Fly-automata, their properties and applications

Bruno Courcelle and Irene A. Durand

LaBRI, CNRS, Université de Bordeaux, Talence, France
{idurand,courcell t@labri.fr

Abstract. We address the concrete problem of implementing huge betfpm
term automata. Such automata arise from the verificationafadic Second Or-
der propositions on graphs of bounded tree-width or cligyicth. This applies

to graphs of bounded tree-width because bounded tree-witilies bounded

cligue-width. An automaton which has so many transitiors they cannot be
stored in a transition table is represented be a fly-autamiatavhich the transi-

tion function is represented by a finite set of meta-rules.

Fly-automata have been implemented insideAbtowrite ! software and ex-

periments have been run in the domain of graph model chetking

1 Introduction

The following theorem connects the problem of verifyingmiraroperties with term
(tree) automata.

Theorem 1. Monadic second-order model checkingfigsed-parameter tractablier
tree-width [Courcelle (1990)] and clique-width [Cource]IMakowski, Rotics (2001)].

Tree-widthandclique-widthare graph complexity measures based on graph decompo-
sitions. Adecompositioproduces a term representation of the graph. For a graph prop
erty expressed in monadic second order logic (MSO)atgerithmverifying the prop-
erty takes the form of a term automaton which recognizesdhag denoting graphs
satisfying the property.

In [2], we have given two methods for finding such an automajfieen a graph
property. The first one is totally general; it computes thsaiaton directly from the
MSO formula; it starts with ad-hoc automata correspondmgtomic formulas and
combines them with boolean operations, relabellings anel e relabellings; however
this method it is not practically usable because the inteiate automata that are com-
puted along the construction can be very big even if the final is not. The second
method is very specific: it is a direct construction of theoawditon; one must describe
the states and the transitions of the automaton. Althougldittect construction avoids
the bigger intermediate automata, we are still faced wighhihgeness of the automata.
For instance, one can construct an automaton recognizaghgwhich are acyclic has
33" states wheré is the clique-width of the graph. Even fér= 2, which yields the

! http://dept-info.labri.fr/ ~idurand/autowrite/
2 http://dept-info.labri.fr/ ~idurand/autograph/

very restricted class of co-graphs, it is unlikely that welldostore the transition table
of such an automaton.

The solution to this last problem is to ufig-automataln a fly-automaton, the
transition function is represented, not by a table (thatla/ase too much space), but by
a finite set of meta-rules. Little space is then requiredpoasent the transition function.
In addition, fly-automata are more general than finite bottgmterm automata; they
can be infinite in two ways: they can work on an infinite (cobtgasignature. they can
have an infinite (countable) number of states. They are maregul: a fly-automaton
can recognizgt € T(F) | t = f(t1,t2) and |t1] = |t2|} whereF is a finite
signature.

The purpose of this article is to present in detail the conoéfly-automaton and
some experiments done with these automata for the verdicafiproperties of graphs
of bounded clique-width.

2 Preliminaries: terms

We recall some basic definitions concerning terms. The fodefinitions can be found

in the on-line book [1]. We callignatureF a set of symbols equiped with a function
arity : F — N. We denote byF,, the subset of symbols of with arity n. SoF =

U,, Fn- T(F) denotes the set of (grounthrmsbuilt upon the signaturg-. Given a
termt, Pos(t) denotes the set of positions of the term. The position of tlee of a
term is denoted by. A termt can also be viewed as a map from its set of positions
Pos(t) to F.

Example 1.Let F be a signature containing the symbfisb, add, p, relq b, rely_q, B}
with

arity(a) = arity(b) = 0 arity(®) = 2
arity(add,_p) = arity(rel,) = arity(relp,) =1

We will see in Section 3 that this signature is suitable tdcbigirms representing graphs
of clique-width at mosg.
t1,to, t3 andt, are terms built upon the signaturéof Example 1.

t1 = ®(a,b)

to = add, ,(®(a, B(a,b)))

ts = add,_ b(@(adda b((a,b)),add, (B(a,b))))
ts = addap(®(a, relas(addas($(a,b)))))

We will see in Table 1 their associated graphs.

3 Application domain

All this work will be illustrated through the problem of véring properties of graphs of
bounded clique-width. We present here the connection lestweaphs and terms and
the connection between graph properties and term automata.

