT ′(wj) and i 6= j. As there are no edges
between LT ′(wi) and LT ′(wj) if i, j ≤ p, we must have i or j, say i, equal to
p+ 1. Hence, x = u and X = {x} 6= Y . If y′ ∈ Y , then y′ ∼T<(u),f(u) y, hence
(x, y′) ∈ edgG as x ∈ f(u). Hence, {x} × Y ⊆ edgG as was to be proved.

The number of classes of $(û) is at most m + 1, which gives the result by
the main theorem of [8].�

Remarks 8: (1) The tree T ′ is NewTree(rootT) where NewTree is defined
recursively as follows:

10

if u is a leaf of T , then NewTree(u) := u,

if u1, ..., ur are the sons of u, then

NewTree(u) := û(u,NewTree(u1), ..., NewTree(ur)).

In the example of Figure 1, T = â(a, b, ĉ(c, ê(e, g, h), i), d).
(2) The tree T ′ is red(t) where t is the clique-width term constructed from

(T ′, $) to denote G by the method of of [8].
(3) For undirected graphs G, the article [15] uses the inequality cwd(G) ≤

2.λG(rwd(G)) − 1, that gives cwd(G) ≤ 2.λG(twd(G) + 1) − 1. Proposition 7
yields better bounds, based on the inequality cwd(G) ≤ λG(twd(G) + 1) + 1
that is valid for directed graphs as well, and on some combinatorial lemmas.

3 Sparse graphs

We first consider the class P of (simple) planar graphs. They are uniformly
3-sparse.

3.1 Planar graphs

We know from [15] that tree-width, clique-width and rank-width are linearly
equivalent for undirected graphs embeddable in a fixed surface. We establish
bounds relating tree-width and clique-width for directed and undirected pla-
nar graphs, based on Proposition 7. An algorithm that constructs clique-width
terms from tree-decompositions is given in Section 5. It does not use any plane
embedding of the input graph.

Smoothing a vertex x of degree 2 that has neighbours y and z in an undirected
graph means replacing x and its two incident edges by a single edge between
y and z, and fusing the parallel edges that may result. This transformation
preserves planarity.

Lemma 9: Let G ∈ P and k ≥ 3.
1) If G is undirected, then λG(k) ≤ 6k − 9.
2) If G is directed, then λG(k) ≤ 32k − 57.
If |Y | ≤ 2, the upper bounds are respectively 4 and 13.

Proof: 1) This assertion is Proposition 11 of [15]. We prove it for complete-
ness and in order to prove the assertion about directed graphs. We consider
disjoint sets X and Y with Y of cardinality k, and we bound the number of
parts of Ω(X,Y), i.e. of classes of ∼X,Y .

We define the type of a vertex of X as the number of its neighbours in Y and
the type of an equivalence class of ∼X,Y as the common type of all its elements.
We will prove the results for bipartite graphs having edges between X and Y
only. This suffices because removing the other edges and the vertices in Xc−Y
preserves planarity and does not modify ∼X,Y and Ω(X,Y).

11

The equivalence ∼X,Y has at most k classes of type 1 and one class of type 0,
without needing the assumption that G is planar. Next we consider the vertices
of type 2. We remove from G the vertices of X of type different from 2. We get
a planar graph G′ whose vertices that are in X have degree 2. By smoothing
these vertices we get a graph H ∈ P with vertex set Y of cardinality k. Each
edge of H corresponds to an equivalence class of ∼X,Y of type 2. Hence, there
are at most 3k − 6 classes of type 2.

We now consider the vertices of type at least 3. We remove from G the
vertices of X of type at most 2. We get a bipartite graph K ∈ P with edges
between VK∩X and Y . Let a := |VK ∩X| . As each vertex in VK∩X has degree
at least 3 in K, 3a ≤ |EK | . As K is planar and bipartite, |EK | ≤ 2 |VK | − 4.
Hence, 3a ≤ |EK | ≤ 2(a+k)−4 which gives a ≤ 2k−4. The number equivalence
classes of type at least 3 is at most |VK ∩X| = a. (Each equivalence class of type
at least 3 has at most 2 elements, because otherwise, K3,3 would be a subgraph
of G that is assumed planar). Hence, we get at most 1+k+3k−6+2k−4 = 6k−9
classes.

2) Assume now that G is directed. We consider the simple undirected graph
Und(G) obtained from G by forgeting edge directions and fusing any two parallel
edges. It has at most one class of type 0 and at most 3k classes of type 1. Each
class of Und(G) of type 2 splits into at most 9 classes of G with same neighbour
vertices, which gives at most 9(3k−6) classes. The above proof for an undirected
graph shows that 2k − 4 bounds the number of vertices of K of degree at least
3. This number bounds also the number equivalence classes of type at least 3 of
G. Hence, we get the upper bound: 1 + 3k + 9(3k − 6) + 2k − 4 = 32k − 57.

The bounds 3k − 6 (resp. 2k − 4) on numbers of edges of simple planar
graphs (resp. bipartite graphs) are valid if k ≥ 3. Otherwise, inspecting the
proofs yields the bounds 1 + 2 + 1 = 4 for undirected graphs and 1 + 3 + 9 = 13
for directed graphs. �

Theorem 10 : The clique-width of a simple planar graph of tree-width
k ≥ 2 is at most 32k− 24 if it is directed, and at most 6k− 2 if it is undirected.

