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Abstract : Quasi-trees generalize trees in that the unique "path"
between two nodes may be infinite and have any finite or count-
able order type, in particular that of rational numbers. They are
used to define the rank-width of a countable graph in such a way
that it is the least upper-bound of the rankwidths of its finite in-
duced subgraphs. Join-trees are the corresponding directed trees
and they are also useful to define the modular decomposition of a
countable graph. We define algebras with finitely many operations
that generate (via infinite terms) these generalized trees. We prove
that the associated regular objects (those defined by regular terms)
are exactly the ones definable by (are the unique model of) monadic
second-order sentences. These results use and generalize a similar
result by W. Thomas for countable linear orders.
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1 Introduction

We define and study countable quasi-trees that generalize trees in that the
unique "path" between two nodes may be infinite and have any order type, in
particular that of rational numbers. Our motivation comes from the notion of
rank-width, a complexity measure of finite graphs investigated first in [Oum]
and [OumSey]. Rank-width is based on graph decompositions formalized with
finite subcubic trees. In order to extend rank-width to countable graphs in
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such a way that the compactness property holds, i.e., that the rank-width of a
countable graph is the least upper-bound of those of its finite induced subgraphs,
we base decompositions on subcubic quasi-trees [Cou14]. For a comparison,
the natural extension of tree-width to countable graphs has the compactness
property [KriTho] and does not need quasi-trees.

Our objective is to obtain finitary descriptions (usable in algorithms) of
certain quasi-trees. For this purpose we define in [Cou15] an algebra of quasi-
trees with finitely many operations such that the finite and infinite terms over
these operations define all quasi-trees. The regular quasi-trees are those defined
by regular terms. We prove in [Cou15] that a quasi-tree is regular if and only if it
is monadic second-order definable, i.e., is the unique model (up to isomorphism)
of a monadic second-order sentence.

In this introductory article, we focus on binary join-trees that can be seen
as directed subcubic quasi-trees. A join-tree is defined as a partial order (N,≤)
such that every two elements have a least upper-bound (called their join) and
each set {y | y ≥ x} (denoted by [x,+∞[) is linearly ordered. The modular
decomposition of a countable graph is based on a join-tree [CouDel]. In [Cou15],
we define algebras of rooted trees, of ordered rooted trees, of join-trees, of
ordered join-trees and of quasi-trees. Binary join-trees and subcubic quasi-trees
form subalgebras of two of them. In all cases, an object is regular if and only if
it is monadic second-order definable.

A linear order whose elements are labelled by letters from an alphabet is
called an arrangement. Regular arrangements are studied in [Cou78] and [Hei],
and their monadic second-order definability is proved in [Tho]. We use and
generalize these results to our generalized trees.

2 Definitions, notation and basic facts.

All ordered sets, trees and logical structures are finite or countably infinite.
We denote by ω the first infinite ordinal and also the linear order (N,≤).
Let (V,≤) be a partial order. The least upper bound of x and y is denoted

by x ⊔ y if it exists and is called their join. A line is a subset Y that is linearly
ordered and satisfies the following convexity property : if x, z ∈ Y , y ∈ V and
x ≤ y ≤ z, then y ∈ Y . Particular notations for convex sets (not necessarly
linearly ordered) are [x, y] denoting {z | x ≤ z ≤ y}, ]x, y] denoting {z | x <
z ≤ y}, ] −∞, x] denoting {y | y ≤ x} (even if V is finite), ]x,+∞[ denoting
{y | x < y} etc.

2.1 Finite and infinite terms

Let F be a finite set of operations, each given with a fixed arity. We call such
a set a signature. We denote by T (F ) (resp. T∞(F )) the set of finite (resp.
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finite and infinite) terms written with the symbols of F . A typical example
(easily describable linearly) is, with f binary and a and b nullary, the term
t∞ = f(a, f(b, f(a, f(b, f(.........)))))) that is the unique solution in T∞(F ) of
the equation t = f(a, f(b, t)). Positions in a term are designated by Dewey
words. The set Pos(t) of positions of a term t is ordered by ≤t, the reversal of
the prefix order.

