
Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_692-1
© Springer Science+Business Media New York 2014

Model Checking with Fly-Automata

Bruno Courcelle�a Irene Durandb

aLaBRI, CNRS, Bordeaux University, Talence, France
bLaBRI, CNRS, Bordeaux University, Paris, France

Q1

Keywords Model checking • Monadic second-order logic • Tree-width • Clique-width •
Fixed-parameter tractable algorithm • Automaton on terms • Fly-automaton

Summarized Original Work

2012, 2013; Courcelle, Durand

Problem Definition

The verification of monadic second-order (MSO) graph properties, equivalently, the
model-checking problem for MSO logic over finite binary relational structures, is fixed-parameter
tractable (FPT) where the parameter consists of the formula that expresses the property and the
tree-width or the clique-width of the input graph or structure. How to build usable algorithms for
this problem? The proof of the general theorem (an algorithmic meta-theorem, cf. [12]) is based on
the description of the input by algebraic terms and the construction of finite automata that accept
the terms describing the satisfying inputs. But these automata are in practice much too large to be
constructed [11, 14]. A typical number of states is 2210

, and lower bounds match this number. Can
one use automata and overcome this difficulty?

Key Results

We propose to use fly-automata (FA) [3]. They are automata whose states are described and not
listed and whose transitions are computed on the fly and not tabulated. When running on a term of
size 1,000, a fly-automaton with 2210

states computes only 1,000 transitions if it is deterministic.
FA can have infinitely many states. For example, a state can record, among other things, the
(unbounded) number of occurrences of a particular symbol in the input term. FA can thus check
certain graph properties that are not monadic second-order expressible. An example is regularity,
the fact that all vertices have the same degree. Furthermore, an FA equipped with an output function
that maps the set of accepting states to an effectively given domain D can compute a value, for
example, the number of k-colorings of the given graph G or the minimum cardinality of one of the
k color classes if G is k-colorable (this number measures how close this graph is to be .k � 1/-
colorable). We have implemented and tested an FA that computes the number of 3-colorings of a
graph.

�E-mail: courcell@labri.fr

Page 1 of 8

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_692-1
© Springer Science+Business Media New York 2014

Tree-width and clique-width are graph complexity measures that serve as parameters in many
FPT algorithms [7, 8, 10]. Both are based on hierarchical decompositions of graphs that can be
expressed by terms written with the operation symbols of appropriate graph algebras [6]. The
model-checking automata take such terms as inputs. We will present results concerning graphs of
bounded clique-width. The similar results for graphs of bounded tree-width reduce to them as we
will explain at the end of this section.

Graphs and Monadic Second-Order Logic
Graphs are finite, undirected, and without loops and multiple edges. The extension to directed

Q2

graphs, possibly with loops and/or labels, is straightforward. A graph G is identified with the
relational structure hVG; edgGi where edgG is a binary symmetric relation representing adjacency.

Rather than giving a formal definition of monadic second-order (MSO) logic, we present the
closed formula expressing 3-colorability (an NP-complete property). It is 9X; Y:Col.X; Y / where
Col.X; Y / is the formula

X \ Y D ; ^ 8u; v:fedg.u; v/ H)
Œ:.u 2 X ^ v 2 X/ ^ :.u 2 Y ^ v 2 Y / ^ :.u … X [Y ^ v … X [Y /�g:

This formula expresses that X; Y and VG � .X [Y / are the three color classes of a 3-coloring.
The corresponding colors are respectively 1, 2, and 3.

Definition 1 (The graph algebra G).

(a) We will use NC as a set of labels called port labels. A p-graph is a triple G D hVG; edgG; �Gi
where �G is a mapping: VG ! NC. If �G.x/ D a; we say that x is an a-port. The set �.G/

of port labels of G is its type. By using a default label, say 1, we make every nonempty graph
into a p-graph of type f1g.

(b) We let Fk be the following finite set of operations on p-graphs of type included in C WD
f1; : : : ; kg � NC W

• The binary symbol ˚ denotes the union of two disjoint p-graphs,
• The unary symbol relaba!b denotes the relabelling that changes every port label a into b

(where a; b 2 C),
• The unary symbol adda;b, for a < b, a; b 2 C; denotes the edge addition that adds an edge

between every a-port x and every b-port y (unless there is already an edge between them,
our graphs have no multiple edges),

• For each a 2 C; the nullary symbol a denotes an isolated a-port.