Proof : We apply Lemma 9 and Proposition 7, noting that each set f(u)
has at most k + 1 elements. We get the bounds 32(k + 1)− 57 + 1 = 32k − 24
on the clique-width and 6(k + 1)− 9 + 1 = 6k − 2 for an undirected graph. �

The article [15] proves that, for G undirected and embeddable in a surface
of Euler genus r (i.e., a sphere with h handles and r− 2h crosscaps) the bounds
3k − 6 and 2k − 4 in the proof of Lemma 9(1) are replaced by 3k − 6 + 3r and
2k − 4 + 2r respectively. The corresponding modifications of Lemma 9(2) and
Theorem 10 give the bounds cwd(G) ≤ 32.twd(G) + O(r) for G directed and
cwd(G) ≤ 6.twd(G) +O(r) for G undirected and embedded on some surface of
genus r.

12

3.2 Uniformly m-sparse graphs

Lemma 11: Let k ≥ m > 1 and G be uniformly m-sparse.
1) If G is undirected, then λG(k) < k.m+ km/(m− 1)!.
2) If G is directed, then λG(k) < k.m+ (3k)m/(m− 1)!.

Proof: Let k ≥ m > 1 and G be uniformly m-sparse. We let X and Y be
as in the proof of Lemma 9 and we bound |Ω(X,Y)| .

1) Let G be undirected and H be an orientation of G of indegree at most
m. As in the proof of Lemma 9, we can assume that G is bipartite with edges
between X and Y .

Let X1 be the set of vertices x ∈ X such that N+
H (x) is not empty. Since

the orientation has indegree at most m and N+
H (x) ⊆ Y, |X1| ≤ m.k and hence,

|Ω(X1, Y)| ≤ |X1| ≤ m.k. (Ω is relative to G). For each vertex x of X2 := X−X1

we have N+
H (x) = ∅ and N−H (x) is a subset of Y of cardinality at most m. There

are at most γ(k,m) < km/(m − 1)! such sets by an observation in Section
1.1, hence, |Ω(X2, Y)| < km/(m − 1)!. We get the claimed upper-bound since
|Ω(X,Y)| ≤ |Ω(X1, Y)|+ |Ω(X2, Y)| .

2) We apply this argument to Und(G) that is uniformly m-sparse. We still
have |Ω(X1, Y)| ≤ m.k but |Ω(X2, Y)| < 3m.km/(m−1)! as each edge of H can
arise from three configurations of edges in G.�

Theorem 12: For each m, if G is uniformly m-sparse, then cwd(G) =
O(twd(G)m).

Proof: Immediate consequence of Lemma 11 and Proposition 7. �

We get cwd(G) = O(twd(G)dd/2e) for graphs of degree at most d (where the
constant depends on d), but Theorem 6(1.2) gives a (better) linear upper-bound.
Since planar graphs are uniformly 3-sparse, we get cwd(G) = O(twd(G)3) for
them, but Theorem 10 also gives linear upper-bounds.

The undirected graphs that omit a fixed graph H as a minor or as a topo-
logical minor are uniformly m-sparse for some m. For these classes, tree-width,
clique-width and rank-width are linearly equivalent by Theorems 10 and 16 of
[15].

Every uniformly m-sparse graph G belongs to K2m+1. For undirected graphs
H in Kr, we have cwd(H) = O(γ(twd(H), r)) = O(twd(H)r) by a result of [15],
which yields cwd(G) = O(twd(G)2m+1) but the bound of Theorem 12 is better.

4 Bipartite graphs and hypergraphs

A bipartite graph G is d-bounded if all vertices of one part of VG have degree
at most d. For such a graph, Und(G) has an orientation of indegree at most d,
hence Theorem 12 gives cwd(G) = O(twd(G)d).

13

Bipartite gaphs are interesting for many reasons. In particular, they can
encode incidence graphs and hypergraphs as we will see, and also SAT problems
[14].

Definition 13 : Hypergraphs and their tree-decompositions.
(a) A hypergraph is a triple H = (VH , EH , incH) such that VH and EH are

disjoint sets and incH ⊆ VH × EH ; VH is the set of vertices, EH is the set
of hyperedges and (v, e) ∈ incH means that v is a vertex of e (we also say
that e is incident to v). In order to avoid uninteresting technical details, we
assume that each hyperedge has at least 2 vertices and each vertex belongs to
some hyperedge (similarly, graphs are loop-free without isolated vertices). A
hypergraph is a q-hypergraph if its hyperedges have at most q vertices. The
directed bipartite graph associated with H is Bip(H) := (VH ∪ EH , incH) and
H can be reconstructed from Bip(H). If H is a q-hypergraph, then Bip(H) is
q-bounded. We also define the undirected graph K(H) with set of vertices VH
and edges between any two vertices belonging to some hyperedge.

(b) A tree-decomposition of a hypergraph H is a pair (T, f) as for graphs
except that every hyperedge must have all its vertices in some set f(u). Equiva-
lently, (T, f) is a tree-decomposition ofK(H) because for any tree-decomposition
(T ′, g) of a graph, each clique of this graph is contained in some set g(u). The
width of (T, f) and the tree-width twd(H) of H together with the notion of a
1-downwards increasing decomposition are as for K(H).