We have a structure of F -algebra on T∞(F ) of which T (F ) is a subalgebra.
If M = 
M, (fM)f∈F � is an F -algebra, a value mapping is a homomorphism
h : T∞(F )→M. Its restriction to finite terms is uniquely defined.

Regular terms
A term t ∈ T∞(F ) as regular if there is a mapping h from Pos(t) into a

finite set Q and a mapping τ : Q→ F × Seq(Q) such that:

if u is an occurrence of a symbol f of arity k, then τ(h(u)) =
(f, (h(u1), ..., h(uk))) where (u1, ..., uk) is the sequence of sons of u.
(Seq(Q) is the set of finite sequences of elements of Q).

Intuitively, τ : Q → F × Seq(Q) is the transition function of a top-down
deterministic automaton with set of states Q, h(ε) is the initial (root) state and
h defines its unique run. This is equivalent to requiring that t has finitely many
different subterms, or is a component of a finite system of equations that has a
unique solution in T∞(F ). (The set of unknowns of such a system is in bijection
with Q). The above term t∞ is regular.

A term t can be represented by the relational structure ⌊t⌋ := (Pos(t),≤t,
(bri)1≤i≤ρ(F ), (labf )f∈F ) where bri(u) is true if and only if u is the i-th son of
his father and labf (u) is true if and only if f occurs at position u. It is regular
if and only if ⌊t⌋ is MS-definable, i.e., is up to isomorphism, the unique model
of an MS sentence (see Thomas, [Tho90]).

2.2 Arrangements

We review a notion introduced in [Cou78] and further studied in [Hei, Tho].
Let X be set (say of letters). A linear order (V,≤) equipped with a labelling
mapping lab : V → X is called an arrangement over X. It is simple if lab is
injective. We denote byA(X) the set of arrangements over X. Every linear order
(V,≤) is identified with the simple arrangement (V,≤, lab) such that lab(v) := v
for each v.

An arrangement can be considered as a generalized word. The concatenation
of linear orders yield a concatenation of arrangements denoted by •. We denote
by Ω the empty arrangement and by a the one reduced to a single occurrence
of a ∈ X. Clearly, w • Ω = Ω • w = w for every w. The infinite word
w = aω is the arrangement over {a} with underlying order ω; it is described
by the equation w = a • w. Similarly, the arrangement w = aη over {a} with
underlying linear order (Q,≤) (that of rational numbers) is described by the
equation w = w • (a • w). We will generalize arrangements to tree structures.
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Let X be a set of variables and t ∈ T∞({•,Ω} ∪ X). Hence, Pos(t) ⊆
{1, 2}. The value of t is the arrangement val(t) := (Occ(t,X),≤lex, lab) where
Occ(t,X) is the set of positions of elements of X and lab(u) is the symbol
occurring at position u. We say that t denotes w if w is isomorphic to val(t).

For an example, t• = •(a, •(b, •(a, •(b, •(.........)))))) denotes the infinite word
abab... . Its value is defined from Occ(t•, {a, b}) = 2∗1 lexicographically ordered
by 1 < 21 < 221 < ..., lab(2i1) = a if i is even and lab(2i1) = b if i is odd.
The arrangements aω and aη are denoted by the terms that are respectively the
unique solutions in T∞({•,Ω, a}) of the equations w = a•w and w = w•(a•w).

If w = (V,≤, lab) ∈ A(X) and h : X → Y , then, h(w) := (V,≤, h ◦ lab) ∈
A(Y ).

An arrangement is regular if it is denoted by a regular term. (The term t• is
regular). The arrangement aη is also regular. An arrangement is regular if and
only if it is a component of the initial solution of a regular system of equations
over F [Cou78] or the value of a regular expression in the sense of [Hei]. We will
use the result of [Tho86] that an arrangement over a finite alphabet is regular
if and only if is MS-definable. For this result, we represent an arrangement w
over X by the relational structure ⌊w⌋ := (V,≤, (laba)a∈X) where laba(u) is
true if and only if lab(u) = a.