(c) Every term t in T .Fk/ (the set of finite terms written with Fk) is called a k-expression. Its
value is a p-graph, val.t/, that we now define. For each position u of t (equivalently, each node
u of the syntax tree of t), we define a p-graph val.t/=u, whose vertex set is the set of leaves of
t below u. The definition of val.t/=u is, for fixed t , by bottom-up induction on u:

• If u is an occurrence of a, then val.t/=u has vertex u as an a-port and no edge,

Page 2 of 8

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_692-1
© Springer Science+Business Media New York 2014

• If u is an occurrence of ˚ with sons u1 and u2, then val.t/=u WD val.t/=u1 ˚ val.t/=u2 (note
that val.t/=u1 and val.t/=u2 are disjoint),

• If u is an occurrence of relaba!b with son u1; then val.t/=u WD relaba!b.val.t/=u1/;

• If u is an occurrence of adda;b with son u1; then val.t/=u WD adda;b.val.t/=u1/:

Finally, val.t/ WD val.t/=roott . Its vertex set is the set of all leaves (occurrences of nullary
symbols). For an example, let

t WD add1
b;c.add2

a;b.a3 ˚4 b5/ ˚6 relab7
b!c.add8

a;b.a9 ˚10 b11///

where the superscripts 1–11 number the positions of t . The p-graph val.t/ is 3a � 5b � 11c � 9a

where the subscripts a; b; c indicate the port labels. (For clarity, port labels are letters in
examples.) If u WD 2 and w WD 8, then t=u D t=w D adda;b.a ˚ b/; however, val.t/=u is the
p-graph 3a � 5b and val.t/=w is 9a � 11b , isomorphic to val.t/=u.

(d) The clique-width of a graph G, denoted by cwd.G/; is the least integer k such that G is
isomorphic to val.t/ for some t in T .Fk/. We denote by Gk the set val.T .Fk// of p-graphs that
are the value of a term over Fk: We let F be the union of the sets Fk and G be the union of the
sets Gk . Every p-graph is isomorphic to a graph in G, hence, has a clique-width.

(e) An F-congruence is an equivalence relation � on p-graphs such that:

• Two isomorphic p-graphs are equivalent, and
• If G � G 0 and H � H 0, then �.G/ D �.G 0/, G ˚ H � G 0 ˚ H 0, adda;b.G/ � adda;b.G 0/

and relaba!b.G/ � relaba!b.G 0/.

(f) A set of graphs L is recognizable if it is a union of classes of an F -congruence such that, for
each finite type C � NC, the number of equivalence classes of p-graphs of type C is finite.

Definition 2 (Fly-automata).

(a) Let H be a finite or countable, effectively given, signature. A fly-automaton over H (in short,
an FA over H) is a 4-tuple A D hH; QA; ıA; AccAi such that QA is the finite or countable,
effectively given, set of states; AccA is the set of accepting states, a decidable subset of QA;
and ıA is a computable function that defines the transition rules: for each tuple .f; q1; : : : ; qm/

with q1; : : : ; qm 2 QA, f 2 H , �.f / D m � 0, ıA.f; q1; : : : ; qm/ is a finite set of states. We
write f Œq1; : : : ; qm� ! q (and f ! q if f is nullary) to mean that q 2 ıA.f; q1; : : : ; qm/. We
say that A is finite if H and QA are finite.

(b) Runs and recognized languages are defined as usual; see [1]. A deterministic FA A (by “deter-
ministic” we mean “deterministic and complete”) has a unique run on each term t , and qA.t/

is the state reached at the root of t . The mapping qA is computable, and the membership in
L.A/ of a term t 2 T .H/ is decidable.

(c) Every FA A that is not deterministic can be determinized by an easy extension of the usual
construction, see [3]; it is important that the sets ıA.f; q1; : : : ; qm/ be finite.

(d) A deterministic FA over H with output function is a 4-tuple A D hH; QA; ıA; OutAi that
is a deterministic FA where AccA is replaced by a total and computable output function
OutA: QA ! D such that D is an effectively given domain. The function computed by A
is Comp.A/ W T .H/ ! D such that Comp.A/.t/ WD OutA.qA.t//.

Page 3 of 8

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_692-1
© Springer Science+Business Media New York 2014

Example 1. The number of accepting runs of an automaton.