Figure 2 shows the graph G = Bip(H) associated with a 3-hypergraph H
with hyperedges t, u, v, w, x, y, z and the tree T of a tree-decomposition (T, f)
of width 5; the function f is defined in the following table.

u f(u) u f(u)

a a g e, g, h, i
b a, b h h
c a, b, c i i
d a, c, d j j
e a, c, e, f, h, i

Lemma 14 : (1) For every hypergraph H, twd(Bip(H)) ≤ twd(H) + 1 and
twd(H) is unbounded in terms of twd(Bip(H)).

(2) If H is a q-hypergraph, then twd(H) ≤ q(twd(Bip(H)) + 1)− 1.

Proof sketch: (1) Let (T, f) be a tree-decomposition of H. For each hyper-
edge e, there is a node u of T such that all vertices of e are in f(u) and we add to
T a new son u′ of u with associated set {e}∪ f(u). We get a tree-decomposition
of Bip(H) of width twd(Bip(H)) + 1.

The reader will find an example such that twd(Bip(H)) = 3 and twd(H) = 2.
For each n, we have twd(Bip(H)) = 1, twd(H) = n if H has one hyperedge with
n+ 1 vertices.

(2) Let (T, f) be a tree-decomposition of Bip(H) of width k such that H is
a q-hypergraph. We define:

14

Figure 2: Bip(H) and the tree T of a tree-decomposition of H.

f ′(u) := f(u)∪
{x ∈ VH | incH(x, e) for some e ∈ f(u)∩EH}−(f(u)∩EH).

Then (T, f ′) is a tree-decomposition of H and |f ′(u)| ≤ q. |f(u)| ≤ q(k + 1)
which yields the result.�

Hence, the tree-width of a q-hypergraph and that of its associated bipartite
graph are linearly related. If H is a q-hypergraph, we have cwd(Bip(H)) =
O(twd(Bip(H))q) by Theorem 12. We now relate the clique-width of Bip(H)
to the tree-width of H. We have cwd(Bip(H)) = O(twd(H)q) by this fact and
Lemma 14 but we can do better4.

Theorem 15 : For every q-hypergraphH, we have cwd(Bip(H)) = O(twd(H)q−1).

Proof: We modify the construction of Proposition 7. Let H be a q-
hypergraph andG := Bip(H) where VG = VH∪EH . Let (T, f) be a 1-downwards
increasing tree-decomposition of H (equivalently, of K(H)), with NT = VH .
Hence, T is normal for K(H) and each vertex x is the maximal node u of T
such that x ∈ f(u). Every hyperedge e has all its vertices in some set f(w).
Hence w ≤T x for each vertex x of e. These vertices are on the path in T be-
tween the root and w, and we call the smallest one with respect to ≤T the first
vertex of e. If X ⊆ VH we denote by E(X) the set of hyperedges having at least
one vertex in X.

4A similar result in [1] states that cwd(S(H)) = O(twd(H)q−1) if H is a q-hypergraph and
S(H) is Bip(H) augmented with undirected edges between any two vertices of H.

15

Figure 3: Tree T ′ for the example of Figure 2.

As in the proof of Proposition 7, we construct from (T, f) a partition tree
(T ′, $) of G. We first define T ′ :

i) for each u ∈ NT , we define a new node û,

ii) NT ′ := NT ∪ EH ∪ {û | u ∈ NT },
iii) the root of T ′ is r̂ootT and if u is not the root, then pT ′(û) :=

p̂T (u),

iv) if u ∈ NT , then pT ′(u) := û,

v) if e ∈ EH and its first vertex is u, then pT ′(e) := û.

Hence LT ′ = NT ∪EH and LT ′(û) = T≤(u)∪E(T≤(u)) if u is an inner node.
The tree T ′ is NewTree(rootT) where NewTree is defined recursively, sim-

ilarly as in Remark 8(1), by :

NewTree(u) := û(u,NewTree(u1), ..., NewTree(ur), e1, ..., es),

if u1, ..., ur are the sons of u and e1, ..., es are the hyperedges whose
first vertex is u.

Figure 3 shows T ′ for H and T of Figure 2. The first vertices of hyperedges
u, v, w, x are respectively c, d, e and e. The left-right ordering of sons of a node
is irrelevant.

We now define $, where the mapping Ω is relative to the graph G = Bip(H):

16

vi) $(u) := {{u}} if u ∈ NT ∪ EH ,

vii) $(û) := {{u}} ∪ {T<(u)} ∪ Ω(E(T≤(u)), f(u)).

In order to verify the two conditions of Definition 4, we make two observa-
tions. First, if x ∈ T≤(u) and e ∈ E({x}) = NG(x), then NG(e) ⊆ NK(H)(x) ⊆
T<(u)] fT (u) ⊆ T<(u)] f(u) by Lemma 2. Second, for each e with first vertex
u, NG(e) ∩ T<(u) = ∅, hence, NG(e) ⊆ f(u).

We check the Refinement Condition. The only nontrivial case to check is
$(û) vp $(û′) where u′ = pT (u) :

$(û) := {{u}} ∪ {T<(u))} ∪ Ω(E(T≤(u)), f(u)),

$(û′) := {{u′}} ∪ {T<(u′)} ∪ Ω(E(T≤(u′)), f(u′)).
We have T<(u) ⊆ T<(u′) and E(T≤(u)) ⊆ E(T≤(u′)).
Every neighbour in f(u′) of a hyperedge in Z := E(T≤(u)) belongs to f(u)

by the second observation made above. Hence, if two hyperedges of Z are in a
same part of Ω(Z, f(u)), they are in the same part of Ω(E(T≤(u′)), f(u′)).