2.3 Trees and rooted trees

A tree is a nonempty, finite or countable, undirected, simple, connected graph.
The set of nodes of a tree T is NT .

A rooted tree is a tree equipped with a distinguished node called its root.
Its edges are directed towards the root. The level of a node x is the number of
edges of the path from it to the root and Sons(x) denotes the set of its sons. We
define on NT the partial order ≤T such that x ≤T y if and only if y is on the
unique path from x to the root. Then x ⊔T y defined as the least upper bound
of {x, y} (the join of x and y) is their least common ancestor. We will specify a
rooted tree T by (NT ,≤T ) and we will omit the index T when T is clear. If x is
a node of T , then T/x is the subtree issued from x, defined as (NT/x,≤T ↾ NT/x)
where NT/x :=]−∞, x].

A partial order (N,≤) is (NT ,≤T ) for some rooted tree T if and only if it
has a greatest element max and for each x ∈ N , the set [x,max] is finite and
linearly ordered.

2.4 Join-trees

We have used join-trees in [CouDel] for defining modular decomposition of
countable graphs.

(2.1) Definition : Join-trees.
A join-tree is a pair J = (N,≤) such that:

1) N is a finite or countable set called the set of nodes,
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2) ≤ is a partial order on N such that, for every node x, the set
[x,+∞[ (the set of nodes y ≥ x) is linearly ordered,

3) every two nodes x and y have a join x ⊔ y.

A minimal node is a leaf. The set of strict upper-bounds of a nonempty set
X ⊆ N is a line L. If L has a smallest element, we denote it by �X and we say
that �X is the top of X.

(2.2) Definitions : Directions and degrees.
Let J = (N,≤) be a join-tree and x one of its nodes. Let∼ be the equivalence

relation on ]−∞, x[ such that z ∼ y if and only if z ⊔ y < x. Each equivalence
class C is called a direction of J relative to x. The set of directions relative to
x is denoted by Dir(x) and the degree of x is the number of its directions. The
leaves are the nodes of degree 0. A join-tree is binary if its nodes have degree
at most 2. We call it a BJ-tree.

(2.3) Definition : Structured binary join-tree.
Let J = (N,≤) be a BJ-tree. For each set X ⊆ N , we denote by ↓ X

the union of the convex sets ] −∞, x] for x ∈ X. A structuring of J is a set
U of nonempty lines forming a partition of N that satisfies some conditions,
stated with the following notation : if x ∈ N , then U(x) denotes the line of U
containing x, U−(x) := U(x)∩]−∞, x[ and U+(x) := U(x)∩ [x,+∞[. (The set
[x,+∞[ has no top but can have a greatest element that we do not specify).
The conditions are:

1) exactly one line of U has no strict upper-bound, hence, no top;
we call it the axis, denoted by A; we also require that if A has a
smallest element, then its degree is 0 or 1,

2) each other line U has a top �U ,

3) for each x in N , the sequence y0 = x, y1, y2, ... such that yi+1 =
�U(yi) is finite. Its last element is yk ∈ A (hence yk+1 is undefined).
We call k the depth of x.

The nodes on the axis are those at depth 0. The lines [yi, yi+1[ for i =
0, ..., k − 1 and [yk,+∞[ are convex subsets of pairwise distinct lines of U . We
have [x,+∞[= [y0, y1[∪[y1, y2[∪... ∪ [yk,+∞[, [yi, yi+1[= U+(yi) for each i < k,
[yk,+∞[= U+(yk) ⊆ A and the depth of yi is k − i.

We call such a triple (N,≤,U) a structured binary join-tree, an SBJ-tree for
short. Every linear order is an SBJ-tree whose elements are all of depth 0.

(2.4) Example : Figure 1 shows a structuring of a BJ-tree, where U =
{U0, ..., U5}, A = U0. The directions relative to x2 are U−(x2)∪U1 and U2∪U3.
The maximal depth of a node is 2.

