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It is well-known from [DF, FG, CMR] that the model-checking problem for MSO logic on graphs is fixed-
parameter tractable (FPT) with respect to tree-width and clique-width. The proof uses tree-decompositions
(for tree-width as parameter) and k-expressions (for clique-width as parameter; see below), and the con-
struction of a finite tree-automaton from an MSO sentence, expressing the property to check.

These two points are difficult : although tree-width ≤ k can be checked in linear time, the corresponding
algorithm (by Bodlaender, see [DF]) is not practically usable. The situation is similar for bounded clique-
width (see [HliOum]). Graphs can be given with their decompositions witnessing tree-width or clique-width
≤ k, but another difficulty arises : the automata to be constructed are much too large and computations
abort by lack of memory space. This is actually unavoidable if one wants an algorithm taking as input any
MSO sentence (see, e.g., [FriGro]). One possibility is to forget the idea of implementing the general theorem,
and to work directly on particular problems: see [G1,G2] or [GH]. Another one, explored here (also in [KL]
in a different way) consists in finding fragments of MSO logic having an interesting expressive power, and
for which automata constructions (or other constructions) are tractable.

What we propose is based on the following ideas :
(1) Do not alternate quantifiers and do not determinize automata.
(2) Write MSO formulas with Boolean set terms (see below definitions).
(3) Precompile basic graph properties into ”small” finite automata.

We do not capture all MSO graph properties, but we can formalize in this way coloring and partitionning
problems, and also some domination problems to take a few examples. We only discuss graphs of bounded
clique-width, but the ideas extend to graphs of bounded tree-width and MSO formulas with edge set quan-
tifications. The problems considered successfully in [BK] use automata with smaller numbers of states than
what we need.

Definition 1 : Clique-width and k-expressions.

Graphs are finite, simple, directed, loop-free. Each vertex has a label in [k] := {1, ..., k}. The operations

on graphs are ⊕, the union of disjoint graphs, the unary edge-addition
−−→
adda,b that adds the missing edges

from every vertex labelled a to every vertex labelled b, the relabelling relaba→b that changes a to b (with
a 6= b in both cases). The constant a denotes one vertex (with no edge) labelled by a ∈ [k].Let Fk be the
set of these operations and constants. Every term t in T (Fk) called a k-expression defines a graph G(t) with
vertex set equal to the set of occurrences of constants in t. A graph has clique-width at most k if it is defined
by some t in T (Fk).

As a logical structure, a graph is defined as 〈VG, edgG〉 where VG is the vertex set and edgG the binary
relation that describes edges.

Definition 2 : The set of terms representing a graph property.

Let P (X1, ..., Xn) be a property of sets of vertices X1, ..., Xn of a graph G denoted by a term t in T (Fk).
Examples are : E(X, Y ) : there is an edge from some x in X to some y in Y ; H(X, Y ) : for every x in X,

there is an edge from some y in Y to x ; Path(X, Y ) : X has two vertices linked by a path in G[Y ], the
subgraph of G induced by Y and Conn(X) : G[X ] is connected.



Let F
(n)
k be obtained from Fk by replacing each constant a by the constants (a, w) where w ∈ {0, 1}n.

For fixed k, let LP,(X1,...,Xn),k be the set of terms t in T (F
(n)
k ) such that P (A1, ..., An ) is true in G(t),

where Ai is the set of vertices which are occurrences of constants (a, w) where the i-th component of w is 1.

Hence t in T (F
(n)
k ) defines a graph G(t) and an assignment of sets of vertices to the set variables X1, ..., Xn.

Definition 3 : ∃MSO(P) sentences

We let P be a set of basic graph properties like those of Definition 2 together with the atomic formulas
X1 ⊆ X2, X1 = ∅ , Sgl(X1) (the last one means that X1 denotes a singleton set). Let {X1, ..., Xn} be a
set of set variables. A Boolean set term is a term over these variables, ∩,∪ and complementation (example
below). A P -atomic formula is a formula of the form P (S1, ..., Sm ) where S1, ..., Sm are Boolean set terms
and P belongs to P . An ∃MSO(P) sentence is a sentence of the form ∃X1, ..., Xn.ϕ where ϕ is a positive
Boolean combination of P -atomic formulas.

Examples 4 :

We give some examples of ∃MSO(P) sentences.
(1) The property of p-vertex colorability can be expressed as follows :

∃X1, ..., Xp.(Part(X1, ..., Xp) ∧ St(X1) ∧ · · · ∧ St(Xp)),

where Part(X1, ..., Xp) expresses that X1, ..., Xp define a partition of the vertex set and St(Xi) expresses
that Xi is stable, i.e., that the induced graph G[Xi] has no edge.

A p-vertex coloring defined by X1, ..., Xp is acyclic if furthermore, each induced graph G[Xi ∪ Xj] is
acyclic (is a forest). These properties are thus in ∃MSO(P) if we let in P the properties Part(X1, ..., Xp),
St(X1) and NoCycle(X1) expressing that G[X1] is acyclic.

(2) Minor inclusion. That a graph G contains a fixed simple loop-free graph H with vertex set {v1, ..., vp}
as a minor, can be expressed by the sentence µ :

∃X1, · · · , Xp.(Disjoint(X1, ..., Xp) ∧ Conn(X1) ∧ · · · ∧ Conn(Xp) ∧ · · ·Link(Xi, Xj) ∧ · · · )

where Disjoint(X1, ..., Xp) expresses that X1, ..., Xp are pairwise disjoint, Conn(Xi) expresses that G[Xi]
is connected and Link(Xi, Xj) expresses that there exists an edge between a vertex of Xi and one of Xj ; in
µ, there is one formula Link(Xi, Xj) for each edge {vi, vj} of H .