We now check the Adjacency Condition. Let (x, e) ∈ (X × Y) ∩ edgG ⊆
VH×EH where X,Y are parts of $(û). The sons of û in T ′ are u, the hyperedges
e1, ..., ep having first vertex u and the nodes û1, ..., ûr such that u1, ..., ur are
the sons of u in T . We also assume that x and e are below different sons of û.
Clearly, X 6= Y .

Case 1 : x = u and e ∈ Y ⊆ E(T≤(u)). Then X × Y = {u} × Y ⊆ incH =
edgG because Y is a part of Ω(E(T≤(u)), f(u)) and u ∈ f(u).

Case 2 : x ∈ T<(u) and e ∈ Y ⊆ E(T≤(u)). Then, x ∈ T≤(ui) for some i and
the first vertex of e is in T≤(ui). This contradicts the hypothesis that x and e
are below different sons of û. Hence, this case cannot happen.

The width of the partition tree (T ′, $) is the maximum cardinality of a set
$(û) = {{u}}∪{T<(u)}∪Ω(E(T≤(u)), f(u)). We have E(T≤(u)) = E(T<(u))∪
{e1, ..., ep} where e1, ..., ep are the hyperedges with first vertex u. If the width
of (T, f) is k, then |f(u)| ≤ k + 1. Each hyperedge e ∈ EH has at most q
neighbours. We first consider the hyperedges in E(T<(u)) that contain u. They
have at most q− 1 other vertices in the set f(u)−{u} of cardinality at most k.
Hence, Ω(E(T<(u)) ∪ {e1, ..., ep}, f(u)) has at most γ(k, q − 1) parts consisting
of such hyperedges (among whose are e1, ..., ep). Its parts that do not contain
u contain only hyperedges e having at least one neighbour in T<(u). So these
hyperedges have at most q−1 vertices in f(u) and there are at most γ(k+1, q−1)
such parts. This gives |$(û)| ≤ 2 + γ(k, q − 1) + γ(k + 1, q − 1) = O(kq−1).�

Incidence graphs
Let G be undirected. Its incidence graph Inc(G) is the bipartite graph (VG∪

EG, incG) such that incG := {(v, e) ∈ VG × EG | v is a vertex of e}. If G is
considered as a 2-hypergraph, then Inc(G) = Bip(G).

17

If G is directed, then Inc(G) is defined as (VG ∪ EG, incG) with incG :=
{(v, e) ∈ VG × EG | e : v →G w for some vertex w} ∪ {(e, v) ∈ EG × VG | e :
w →G v for some vertex w}.

Tree-width and clique-width for G and Inc(G) are related as follows:

twd(G) ≤ twd(Inc(G)) ≤ twd(G) + 1 and5

twd(Inc(G)) ≤ 6.cwd(Inc(G))− 1 by Theorem 6(2).

The proof of Theorem 15 yields cwd(Inc(G)) ≤ 2.twd(G) + 5 for G undi-
rected. However, a slightly more complicated proof gives the following bounds
proved in [1] in a different way.

Theorem 16: We have cwd(Inc(G)) ≤ twd(G) + 3 if G is undirected and
cwd(Inc(G)) ≤ 2.twd(G) + 4 if it is directed.

Proof sketch : Let (T, f) be a 1-downwards increasing tree-decomposition
of width k of G, undirected. We define a tree T ′ with set of nodes VG∪EG∪{û |
u ∈ VG ∪ EG} by T ′ := NT (rootT) such that (cf. Remark 8(1) and Theorem
15), for u ∈ NT :

NT (u) := ês(es, ês−1(es−1,, ê1(e1,û(u,NT (u1), ..., NT (ur))...)),

where u1, ..., ur are the sons of u and e1, ..., es are the edges whose
first vertex is u.

The definition of $ will use the following notation for u ∈ NT = VG:

E<(u) is the set of edges of G whose two ends are in T<(u),

E≤(u) is the set of edges with one end in T<(u), the other being u,

E<>(u) is the set of edges with one end in T<(u), the other being
an ancestor of u.

For a leaf x of T ′ (x ∈ VG ∪ EG),

$(x) := {{x}}.

For an inner node u of T :

$(û) := {{u}, E≤(u), E<(u) ∪ T<(u)} ∪ Ω(E<>(u), f(u)− {u}).

For an edge ei as in the definition of NT :

$(êi) := {{u}, {ei}, E≤(u) ∪ E<(u) ∪ T<(u)}∪
Ω(E<>(u) ∪ {ei, ..., es}, f(u)− {u}).

5If G is simple and undirected, then twd(G) = twd(Inc(G)). If G consists of two opposite
directed edges, then twd(G) = 1 and twd(Inc(G)) = 2.

18

Claim 1 : (T ′, $) is a partition tree of G.
Proof : Most verifications are straighforward. The least obvious one is that

$(êi) vp $(ŵ) where w = pT (u). For that purpose, we prove :

Ω(E<>(u) ∪ {e1, ..., es}, f(u)− {u}) vp

{E≤(w)} ∪ Ω(E<>(w), f(w)− {w}).