(2.5) Definition : SBJ-trees as relational structures.
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Figure 1: A structured join-tree.

Let J = (N,≤,U) be an SBJ-tree. Let S(J) be the relational structure
(N,≤, N0, N1) such that N0 is the set of nodes at even depth and N1 = N −N0

is the set of those at odd depth. (N0 and N1 are sets but we consider them also
as unary relations).

If X ⊆ N then G(X) := (X,→) is the directed graph such that x → y if
and only if x < y and [x, y] ⊆ X. We say that X is laminar if the connected
components of G(X) are lines, so that X is the union of pairwise disjoint lines
of J , called the components of X.

(2.6) Proposition : For J and S(J) as above, the following properties hold:

1) the sets N0 and N1 are laminar, U is the set of their components
and the axis A is a component of N0,

2) there is an MS formula ϕ(N0, N1) expressing that a structure
(N,≤, N0, N1) is S(J) for some SBJ-tree J = (N,≤,U),

3) there exist MS formulas θAx(X,N0, N1) and θ(u,U,N0, N1) ex-
pressing, respectively, in a structure (N,≤, N0, N1) = S(N,≤,U),

that X is the axis and that U ∈ U ∧ u = �U .

The proof is easy from the definitions. The construction of ϕ uses the fact
that the finiteness of a linearly ordered set is MS-expressible.

(2.7) Proposition : Every join-tree has a structuring.

Proof sketch : Let J = (N,≤) be a join-tree. Let us choose an enumeration
of N and a maximal line B0 ; it contains each line [x,+∞[ for x ∈ B0. For each
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i > 0, we choose a maximal line Bi containing the first node not in Bi−1∪...∪B0.
We define U0 := B0 and, for i > 0, Ui := Bi − (Ui−1 ∪ ... ∪ U0) = Bi − (Bi−1 ∪
... ∪B0). We define U as the set of lines Ui. �

Each line is the linearly ordered set of leaves of an ordered binary rooted
tree. By combining the trees of the lines of U , we can build a binary tree that
represents (is a precise MS-definable way) a BJ-tree. This type of construction
has first been defined and used in [CouDel]. Proposition 3.6 below and the
proofs in [Cou15] give it an algebraic meaning.

2.5 The rank-width of a countable graph

Rank-width and modular decomposition (cf. [CouDel]) motivate the study of
quasi-trees. Rank-width is a width measure on finite graphs investigated first in
[Oum] and [OumSey]. Here is its generalization to countable graphs. We let G
be the class of finite or countable, loop-free, undirected graphs without parallel
edges.

(2.8) Definition : Rank-width.
(a) Let G ∈ G, let X and Y be pairwise disjoint sets of vertices. The

associated adjacency matrix is M : X × Y → {0, 1} with M [x, y] = 1 if and
only if x and y are adjacent. If U ⊆ X and W ⊆ Y , we denote by M [U,W ]
the matrix that is the restriction of M to U ×W . Ranks are over GF (2). The
rank of M , defined as the maximum cardinality of an independent set of rows
(equivalently, of columns) is denoted by rk(M); it belongs to N ∪ {ω}. It is
convenient to take rk(M [∅,W ]) = rk(M [U, ∅]) = 0.

(2.8.1) Fact : If X ∪ Y is infinite, then rk(M) = sup{rk(M [U,W ]) | U ⊆
X,W ⊆ Y,U and W are finite}.

(b) Let T be a binary join-tree with set of leaves VG. We call it a layout of G.
The rank of T is the least upper-bound of the ranks rk(M [X ∩ VG,Xc ∩ VG])
is X ⊆ NT is directed and downwards closed. The rank-width of G, denoted
by rwd(G), is the smallest rank of a layout. Discrete rank-width, denoted by
rwddis(G) is similar except that layouts are binary (countable) trees. Hence,
rwd(G) ≤ rwddis(G). For finite graphs, we get the rank-width of [Oum].