(3) Constrained domination. The sentence ∃X1.(P (X1)∧Dom(X1, X1)) expresses that there exists a set
X1 satisfying a property P and which also dominates all other vertices. The formula Dom(Y, X) expresses
that every vertex of Y is linked by an edge to some vertex of X .

(4) Many vertex partitionning problems considered by Rao in [Rao] can be expressed in this way.

Definition 5 : From ∃MSO(P) sentences to ”reasonable sized” automata.

Let us assume that for each basic property P (X1, ..., Xm) we have constructed a finite automaton
AP,(X1,..., Xm),k that accepts the set LP,(X1,...,Xm),k.

Claim 6 : For set terms S1, ..., Sm over {X1, ..., Xn}, the set of terms LP (S1,...,Sm),(X1,...,Xn),k is

h−1(LP,(X1,...,Xm),k) where h is the alphabetic homomorphism : T (F
(n)
k ) → T (F

(m)
k ) that replaces a

constant symbol (a, w) for w ∈ {0, 1}n by (a, w′) for some w′ ∈ {0, 1}m and does not modify the
nonnullary function symbols. We give an example : consider P (X1), n = 3 and S = X1 ∪ X3. Then
LP (S),(X1,X2,X3),k = h−1(LP,(X1),k) where h(1x0) = h(1x1) = 1, h(0x0) = 1, h(0x1) = 0, for every x = 0, 1,
i.e., h(x1, x2, x3) = x1 ∨ ¬x3.

Claim 7 : From an automaton AP,(X1,...,Xm),k that accepts LP,(X1,...,Xm),k one gets an automaton
AP (S1,...,Sm),(X1,...,Xn),k with same number of states that accepts LP (S1,...,Sm),(X1,...,Xn),k . If AP,(X1,...,Xm),k
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is deterministic, then AP (S1,...,Sm),(X1,...,Xn),k is also deterministic.

Claim 8 : If ϕ is a positive Boolean combination of P -atomic formulas α1, ..., αd for which we have
constructed non-deterministic (resp. deterministic) automata A1, ...,Ad with respectively N1, ..., Nd states,
one can construct a ”product” non-deterministic (resp. deterministic) automaton for ϕ with N1 × ... × Nd

states (perhaps less after deletion of useless states).

Claim 9 : If θ is the sentence ∃X1, ..., Xn.ϕ , and we have constructed an automaton A for ϕ, we obtain
one, usually not deterministic even if A is, for θ with same number of states, by the classical ”projection”

that deletes the Boolean sequences from the constant symbols of F
(n)
k .

Theorem 10 : Let P be a set of basic graph properties. For each P ∈ P and for each k, let a
nondeterministic automaton AP,(X1,...,Xm),k with at most N(k) states be known. For every sentence θ of the
form ∃X1, ..., Xn.ϕ where ϕ is a positive Boolean combination of d P-atomic formulas, a non-deterministic
automaton Aθ,ε,k (over the signature Fk ) with at most N(k)d states can be constructed.

In many cases (see below) deterministic automata for the properties of P are such that N(k) = 2O(k2).
The only nondeterministic transitions of Aθ,ε,k are those associated with the constants. Then, with these
hypotheses and the notation of Theorem 6:

Theorem 11 : For every term t in T (Fk), one can decide in time O(| t | .N(k)2d) if the graph G(t)
satisfies θ.

Proof : One can decide in time O(| t | .N2) if a nondeterministic automaton with N states over a binary
signature and nondeterministic transitions limited to constants accepts a term t. In this computation, one
considers θ as fixed, and the time to fire a transition constant.

Application 12: Some basic graph properties and their automata; experiments1

We classify graph properties in terms of the numbers of states N(k) of deterministic automata that check
them.

Polynomial-sized automata.

The automata for X1 ⊆ X2, X1 = ∅ , Sgl(X1) have no more than 4 states. For E(X1, X2) we can build
an automaton with k2 + k + 2 states.

Single-exponential sized automata.

For Part(X1, ..., Xp) , Disjoint(X1, ..., Xp) and St(Xi) : 2k states.

For Link(Xi, Xj) and Dom(Xi, Xj) : 22k states.

For Path(X1, X2) , we have constructed a (non-minimal) automaton with 2k2

states. Its minimization
(with the software ATUOWRITE [Dur]) has given the results shown in the following table.

Path(X1, X2)
cwd A min(A)

2 25 12
3 214 128
4 3443 2197

For NoCycle(X1) : 2O(k2) states.
For d-vertex coloring, we get, by Theorem 10, a nondeterministic automaton with 2kd states.

1 The tables contain the number of states of the considered automata. The symbol ∞ means that the computation

did not finish but did not run out of memory.
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We have been able to construct minimal deterministic automata for the following values of (k, d) shown
in the following table.

Vertex coloring
cwd d A det(A) min(A)

2 2 16 12 8
2 3 64 37 14
2 4 256 96 23
2 5 1024 213 36
3 2 64 406 56
3 3 512 ∞

Double-exponential sized automata.

For checking connectivity, one can build a deterministic automaton with 22k

states. If k = 2p + 1, the
corresponding minimal deterministic automaton has more than 22p

states. However, for connectivity of graphs
of degree at most d, which may be enough in practice, we can build a single-exponential sized automaton
with 2O((dk)2) states.

For having a circuit, we get 9 states for cwd = 2 and 81 for cwd = 3 and the program runs out of memory
for cwd = 4. For indegree at most 1, we get :

cwd 2 3 4 5
A 24 123 621 3120

Perspectives: To make these constructions usable, we will not try to tabulate and minimize automata,
but rather, we will describe their transitions by clauses. We will compute a transition each time it is necessary
for running the automaton on a given term.
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