Let e, e′ be in some part X of Ω(E<>(u)∪{e1, ..., es}, f(u)−{u}). The first
vertices of e, e′ are in T≤(u). Their second vertices are in f(u) − {u}, hence
must be equal, say to some w′. If w′ = w, then e, e′ ∈ E≤(w). Otherwise,
w <T w′, e, e′ ∈ E<>(w) and w′ ∈ f(w)− {w}. Hence, e, e′ are in a same part
of Ω(E<>(w), f(w)− {w}), as was to be proved.�

Claim 2 : The width of (T ′, $) is at most k + 3.
Proof : Consider $(û). As f(u)−{u} has at most k elements and each edge in

E<>(u) has a unique vertex in f(u)−{u}, the partition Ω(E<>(u), f(u)−{u})
has at most k parts. This argument gives the same bound for $(êi).�

If G is directed, the construction is the same except that in the definition
of $(û), the set E≤(u) is replaced by the two sets E+

≤(u) and E−≤(u) defined
respectively as the set of edges with tail in T<(u) and head u, and, vice versa,
head in T<(u) and tail u. Because edges have two possible directions but there
are no pairs of opposite edges, the sets Ω(E<>(u), f(u)− {u}) have at most 2k
parts. This gives the bound 2k + 4 for the width of (T ′, $).�

Applications to FPT algorithms.
The system AUTOGRAPH, cf. [5, 6] checks monadic second-order (MS)

properties of graphs of clique-width at most k for ”small” values of k. It can even
compute values associated with graphs such as their numbers of p-colorings. In-
put graphs must be given by clique-width terms. In order to use AUTOGRAPH
for graphs G given by tree-decompositions (T, f) of width at most w, we need
that the bound g(w) on the clique-width of G remains in the range of acceptable
values, typically is not 2w.

Theorem 16 indicates that AUTOGRAPH can be used to check MS prop-
erties of incidence graphs Inc(G) for graphs G of ”small” tree-width because
there is no exponential jump as in Theorem 5(2,3). Furthermore, these prop-
erties can be seen as expressed by MS formulas using edge set quantifications:
they are more expressive than the MS formulas interpreted over (VG, edgG) (but
bounded tree-width is necessary for having FPT algorithms). This observation
is developped in [4].

5 Constructing clique-width terms from tree-
decompositions

In order to use AUTOGRAPH for graphs given by tree-decompositions, we need
to transform efficiently these decompositions into ”good” clique-width terms.

19

In all our proofs that bound clique-width in terms of tree-width, a tree T ′

constructed from the tree T of a given tree-decomposition (see Proposition 7
and Theorem 15) is used as syntactic tree of the constructed clique-width term,
except for Assertion (1.2) in Theorem 6, because its proof is based on a difficult
result of [23] that restructures in a complicated way the tree T .

We present an algorithm that implements the construction of Proposition 7.
From a normal tree T (the tree of a 1-downwards increasing tree-decomposition)
of the given graph G, a first algorithm computes the graph representation
D(T ′, $) of the partition tree (T ′, $) of Proposition 7. Then, the algorithm
of Proposition6 3.7 of [8] builds a clique-width term t of same width as $ such
that val(t) = G and red(t) = T ′. We obtain a better computation time than
the one arising from the algorithm of [18] that approximates the relative clique-
width.

Definition 17 : Graph representation of a partition tree.
Let (T,$) be a partition tree of width p of a graph G. We use the notation

of Definition 4. We define a directed graph D = D(T,$) as follows :

VD := NT]WD where WD := {(u,X) | u ∈ NT , X ∈ $(u)},
ED consists of the edges of T and the following ones:

(i) the edges u→ (u,X) such that u ∈ NT , X ∈ $(u),

(ii) the edges (pT (u), X)→ (u, Y) such that Y ⊆ X,
(iii) the edges (u,X) → (u, Y) such that (X,Y) is as in the Adja-
cency Condition of Definition 4.

The edges of type (iii) are not present in the definition given in [8], but they
make it possible to construct the clique-width term without using the adjacency
matrix of G. This construction is possible in time O(p. |ED|) and yields a term
of width p.

Let n be the number of vertices of G and m := |edgG| (if G is undirected,
an edge counts as two directed (opposite) edges).

Claim 1 : The number of edges of D of type (iii) is at most m.
Proof : For each triple (u,X, Y) as in the Adjacency Condition, we choose

an edge x → y such that x ∈ X and y ∈ Y that we denote by (u,X, Y).
Clearly, u is the least common ancestor of x and y in T . If u 6= u′, then
(u,X, Y) 6= (u′, X ′, Y ′). If (u,X, Y) = (u,X ′, Y ′), we have (X,Y) = (X ′, Y ′)
because X,Y,X ′ and Y ′ are parts of the partition $(u). This proves that the
number of such triples (u,X, Y) is at most m.�

Claim 2 : D has O(n.p) vertices and O(m+ n.p) edges.

6This proposition indicates the time bound O(p.d+n2) where d is the number of vertices
of D, n the number of vertices of G. The term n2 can be replaced by m, the number of edges
of G. We get the time bound O(p2.n + m).

20

Figure 4: A tree T and the corresponding tree T ′.

Proof : We have |NT | ≤ 2n − 1 and |WD| ≤ n + p(n − 1). We have
|ET | ≤ 2n− 2, and D has at most n+ p(n− 1) edges of type (i), at most p. |ET |
edges of type (ii) and at most m edges of type (iii) by Claim 1. �

Algorithm 18 :From a normal tree to the graph of a partition tree.
We will construct D(T ′, $) for a graph G and a normal tree T for this graph,

where T ′ is defined in the proof of Proposition 7. We recall that the set of nodes
of T ′ is NT ′ = NT ∪ {û | u is an inner node of T}.