The notation G ⊆i H means that G is an induced subgraph of H.

(2.9) Theorem [Cou14]: (1) If G ⊆i H, then rwd(G) ≤ rwd(H) and
rwddis(G) ≤ rwddis(H),

(2) Compactness : rwd(G) = Sup{rwd(H) | H ⊆i G and H is finite},
(3) Compactness with gap : rwddis(G) ≤ 2.Sup{rwd(H) | H ⊆i G and H is

finite}.

The gap function in (3) is n �→ 2n, showing a weak form of compactness. A
related gap concerns the clique-width of countable graphs [Cou04].
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Proof sketch: (1) is clear from the definitions. (2) is proved by Koenig’s
Lemma. (3) is based on the representation of a countable linear order as the set
of leaves of an ordered binary tree; this construction is adapted from [CouDel].�

We now leave now rank-width and we consider binary join-trees.

3 The algebra of binary join-trees

We define three operations on structured binary join-trees (SBJ-trees). The
finite and infinite terms over these operations define all SBJ-trees.

(3.1) Definition : Operations on structured binary join-trees.

Concatenation along axes.
Let J = (N,≤,U) and J ′ = (N ′,≤′,U ′) be disjoint SBJ-trees, with respec-

tive axes A and A′. We define:

J • J ′ := (N ∪N ′,≤′′,U ′′) where :

x ≤′′ y :⇐⇒ x ≤ y ∨ x ≤′ y ∨ (x ∈ N ∧ y ∈ A′),

U ′′ := {A ∪A′} ∪ (U−{A}) ∪ (U ′−{A′}).

J • J ′ is an SBJ-tree with axis A∪A′; its depth is the maximum of those of
J and J ′.

This operation generalizes the concatenation of linear orders: if (N,≤) and
(N ′,≤′) are disjoint linear orders, then the SBJ-tree (N,≤, {N})•(N ′,≤′, {N ′})
corresponds to the concatenation of (N,≤) and (N ′,≤′) usually denoted by
(N,≤) + (N ′,≤′).

The empty SB-tree:
The nullary symbol Ω denotes the empty SBJ-tree.

Extension:
Let J = (N,≤,U) be an SBJ-tree, and u /∈ N . Then:

extu(J) := (N ∪ {u},≤′, {u} ∪ U) where :

x ≤′ y :⇐⇒ x ≤ y ∨ y = u,

the axis is {u}.

Then extu(J) is an SBJ-tree. The depth of v ∈ N is its depth in J plus
1. When handling SBJ-trees up to isomorphism, we use the notation ext(J)
instead of extu(J).

Forgetting structuring:
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If J is an SBJ-tree as above, fgs(J) is the underlying BJ-tree (binary join-
tree) (N,≤).

Anticipating on the sequel, we observe that a linear order a1 < ... < an,
identified with the SBJ-tree ({a1, ..., an},≤, {{a1, ..., an}}) is defined by the term
t = exta1(Ω) • exta2(Ω) • ... • extan(Ω). The binary (actually unary) join-tree
({a1, ..., an},≤) is defined by the terms fgs(extan(extan−1(...(exta1(Ω)))..))) and
fgs(t).

(3.2) The algebra SBJT
We let F be the signature {•, ext,Ω}. We obtain an algebra SBJT whose

domain is the set of isomorphism classes of SBJ-trees. Concatenation is associa-
tive with neutral element Ω. We denote by T∞(F ) and T (F ) the sets of terms
and finite terms over F .

(3.3) Definitions : The value of a term.
Let t ∈ T∞(F ) .
(a) We compare positions of t as follows: u ≈ v if and only if every position

w such that u <t w ≤t u ⊔ v or v <t w ≤t u ⊔ v is an occurrence of •. This
relation is an equivalence. We will also use the lexicographic order ≤lex .

(b) We define the value val(t) := (N,≤,U) of t as follows:

N := Occ(t, ext), the set of occurences of ext (or exta if nodes are
designated) in t,

u ≤ v :⇐⇒ u ≤t w ≤lex v for some w ∈ N such that w ≈ v,

U is the set of equivalence classes of ≈ .