3.1 Graphs as logical structures

We consider finite, simple, loop-free, undirected graphksefesions are easy)Every
graph can be identified with the relational struct(¥e;, edgs) whereV is the set of
vertices an@dgq the binary symmetric relation that describes edgégs C Vo X Va
and(z,y) € edgq if and only if there exists an edge betweeandy. Properties of a
graphG can be expressed by sentences of relevant logical languemdastance(s is
completecan be expressed b, Vy, edga(x, y) or G is stableby Va, Vy, —edga (x, y)
Monadic Second order Logic is suitable for expressing maayply properties like:-
colorability, acyclicity,

3.2 Term representation of graphs of bounded clique-width

Let £ be a finite set of vertex labels and let us consider grapbach that each vertex

v € Vg has alabelabel(v) € L. The operations on graphs aé, the union of disjoint
graphs, the unary edge additiadd,,_, that adds the missing edges between every vertex
labeleds and every vertex labelédthe unary relabelingel,,_, that renameg to b (with

a # bin both cases). A constant terindenotes a graph with a single vertex labeled
by a and no edge. Lef: be the set of these operations and constants. Every term
t € T(F) defines a grapl*(¢) whose vertices are the leaves of the teriNote that,
because of the relabeling operations, the labels of théceserin the grapl&(¢) may
differ from the ones specified in the leaves of the term. A briaasclique-width(cwd

for short) at most: if it is defined by some € 7 (F) with |£| < k.

t1 to t3 ta
o |o. o9 =X
O o |o—0|0—0

Table 1. The graphs corresponding to the terms of Example 1

We will express graph properties using MSO formulas thanfdize coloring and
partitioning problems to take a few examples.

4 Term automata

We recall some basic definitions concerning term automagairA much more infor-
mation can be found in the on-line book [1].

4.1 Finite bottom-up term automata

Definition 1. A finite (bottom-upderm automatohA is a quadruple F, Q 4, Q4, A4)
consisting of a finite signatur&’, a finite setQ 4 of states, disjoint fron¥, a subset

3 We consider such graphs for simplicity of the presentatiophvbe can work as well with
directed graphs, loops, labeled vertices and edges

4 oplus will be used instead of inside the softwardutowrite

5 Term automata are frequently called tree automata, bunivtisa good idea to identify trees,
which are particular graphs, with terms.

Qﬁ“’ C Q4 of accepting states, and a set of transitions rukg. Every transition is
of the formf(q1,...,q.) — qwith f € F, arity(f) =nandq,...,qn,q € Q4.

Example 2.Figure 1 shows an example of such an automaton. It recogt@z®es rep-
resenting graphs of clique-width 2 which are stable (do ootain edges). Statea>
(resp.) means that we have found at least a vertex labalgesp.b). State<ab>
means that we have at least a vertex labeleahd at least a vertex labelédbut no
edge. Staterror means that we have found at least an edge so that the graph is no
stable. Note that when we are in the staéi>, anadd_a_b operation creates at least

an edge so we reach tkerror> state®

Automaton 2-STABLE

Signature: a b ren_a_b:1 ren_b_a:1 add_a_b:1 oplus:2 *
States: <a> <ab> <error>

Accepting States: <a> <ab>

Transitions a -> <a> b ->
add_a_b(<a>) -> <a> add_a_b() ->
ren_a_b(<a>) -> ren_b_a(<a>) -> <a>
ren_a_b() -> ren_b_a() -> <a>
ren_a_b(<ab>) -> ren_b_a(<ab>) -> <a>
oplus *(<a>,<a>) -> <a> oplus *() ->
oplus *(<a>,) -> <ab> oplus *(<ab>) -> <ab>
oplus *(<a><ab>) -> <ab> oplus * (<ab>,<ab>) -> <ab>
add_a_b(<ab>) -> <error> ren_a_b(<error>) -> <error>

add_a_b(<error>) -> <error> ren_b_a(<error>) -> <error>
oplus *(<error>,q) -> <error> for all states g

Fig. 1. An automaton recognizing terms representing stable graphs

Finite term automata recognimegularterm languages[7]. The class of regular term
languages is closed under the Boolean operations (unitersection, complementa-
tion) on languages which have their counterpart on autorkataall details on terms,
term languages and finite term automata, the reader shdaldtod1]. Figure 2 shows
in a graphical way the run of the automa®$TABLE on a term representing a graph
of clique-width2. Below we show a successful run of the automaton on a ternetepr
senting a stable graph.

add_a_b(ren_a_b(oplus(a,b))) -> add_a_b(ren_a_b(oplus (<a>,h)))
-> add_a_b(ren_a_b(oplus(<a>,)) -> add_a_b(ren_a_b(<ab>))
-> add_a_b() ->

To distinguish these automata from the infinite automatanddfin the next sec-
tion (4.2) and as we only deal with terms in this paper we veifer to the previously
defined term automata é&ble-automata

8 Our software Autowrite takes into account the notion of cartative symbols. The star in
oplus * means that this symbol is commutative. When we have a néeplus *(ql,92)
-> @ theruleoplus *(g2,q1) -> q is implicitly defined.