Preliminary observations.
Before presenting the algorithm, we show how the graph D(T ′, $) looks

like. Figure 4 shows a portion of a tree T and the corresponding portion of T ′.
Figure 5 shows vertices (u,X) of D = D(T ′, $) corresponding to the nodes
u of T ′ shown in Figure 4. Figure 5 is based of the following assumptions :
Ω(T<(a)) = {A1, A2},Ω(T<(c)) = {C1, C2}, A1 = {b, c} ∪ C2, A2 = C1, and we
have : ({a} ×A2) ∪ (A1 × {a}) ∪ ({c} × C1) ∪ ({c} × C2) ⊆ edgG.

The Adjacency Condition produces the edges of D of type (iii): (â, {a}) →
(â, A2), (â, A1) → (â, {a}), (ĉ, {c}) → (ĉ, C1) and (ĉ, {c}) → (â, A2). Since
b, c ∈ A1, we have edges b→ a and b→ c in G.

The algorithm takes as input an undirected graph G and a normal tree T
for it. For each x ∈ NT = VG we define :

d(x) as its depth in T (the root has depth 0),

Ni(x) := {y ∈ VG | x <T y, (x, y) ∈ edgG, d(y) ≤ i}, where i < d(x),

∂ := max{
∣∣Nd(x)−1(x)

∣∣ | x ∈ NT } = max{|Ni(x)| | x ∈ NT , i <
d(x)}.

21

Figure 5: The graph D(T ′, $).

Fact 1 : If T is the tree of a 1-downwards increasing tree-decomposition of
width k, then ∂ ≤ k + 1 by Lemma 2.

Fact 2 : If x, y <T u, then x and y are in a same part of Ω(T<(u)) ⊆ $(û)
if and only if Nd(u)(x) = Nd(u)(y).

If X ∈ Ω(T<(u)), we can define Nd(u)(X) as Nd(u)(x) for any x in X because
this set is the same for all such x.

Fact 3 : Let X ∈ Ω(T<(u)) and Y ∈ Ω(T<(u′)) where u′′ is the common
father of u and u′ (we may have u = u′). These sets are included in a same part
Z of Ω(T<(u′′)) if and only if Nd(u)(X)−{u} = Nd(u′)(Y)−{u′}, which is easy
to decide, and then Nd(u′′)(Z) = Nd(u)(X)− {u}.

We now review the graph D(T ′, $). Its vertices are the nodes of T ′, the
pairs (u, {u}) for all u ∈ NT = VG, and the pairs (û, {u}) and (û, X) for all
inner nodes u of T and parts X of Ω(T<(u)). Its edges are those of T ′ and the
following ones:

of type (i) : u→ (u, {u}), û→ (û, {u}) and

û→ (û, X) for X ∈ Ω(T<(u)),

of type (ii) : (û, {u}) → (u, {u}) if u is an inner node, and, letting
u′ be the father of u:

(û′, X)→ (u, {u}) if u is a leaf and u ∈ X,

22

(û′, X)→ (û, {u}) if u is an inner node and u ∈ X,

(û′, X)→ (û, Y) if Y ⊆ X.

of type (iii) : (û, X)→ (û, {u}) and (û, {u})→ (û, X) if u ∈ X.

Since G is undirected, we have pairs of opposite edges of type (iii). By the
definition of (T ′, $), there are no edges of the form (û, X) → (û, Y) because
there is no edge between two vertices in T<(u).

The algorithm for G undirected.
Its input is T together with, for each x ∈ NT , the set Nd(x)−1(x). (These sets

are easily computed from standard data structures for G and T). The graph G,
assumed without isolated vertices, is completely defined from this data, whose
size is O(|EG|).

We assume that T ′ has already been constructed. By traversing it (or rather
T) in a bottom-up way, we build the directed graph D(T ′, $) by adding succes-
sively the vertices and edges reviewed above. A vertex (û, X) is not implemented
”directly” as a pair including the list X (because this would be time and space
consuming) but by pointers towards û and the sequence Nd(u)(X) of length
at most ∂. We order the sets Nd(u)(X) according to ≤T in order to facilitate
the comparison of two of them. We may have Nd(u)(X) = ∅. We will say that
Nd(u)(X) encodes X at node û of T ′.

Processing a node u of T is done as follows:
(a) If u is leaf of T , we add to the current graph (that contains T ′ and other

vertices and edges) the vertex (u, {u}) and the edge u→ (u, {u}) of type (i).
(b) If u has sons u1, ..., up in T that have already been processed:

(b.1) we add to the current graph the vertices (u, {u}), (û, {u}) and
(û, Y) for sets Y defined below in (b.3),

(b.2) we add the edges of type (i) u → (u, {u}), û → (û, {u}) and
the edges û→ (û, Y) for all vertices (û, Y) added by clause (b.3),

(b.3) we add the following edges of type (ii) :

(b.3.1) (û, {u})→ (u, {u}),
(b.3.2) for each i = 1, ..., p, the edge (û, Y)→ (ui, {ui}) if ui is a leaf
of T and similarly, (û, Y)→ (ûi, {ui}) if ui is an inner node, where
in both cases, the set Y is represented by Nd(ui)−1(ui) = Nd(u)(Y);
the set Nd(ui)−1(ui) is given in the data structure for G,

(b.3.3) if ui is an inner node, we add the edges (û, Y) → (ûi, X)
such that Y is represented by Nd(ui)(X) − {ui} if (ûi, X) is in the
current graph,

(b.4) we add the edges of type (iii) (û, {u}) → (û, Y) and (û, Y) →
(û, {u}) if u ∈ Nd(u)(Y); (we add pairs of opposite edges because G
is undirected).