(3.3.1) Claim: The mapping val is a value mapping into SBJT.

We say that t denotes J if J is isomorphic to val(t), and, in this case, we
also say that fgs(t) denotes the BJ-tree fgs(J).

(3.4) Examples and remarks.
(1) The term t that is the solution of the equation t = t • t denotes the

empty structure Ω.
(2) Let t1 be the solution in T∞(F ) of the equation t = ext(ext(Ω)) • t. We

can write this term linearly by naming a, b, c, d, e, f, ... the nodes created by the
operations ext :

t1 = exta(extb(Ω)) • (extc(extd(Ω)) • (exte(extf (Ω)) • ...))).

Its value is shown in Figure 2. The bold edges link nodes in the axis.

(3.5) Definition : Flat terms
(a) A term t ∈ T∞(F ) is flat if no occurrence of ext is below any other

occurrence of ext. (Any two occurrences of ext are equivalent with respect to
≈). The value of a flat term is a simple arrangement over Occ(t, ext).
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Figure 2: The SBJ-tree val(t1).

(b) Let t ∈ T∞(F ) and u ∈ Pos(t). We denote by Max(t, u) the set of
maximal occurrences of ext in t that are below or equal to u. We define t{u}
as the flat term obtained from t/u by replacing each of its subterms t/w by
extw(Ω) for each w ∈ Max(t, u). In t{u} the operations ext are indexed by
positions from Pos(t). It follows that t{ε} = extε(Ω) if t = ext(t′). The value
of t{u} is a simple arrangement over Max(t, u).

For t1 as in the previous example, t1{ε} = exta(Ω)•(extc(Ω)•(exte(Ω)•...));
it denotes the arrangement ace... (here we keep the original naming of posi-
tions). If t2 = ext(ext(Ω)) • (ext(ext(Ω)) • ext(ext(Ω))) then t2{ε} = ext1(Ω) •
(ext21(Ω) • ext22(Ω)).

(3.5.1) Claim : Let J = (N,≤,U) = val(t), cf. Definition 3.3. Then

val(t{ε}) = (A,≤) (the axis) and, if U ∈ U and �U = pt(u), we have val(t{u}) =
(U,≤).

(3.6) Proposition : Every SBJ-tree is the value of a term.

Proof sketch : Let S = (N,≤,U) be an SBJ-tree. For each U in U , we
define a flat term that denotes (U,≤). We combine these terms in order to get
a term denoting S. �

For the example of Figure 1, if ti is a flat term denoting Ui, then we ob-
tain the term t0[t1, t2[t3], t4[t5]] where [...] denotes appropriate substitutions to
occurrences of Ω.

(3.7) Definition : Description schemes for SBJ-trees.
An SBJ-scheme is a triple S = (Q,wAx, (wq)q∈Q) such that Q is a set,

wAx ∈ A(Q) (is an arrangement over Q), and for each q, wq ∈ A(Q). It is
regular if Q is finite and the arrangements wAx and wq are regular.

An SBJ-scheme S describes an SBJ-tree J = (NJ ,≤,U) if there exists a
mapping r : NJ → Q such that r(AJ ,≤) = wAx and for every x ∈ NJ , wr(x) =
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r(U,≤) if U ∈ U and �U = x, and wr(x) = Ω if x = �U , for no U ∈ U . As (U,≤) is
considered as the arrangement (U,≤, IdU), its image under r is an arrangement
over Q. We also say that S describes the BJ-tree fgs(J).

(3.8) Proposition: Every SBJ-scheme S describes an SBJ-tree J(S) that is
unique up to isomorphism.