G

@ : : add_a_b add-ab
® ®
te = add-ab(®(a,b)) a/ \ b / \

<a> a b

add_a-b add-a-b add_ab <error>

<ab> @

@a/g\b@ a/ \b a/$\b

Fig. 2. Graphical representation of an (unsuccessful) run of tihenaaton on a term

4.2 Infinite (bottom-up) term automata

Definition 2. From now on, germ automatomd will be given by(F, §, acf) or (F, §)
where the signaturg may be countably infinité, is the transition relation defined as
a function

fa- @ —{eeQ| flar,-- - an) = ¢}

where the sef) of states accessible usiignay be countably infinité?(Q) is the set
of finite subsets of) andacf is the accepting state function acf : Q — Boolean
which indicates whether a state is accepting or not. Notettaset of state® is given
implicitely byd. The notions of a run, of an accepting run, the sétsl, ¢) and £(.A)
are the same. Term automata may be complete and/or detstmiim an obvious way.
We will shortly consider effectivity conditions insurirftat membership of a term to
L(A) is decidable.

Sometimes, in the case where the number of states is infihése automata will
have no accepting state function. It is the case for instdioceounting automata as
shown in the following example.

Example 3.The automato®@OUNTINGpresented p.6 is an example of an infinite automaton.
Given a term, it counts the number of vertices of the assedigtaph of any clique-width. State
<i> means that we have founidvertices. The set of stat€g = {<i> | ¢ € N}. There is no
accepting state function. However, if we want an automagmognizing terms corresponding
to graphs having aprime number (or a multiple of some integer) of vertices, we may aad
accepting state functioscf : <i> — T if 7 is prime, F otherwise. Note that as the automaton
works on graphs of any clique-width, we need a countable s&hels, so we use numbers
instead of letters in the finite examples.

4.3 Fly term automata

Definition 3. Afly-automatoris an automatoii.F, é, acf) such thath andacf are com-
putable functions.

Theorem 2. Let A be a fly-automaton. Membership f4.4) is decidable. The empti-
ness ofZ(.A) is not decidable.

Automaton COUNTING
Signature: 0 1 2 ...
ren 0 1:1 ren_1 0:1 add 0 _1:1 ren_ 0 2:1 ren_2 0:1 add 0O_ 2:1 ..
oplus:2 *
States: <0> <1> <2> ...
Metarules:
X -> <1> for all x
add_x_y(<i>) -> <i> for all x,y st. x <y
ren_x_y(<i>) -> <i> for all xy
oplus *(<i>,<j>) -> <i+j> for all i,j

Theorem 3. Fly-automata are closed under Boolean operations, arigsprving re-
labellings and inverse-relabellings.

Proof. Let A = (F, §, acf) be a deterministic and complete fly-automaton. The com-
plement ofA is (F, 6, acf) whereacf®(q) = —acf(q) for everyq € Q 4.

Given two fly-automatad; = (F, d1,acf;) andA; = (F, d2, acfz2), one can easily de-
fine a computable transition functiércorresponding to the product of the two automata
whose states are @ 4 x Q3. The following accepting state functions are suitable (and
computable) for union and intersection respectively.

acf® : Q4 x Qg — Boolean acf : Q4 x Qs — Boolean
{a1,42} = acfi(q1) V acfa(gz) {a1, 02}~ acfi(q1) Aacfa(gz)

ThenA; U Ay = (F,§,acf*) and.A; N Ay = (F, d,acf’) are fly-automata. The proofs
are similar for arity-preserving relabellings and inversiabellings.

In the same spirit, fly-automata may be determinized and tetegh The deter-
minized version of4 is an automator(A) = (F,§,acf’). If Q4 is the domain of
0 (the set of states ofl), let d(Q.4) denote the set of states df.A). Each subset
{q1,...,qp} of Q4 yields a statég, ..., q,] iN d(Q.4). ¢ is defined by with

& Un]:n X d(Qa)" — d(Qa)
f,Sl,...,Sn — S

with ¢ € Sifandonly if3¢1,...,q € S1 x ... Sy suchthay € 6(f, q1,.-.,qn)-

When a fly-automatofiF, ¢, acf) is finite, it can be compiled into a table-automaton
(F,Q,Q4, A), provided that the resulting table is not too big. The tramsitable A
can be computed fror starting from the constant transitions and then saturdtieg
table with transitions involving new accessible states| mat new state is computed.
The set of (accessible) statésis obtained during the construction of the transitions
table. The set of accepting stat@s'“c is obtained by removing the non accepting
states (according to the accepting state functicf) from the set of states. A table-
automaton is a particular case of a fly-automaton. It can be as a compiled version
of a fly-automaton whose transition functiérs described by the transitions talde
and whose accepting state functiari corresponds to membershipd@s*<c. It follows
that the automata operations defined for fly-automaton woltknfor table-automata.
Table-automata are faster for recognizing a term but theyspsce for storing the
transitions table and the access time may be important i& ks very large table.