Let A D hH; QA; ıA; AccAi be a nondeterministic FA. We construct a deterministic FA B that
computes the number of accepting runs of A on any term in T .H/. As set of states QB, we take
the set of finite subsets of QA � NC: The transitions are defined so that B reaches state ˛ at the
root of t 2 T .H/ if and only if ˛ is the finite set of pairs .q; n/ 2 QA � NC such that n is the
number of runs of A that reach state q at its root. This number is finite and ˛ can be seen as a
partial function: QA ! NC having a finite domain. For a symbol f of arity 2, B has the transition:
f Œ˛; ˇ� ! � where � is the set of pairs .q; n/ such that n is the sum of the integers np:nr over all
pairs .p; r/ 2 QA � QA such that .p; np/ 2 ˛, .r; nr/ 2 ˇ and q 2 ıA.f; p; r/. The transitions for
other symbols are defined similarly. The function OutA maps a state ˛ to the sum of the integers n

such that .q; n/ 2 ˛ \ .AccA � NC/:ut

Example 2. An FA for checking 3-colorability.

In order to construct an FA that accepts the terms t 2 T .F / such that val.t/ is 3-colorable,
we first construct an FA A for the property Col.X; Y /. For this purpose, we transform F into
F .2/ by replacing each nullary symbol a by the four nullary symbols .a; ij /, i; j 2 f0; 1g. A term
t 2 T .F .2// defines, first, the graph val.t 0/ where t 0 is obtained from t by removing the Booleans
i; j from the nullary symbols and, second, the pair .VX; VY / such that VX is the set of vertices u
(leaves of t) that are occurrences of .a; 1j / for some a and j and VY is the set of those that are
occurrences of .a; i1/ for some a and i . The set of terms t 2 T .F .2// such that Col.VX; VY / holds
in val.t 0/ is defined by a deterministic FA A that we now specify. Its states are Error and the finite
subsets of NC � f1; 2; 3g. Their meanings are as follows:

• At position u of t; the automaton reaches state Error if and only if val.t 0/=u has a vertex
in VX \ VY or an edge between two vertices, either both in VX or both in VY or both in
VG � .VX [VY /, hence of the same color, respectively 1, 2, or 3;

• It reaches state ˛ � NC � f1; 2; 3g if and only if these conditions do not hold and ˛ is the set of
pairs .a; i/ such that val.t 0/=u has an a-port of color i .

All states except Error are accepting. Here are the transitions of A:

.a; 00/ ! f.a; 3/g; .a; 10/ ! f.a; 1/g; .a; 01/ ! f.a; 2/g; .a; 11/ ! Error:

For ˛; ˇ � NC � f1; 2; 3g, A has transitions:

˚ Œ˛; ˇ� ! ˛ [ˇ;

adda;bŒ˛� ! Error; if .a; i/ and .b; i/ belong to ˛ for some i D 1; 2; 3;

adda;bŒ˛� ! ˛; otherwise ;

relaba!bŒ˛� ! ˇ; obtained by replacing a by b in each pair of ˛:

Its other transitions are ˚Œ˛; ˇ� ! Error if ˛ or ˇ is Error, adda;bŒError� ! Error, and
relaba!bŒError� ! Error.

Page 4 of 8

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_692-1
© Springer Science+Business Media New York 2014

This FA checks Col.X; Y /. To check, 9X; Y:Col.X; Y /; we build a nondeterministic FA B by
deleting the state Error, by replacing the first three rules of A by a ! f.a; 3/g; a ! f.a; 1/g; a !
f.a; 2/g, and by deleting those that yield Error. All states are accepting, but on some terms, no
run can reach the root, and these terms are rejected. Furthermore, the construction of Example 1
shows how to make B into a deterministic FA that computes the number of 3-colorings, because
the 3-colorings of val.t/ are in bijection with the accepting runs of B on t . ut

Recognizability Theorem: The set of graphs that satisfy a closed MSO formula ' is
F -recognizable.

Weak Recognizability Theorem: For every closed MSO formula ', for every k, the set of
graphs in Gk that satisfy ' is Fk-recognizable.

Proofs: The Recognizability Theorem is Theorem 5.68 of [6]. Its proof shows that the
equivalence defined by the fact that the two considered p-graphs have the same type and satisfy
the same closed MSO formulas of quantifier height at most that of ' satisfies the conditions
of Definition 1(f). (These formulas have unary predicates for expressing port labels.) The Weak
Recognizability Theorem follows from the former one. It can be proved directly by constructing
an FA over F [3]. (We construct a single FA, not a particular FA for each subsignature Fk as in
Theorem 6.35 of [6].) This construction can be implemented, at least in a number of nontrivial
cases. The proof of the strong theorem does not provide any usable automaton.

Counting and Optimizing Automata
Let P.X1; : : : ; Xs/ be an MSO property of vertex sets X1; : : : ; Xs. We denote .X1; : : : ; Xs/ by X

and t ˆ P.X/ means that X satisfies P in the graph val.t/ defined by a term t . We are interested
not only to check the validity of 9X:P.X/ but also to compute from a term t the following values:

#X:P.X/, defined as the number of assignments X such that t ˆ P.X/,
SpX:P.X/, the spectrum of P.X/, defined as the set of tuples of the form .jX1j; : : : ; jXsj/
such that t ˆ P.X/,
MSpX:P.X/, the multispectrum of P.X/, defined as the multiset of tuples .jX1j; : : : ; jXsj/
such that t ˆ P.X/.