Proof sketch : Given S = (Q,wAx, (wq)q∈Q), we construct J(S) by defining
first its axis so as to be isomorphic to wAx, by a mapping rAx. Then we add the
nodes at depth 1 by adding nonempty lines U isomorphic to wq != Ω such that
�U = x for each x in the axis such that rAx(x) = q. The isomorphism between
such a line U and wq is rx. We proceed in a similar way with the nodes of depth
2,3.... We obtain an SBJ-tree. The mapping r is the union of the mappings
rAx and rx for all relevant x. Unicity holds because each step is forced, up to
isomorphism. �

(3.9) Definition : Regular objects.
A BJ-tree (resp. an SBJ-tree) T is regular if it is denoted by fgs(t) (resp. by

t) where t is a regular term in T∞(F ).

(3.10) Theorem: The following properties of a BJ-tree J are equivalent:
(1) J is regular,
(2) J is described by a regular scheme,
(3) J is MS-definable.

Proof sketch : (1)=⇒(2) Let J = fgs(J ′) with J ′ denoted by a regular
term t in T∞(F ). Let h : Pos(t) → Q and τ be as in Section 2.1. If x is an
occurrence of ext with son u, the flat term t{u} is regular. It defines the simple

arrangement (U,≤) where �U = x. The image h(U,≤) is a regular arrangement
over Q.

Furthermore, if h(x) = h(x′) = q, then the corresponding terms t{u} and
t{u′} are isomorphic and h(U,≤) and h(U ′,≤) are also isomorphic (with x′ =

pt(u
′) and �U ′ = x′). We can denote them by wq. We let wAx be h(val(t{ε})).

These definitions give us a regular scheme describing J ′, hence, also J .
(2)=⇒(3) Let J = (N,≤) be a BJ-tree. (This property of (N,≤) is MS-

expressible). Assume J = fgs(J ′) where J ′ = (N,≤,U) is described by a
regular SBJ-scheme R with Q = {1, ...,m} and regular arrangements over Q :
wAx and wi for i ∈ Q. Let r be the corresponding mapping. For each i ∈ Q,
let ψi be an MS sentence that characterize wi up to isomorphism by the main
result of [Tho86]. Similarly, ψAx characterizes wAx. We claim that a relational
structure (N,≤) is isomorphic to J if and only if :

there exist subsets N0, N1,M1, ...,Mm of N such that:

(i) (N,≤, N0, N1) = S(J ′′) for some SBJ-tree J ′′ = (N,≤,U),

(ii) (M1, ...,Mm) is a partition of N ; we let r′ maps each w ∈ N to
the unique i such that w ∈ Ni,
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(iii) for every i and node u in Mi, the arrangement r′(U) over Q

such that U ∈ U and u = �U is isomorphic to wi,

(iv) the arrangement r′(A) over Q such that A is the axis of J ′′ is
isomorphic to wAx.

Conditions (ii)-(iv) express that R describes J ′′, hence that J ′′ is isomorphic
to J ′, and so, that (N,≤) = fgs(J ′) = J .

By Proposition 2.6, Condition (i) is MS-expressible by ϕ(N0, N1), and the

property U ∈ U∧u = �U is also MS-expressible in terms of N0,N1 by θ(u,U,U0, N1).
Conditions (iii) and (iv) are MS-expressible by means of the sentences wAx and
wi suitably adapted to take N0, N1,M1, ...,Mm as arguments. Hence, J is the
unique model of an MS sentence of the form:
∃N0, N1(ϕ(N0, N1) ∧ ∃M1, ...,Mm.ϕ′(N0, N1,M1, ...,Mm))).
(3)=⇒(1) By Definition 3.2, the mapping α that transforms the relational

structure ⌊t⌋ for t in T∞(F ) into the BJ-tree J = (N,≤) = fgs(val(t)) is an MS-
transduction: an MS formula can identify the nodes of J among the positions
of t and another one can define ≤.

Let J = (N,≤) be an MS-definable BJ-tree. It is, up to isomorphism, the
unique model of an MS sentence β. It follows by a standard argument (called the
Backwards Translation Theorem, Theorem 7.10 in [CouEng]) that the set L(β)
of terms t in T∞(F ) such that α(⌊t⌋) |= β is MS-definable and thus, contains a
regular term (a result by Rabin, see [Tho90]). This term denotes J , hence J is
regular.�

(3.11) Corollary : That two regular BJ-trees are isomorphic is decidable.