23

Let us insist that the sets X and Y are not manipulated directly, but encoded
and compared through the (in most cases) smaller sets Nd(ui)(X) and Nd(u)(Y).
The vertices (û, Y) to be added by clause (b.1) are determined as the tails of
the edges of type (ii) added by clauses (b.3.2) and (b.3.3).

Claim : The graph D constructed in this way is isomorphic to D(T ′, $).
Proof : We prove that each vertex (û, X) of D(T ′, $) is added (and encoded

as explained).
Let x ∈ X. It is a leaf of T . Let x, u1, ..., um−1, u be the ascending path in T .

It is clear from (b.3.2) and (b.3.3) (by using an induction on i ≤ m) that there
is a unique sequence X1, ..., Xm−1 such that x ∈ X1 ⊆ ... ⊆ Xm−1 ⊆ X and
Xi ∈ Ω(T<(ui)) for each i, X ∈ Ω(T<(u)) and (x, {x}), (û1, X1),..., (ûi, Xi),...,
(û, X) are in D. By using Fact 3, we can avoid inserting in D two vertices
representing a same vertex (û, X) of D(T ′, $). The incident edges are inserted
by clauses (b.3.2), (b.3.3) and (b.4).

All other vertices and edges of D are as in the definition of D(T ′, $).�

Computation time.
We denote by n the number of vertices of the graph G, identical to the

number of nodes of T , and by p the width of $. The construction of T ′ takes
time O(n). We now bound the time taken to implement clause (b.3.3). For
each son ui of an inner node u, for each vertex (ûi, X) created by processing
ui, we compute W := Nd(ui)(X) − {ui}, which is done in constant time and
we check whether W = Nd(u)(Y) for some existing vertex (û, Y). If this is the
case, we create the edge of type (ii) : (û, Y) → (ûi, X), otherwise, we do the
same after having created (û, Y) as a new vertex with the edge of type (i) :
û→ (û, Y). This takes time O(p.∂) for each (ûi, X), hence total time O(p2.∂.n)
for all vertices (ûi, X).

For clause (b.4), we do as follows: each time we add a vertex (û, Y), we check
if u ∈ Nd(u)(Y) which can be done in constant time as u is the first element if
it belongs to Nd(u)(Y). The total time is thus O(p.n).

All other steps take total time O(n). Hence, D = D(T ′, $) is computed in
time O(p2.∂.n).

The algorithm for directed graphs.
If G is directed, the algorithm is similar except that we use, instead of Ni(x),

the pair of sets (N+
i (x), N−i (x)) where N+

i (x) := {y ∈ VG | x <T y, (x, y) ∈
edgG, d(y) ≤ i} and N−i (x) := {y ∈ VG | x <T y, (y, x) ∈ edgG, d(y) ≤ i}.

The vertices (û, X) of D are then encoded by pointers to û and to the sets
N+

d(u)(X) and N−d(u)(X). The edges type (iii) to be added by clause (b.4) are :

(û, {u})→ (û, X) if u ∈ N−d(u)(X) and (û, X)→ (û, {u}) if u ∈ N+
d(u)(X).

The computation time is also O(p2.∂.n). �

Theorem 19 : Let G be given by a normal tree T and the sets Nd(x)−1(x).
Let (T ′, $) be the partition tree defined by Proposition 7. Let p be its width

24

and ∂ := max{
∣∣Nd(x)−1(x)

∣∣ | x ∈ NT }. A clique-width term of width p that
denotes G can be computed in time O(p2.∂.n). Its reduced term is T ′.

Proof : Algorithm 18 takes time O(p2.∂.n) to compute a graph D isomor-
phic to D(T ′, $). Then we can obtain the corresponding clique-width term in
time O(p2.n) by a suitable adaptation of the algorithm of [8]. �

Remarks 20 : (1) In Algorithm 18, for G undirected, one can replace Ni(x)
by Di(x) := {d(y) | y ∈ Ni(x)} because if x, y <T u, then Nd(u)(x) = Nd(u)(y)
if and only if Dd(u)(x) = Dd(u)(y). The graph G is completely determined by T
and, for each vertex x, the set Dd(x)−1(x).

(2) We observe the following without giving the detailed proof. The relative
clique-width of G with respect to T ′, denoted by rcwd(G,T ′), is either p or
p+ 1. It is p if and only if, for every node u of T such that |Ω(T<(u))| = p, the
part {u} of $(û) can be merged with some part X of Ω(T<(u)). This is the case
if u is not a neighbour of any vertex in T<(u) and if, unless u is the root, the
set {u} ∪ X is included in some part of Ω(T<(pT (u))). It follows that an easy
modification of Algorithm 18 yields a clique-width term of width rcwd(G,T ′),
hence, an optimal term for the relative clique-width of G with respect to T ′.

Determining if the relative clique-width of a graph with respect to a given
tree is at most some given number is an NP-complete problem [19], but here the
given tree is not arbitrary because it is based on a normal tree. This explains
why we can obtain a polynomial time algorithm.