These computations can be done by FA. The construction for #X:P.X/ is based on Example 1.
We obtain in this way FPT or XP algorithms [8, 10].

Edge Set Quantifications and Tree-Width
The two recognizability theorems and the corresponding constructions of FA yielding FPT and XP
algorithms hold and can be done for graphs of bounded tree-width and MSO formulas with edge
set quantifications: it suffices to replace a graph G by its incidence graph Inc.G/, a bipartite graph
whose vertices are those of G and its edges, to observe that the clique-width of Inc.G/ is bounded
in terms of the tree-width of G and that an MSO formula with edge set quantifications over G can
be translated into an MSO formula over Inc.G/. Another approach is in [2].

Page 5 of 8

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_692-1
© Springer Science+Business Media New York 2014

Beyond MS Logic
The property that the considered graph is the union of two disjoint regular graphs with possibly
some edges between these two subgraphs is not MSO expressible but can be checked by an FA.
An FA can also compute the minimal number of edges between X and VG �X such that GŒX� and
GŒVG � X� are connected, when such a set X exists.

Open Problems

The parsing problem for graphs of clique-width at most k is NP-complete (with k in the input) [9].
Good heuristics remain to be developed.

Experimental Results

These constructions have been implemented and tested [3–5]. We have computed the number
of optimal colorings of graphs of clique-width at most 8 for which the chromatic polynomial is
known, which allows to verify the correctness of the automaton. We can verify in, respectively, 35
and 105 min that the 20 � 20 and the 6 � 60 grids are 3-colorable. In 29 min, we can verify that the
McGee graph (24 vertices) given by a term over F10 is acyclically 3-colorable.

A different approach using games is presented in [13].

Recommended Reading

1. Comon H et al (2007) Tree automata techniques and applications. http://tata.gforge.inria.fr/
2. Courcelle B (2012) On the model-checking of monadic second-order formulas with edge set

quantifications. Discret Appl Math 160:866–887
3. Courcelle B, Durand I (2012) Automata for the verification of monadic second-order graph

properties. J Appl Logic 10:368–409
4. Courcelle B, Durand I (submitted for publication, 2013) Computations by fly-automata beyondQ3

monadic second-order logic. http://arxiv.org/abs/1305.7120
5. Courcelle B, Durand I (2013) Model-checking by infinite fly-automata. In: Proceedings of theQ4

5th conference on algebraic informatics, Porquerolles. Lecture notes in computer science, vol
8080, pp 211–222

6. Courcelle B, Engelfriet J (2012) Graph structure and monadic second-order logic, a languageQ5

theoretic approach. Volume 138 of encyclopedia of mathematics and its application. Cambridge
University Press, Cambridge

7. Courcelle B, Makowsky J, Rotics U Linear-time solvable optimization problems on graphs of
bounded clique-width. Theory Comput Syst 33:125–150 (2000)

8. Downey R, Fellows M (1999) Parameterized complexity. Springer, New York
9. Fellows M, Rosamond F, Rotics U, Szeider S (2009) Clique-width is NP-complete.

SIAM J Discret Math 23:909–939
10. Flum J, Grohe M (2006) Parametrized complexity theory. Springer, Berlin
11. Frick M, Grohe M (2004) The complexity of first-order and monadic second-order logic

revisited. Ann Pure Appl Logic 130:3–31

Page 6 of 8

http://tata.gforge.inria.fr/
http://arxiv.org/abs/1305.7120

Encyclopedia of Algorithms
DOI 10.1007/978-3-642-27848-8_692-1
© Springer Science+Business Media New York 2014

12. Grohe M, Kreutzer S (2011) Model theoretic methods in finite combinatorics. In: Grohe
M, Makowsky J (eds) Contemporary mathematics, vol 558. American Mathematical Society,
Providence, pp 181–206

13. Kneis J, Langer A, Rossmanith P (2011) Courcelle’s theorem – a game-theoretic approach.
Discret Optim 8:568–594

14. Reinhardt K (2002) The complexity of translating logic to finite automata. In: Graedel E Q6

et al (eds) Automata, logics, and infinite games: a guide to current research. Lecture notes
in computer scienc, vol 2500. Springer, Berlin/Hong Kong, pp 231–238

Page 7 of 8