Proof : A regular BJ-tree can be given either by a regular term, a regular
scheme or an MS sentence. The proof of Theorem (3.10) is effective: algorithms
can convert a specification into another one. Two regular BJ-trees can be given,
one by an MS sentence β, the other by a regular term t. They are isomorphic if
and only if α(⌊t⌋) |= ϕ (cf. the above proof of (3)=⇒(1)) if and only if t ∈ L(β),
which is decidable. �

We have defined regular BJ-trees from regular terms, that have finitary
descriptions. There are other infinite terms having finitary descriptions: the
algebraic ones and more generally, those of Caucal’s hierarchy [Cou83, Blu+].
Such terms yield effective notions of BJ-trees.

4 Conclusion

This algebraic approach and Theorem (3.10) extend to rooted trees, ordered
rooted trees, join-trees and ordered join-trees of finite or countable degree. This
theory is developped in [Cou15]. Quasi-trees can be characterized as the undi-
rected join-trees. But they are defined independently, as follows.
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(4.1) Definition : Betweenness.
If T is a tree, x, y ∈ NT , its betweenness relation is the ternary relation BT

such that BT (x, y, z) holds if and only if x, y, z are pairwise distinct and y is on
the unique path between x and z. If R is a rooted tree and T = Und(R) is the
tree obtained from T by forgetting its root and edge directions, then :

BT (x, y, z) ⇐⇒ x, y, z are pairwise distinct and x <R y ≤R x ⊔R z
or z <R y ≤R x ⊔T z.

(4.2) Proposition : The betweenness relation B = BT of a tree T satisfies
the following first-order properties for all u, x, y, z in NT :

A1 : B(x, y, z)⇒ x != y != z != x.

A2 : B(x, y, z)⇒ B(z, y, x).

A3 : B(x, y, z)⇒ ¬B(x, z, y).

A4 : B(x, y, z) ∧B(y, z, u)⇒ B(x, y, u) ∧B(x, z, u).

A5 : B(x, y, z) ∧B(x, u, y)⇒ B(x, u, z) ∧B(u, y, z).

A6 : B(x, y, z) ∧B(x, u, z)⇒

y = u ∨ (B(x, u, y) ∧B(u, y, z)) ∨ (B(x, y, u) ∧B(y, u, z)).

A7 : x != y != z != x⇒

B(x, y, z)∨B(x, z, y)∨B(y, x, z)∨(∃u.B(x, u, y)∧B(y, u, z)∧B(x, u, z)).

(4.3) Definition : Quasi-trees.
A quasi-tree is a structure S = (N,B) such that B is a ternary relation on

N that satisfies conditions A1-A7.
In a quasi-tree, the four cases of the conclusion of A7 are exclusive and

in the fourth case of the conclusion of A7, there is at most one u satisfying
B(x, u, y)∧B(y, u, z)∧B(x, u, z). A leaf of (N,B) is a node z such that B(x, z, y)
holds for no x, y. Directions and degrees of nodes can be defined and we get the
notion of subcubic quasi-tree.

From a join-tree J = (N,≤) we define a ternary relation BJ on N by:

BJ(x, y, z) :⇐⇒ x, y, z are pairwise distinct and x < y ≤ x ⊔ z or
z < y ≤ x ⊔ z,

and then, (N,BJ) is a quasi-tree denoted by qt(J).

The algebra of quasi-trees is just the algebra of join-trees augmenting with
the forgetting operation qt (similar to fgs). Subcubic quasi-trees are obtained in
this way from BJ-trees. By selecting a suitable line in a subcubic quasi-tree and
two nodes that fix its direction, we can make a quasi-tree into a BJ-tree. This
construction is MS-definable. This indicates how Theorem (3.10) (in particular
(2)=⇒(3)) extends to subcubic quasi-trees.
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