(3) The construction of Theorem 15 can be translated similarly into an
algorithm that builds a clique-term defining Bip(H) of width O(twd(H)q−1) in
time O(twd(H)2q−1.n). This time bound is based on Theorem 19.

(4) The terms constructed by Theorem 19 use the operations
−−→
adda,b and

adda,b in a restricted way: these operations are applied to graphs having at
most one a-labelled vertex or at most one b-labelled vertex. Hence, we cannot
hope to obtain in this way terms that witness clique-width in all cases.

6 Conclusion

For uniformly m-sparse graphs, clique-width is polynomially bounded in terms
of tree-width and we have algorithmically efficient transformations of 1-downwards
increasing tree-decompositions into clique-width terms witnessing the claimed
upper-bounds.

Our proofs and the corresponding algorithms use normal trees as data struc-
tures for tree-decompositions. Furthermore, we have used the characterization
of clique-width of [8] based on partition trees, and the associated graph repre-
sentations. We think that these tools yield clear proofs and efficient algorithms.

The applications to FPT graph algorithms for checking monadic second-
order properties are developped in [4].

We propose two open questions :

25

Does there exist p < m such that cwd(G) = O(twd(G)p) for every
uniformly m-sparse graph G ?

Can one transform efficiently a tree-decomposition of width k of a
graph G of degree at most d into a clique-width term denoting G of
width O(d.k) (cf. Theorem 6) ?

References

[1] T. Bouvier, Graphes et décompositions, Doctoral dissertation, Bordeaux
University, 2014.

[2] D. Corneil and U. Rotics, On the relationship between clique-width and
tree-width. SIAM J. Comput. 34 (2005) 825-847.

[3] B. Courcelle, On the model-checking of monadic second-order formulas
with edge set quantifications, Discrete Applied Mathematics 160 (2012)
866-887.

[4] B. Courcelle, Fly-automata for checking monadic second-order proper-
ties of graphs of bounded tree-width, Proceedings of LAGOS 2015, Be-
beribe, Brazil, to appear in Electronic Notes in Discrete Mathematics;
a long version is in http://www.labri.fr/perso/courcell/Conferences/BC-
Lagos2015.pdf

[5] B. Courcelle and I. Durand, Automata for the verification of monadic
second-order graph properties, J. Applied Logic 10 (2012) 368-409.

[6] B. Courcelle and I. Durand, Computations by fly-automata beyond
monadic second-order logic, June 2013, http://hal.archives-ouvertes.fr/hal-
00828211, to appear in Theor. Comput. Sci, Short version in Proc. Confer-
ence on Algebraic Informatics, Lecture Notes in Computer Science 8080
(2013) 211-222.

[7] B. Courcelle and J. Engelfriet, Graph structure and monadic second-order
logic, a language theoretic approach, Volume 138 of Encyclopedia of math-
ematics and its application, Cambridge University Press, June 2012.

[8] B. Courcelle, P. Heggernes, D. Meister, C. Papadopoulos and U. Rotics, A
characterisation of clique-width through nested partitions, Discrete Applied
Maths, 187 (2015) 70-81.

[9] B. Courcelle, J. Makowsky and U. Rotics, Linear-time solvable optimization
problems on graphs of bounded clique-width, Theory Comput. Syst. 33
(2000) 125-150.

[10] R. Diestel, Graph theory, Third edition, Springer, 2006.

26

[11] R. Downey and M. Fellows, Parameterized complexity, Springer-Verlag,
1999.

[12] R. Downey and M. Fellows, Fundamentals of parameterized complexity,
Springer-Verlag, 2013.

[13] F. Gurski and E.Wanke, The tree-width of clique-width bounded graphs
without Kn,n. Proceedings of 26 th Workshop on Graphs (WG), Lecture
Notes in Computer Science 1928 (2000) pp. 196-205.

[14] E. Fischer J. Makowsky and E. Ravve, Counting truth assignments of for-
mulas of bounded tree-width or clique-width. Discrete Applied Mathematics
156 (2008) 511-529.

[15] F. Fomin, S. Oum, D. Thilikos, Rank-width and tree-width of H-minor-free
graphs. Eur. J. Comb. 31 (2010) 1617-1628.

[16] A. Frank, Connectivity and networks, in: Handbook of Combinatorics,
Vol.1, Elsevier 1997, pp. 111-178.

[17] M. Kanté and M.Rao, The rank-width of edge-coloured graphs. Theory
Comput. Syst. 52 (2013) 599-644.

[18] V. Lozin and D. Rautenbach, The relative clique-width of a graph. J. Comb.
Theory, Ser. B 97 (2007) 846-858.

[19] H. Müller and R. Urner, On a disparity between relative clique-width and
relative NLC-width, Discrete Applied Mathematics 158 (2010) 828-840.

[20] S. Oum, Rank-width is less than or equal to branch-width. Journal of Graph
Theory 57 (2008) 239-244.

[21] S. Oum, Rank-width and vertex-minors. J. Comb. Theory, Ser. B 95 (2005)
79-100.

[22] S. Oum, P. Seymour, Approximating clique-width and branch-width. J.
Comb. Theory, Ser. B 96 (2006) 514-528.

[23] D. Wood, On tree-partition-width, European Journal of Combinatorics 30
(2009) 1245–1253.

27