Fly-automata use a much smaller space (the space corrésgdondthe code of the

transition function) but are slower for term recognitionamtthe transition function is

complex. A table-automaton should be used when the tranggible can be computed
in reasonable space and a fly-automaton otherwise.

5 Implementation of fly-automata

We will call basicfly-automata the ones that are built from scratch in orderigtrd
guish them from the ones that are obtained by combinatioesisfing automata using
the operations cited in Theorem 3, determinization and detiom. We call the later
composedly-automata. Fly-automata have been implemented insielsdftware Au-
towrite [5] (entirely written in Common Lisp) which alreathad table-automata. States
are not stored in the representation. For basic fly-autgrteg are created on the fly by
calls to the transition function. For composed automatasthtes returned by the transi-
tion function are constructed from the ones returned froanrtinsition functions of the
combined automata. For operations like determinizatioverise-relabellings, sets of
states are involved. The implementation of fly-automataintsasively the functional
paradigm to represent and combine transition and accegtées functions. More de-
tails about the implementation can be found in [6]. The maierations that are imple-
mented on fly-automata are: run of an automatoan a term¢, recognition of a term
t by an automatom, decision of emptiness fof(.4) (whenA is finite), completion,
determinization, complementation of an automat@nunion, intersection of two (or
more) automata, relabellings and inverse-relabellingooktants.

For table-automata, we have also implemented reductiondvel of inaccessible
states), minimization but this is not discussed in this papecause a table-automaton
can always be transformed into a fly-automaton and a finitaudlpmaton back to a
table-automaton we get the corresponding operations lide-@utomata for free once
we have implemented them for fly-automata. However, foriefficy reasons, it might
be interesting to implement some of these operations atetred bf table-automaton.
For instance, the complementation which consists in ifvgmon accepting and ac-
cepting states is easily performed directly on a tabletaaton. Implementing opera-
tions directly at the level of table-automaton has the diekithat it depends on the
representation chosen for the transitions table. Wheneearould want to change this
representation we would have to re-implement these opesatirhe only advantage is
a gain in efficiency. Some operations on table-automata rnivayegolow-up in terms of
the size of the transition table (determinization, inteti&). In this case, the solution
is to omit to compile the resulting operation back to a tadaematon. It is though
possible to deal uniformly with table and fly-automata.

6 Experiments

Most of our experiments have been run in the domain of verifygraph properties.
Many construction of basic automata can be found in [4, 3]l been implemented
with Autowrite . In order to compare the running time of a fly-automaton aatiof
the corresponding table-automaton, we have chosen a pyapet a clique-width for

which the automaton is compilable. This is the case foctmectedness propertye

have a direct construction of an automaton verifying wheghgraph is connected. The
corresponding table automaton H#§““~1 + 2¢wd _ 2 states. It is compilable up to
cwd = 3. Forcwd = 4, which gives|Q| = 32782, we run out of memory. It is possible

to show that the number of states of the minimal automat@|is- 22““*'*'. So there
is no hope of having a table-automaton for this propertyand > 3.

We have direct constructions of the automata for propetfikesEdgd X1, X3),
k-Cardinality), k-Coloring X1, ..., Xx), Connectednegg Acyclic() among others.
With these properties and using relabellings and Boolearatjpns, we obtain au-
tomata for properties liké-Colorability(), k-Acyclic-Colorability(), k-Vertex-Covef)
among others. The Vertex-Cover property can be expressaadbmbination (intersec-
tion, homomorphisms) of already defined basic automathl{iéty k-cardinality).

Many problems that where unthinkable to solve with tablesmata could be solved
with fly-automata. For very difficult (NP-complete) problemwe still reach time or
space limitations.

7 Conclusion and perspectives

In the near future, we plan to implement more graph propedisd to run tests on
real and random graphs. We cannot hope to check arbitraryaMorSecond Order
formulas because, even on words, the problem is intractbbite formula is part of
the input. However, many interesting graph properties gedwa reachable. We did not
address the problem of finding terms representing a gragtistto find a cliqgue-width
decomposition of the graph. In some cases, the graph otstteomes with a “natural
decomposition” from which the clique decomposition of bded clique-width is easy
to obtain but for the general case the known algorithms areraatically usable.

The concept of fly-automaton is general and could be apptiedtlier domains
where big automata are needed.

References

1. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F.i¢zgD., Tison, S., Tommasi, M.:
Tree Automata Techniques and Applications (2002), drattjlable fromhttp://tata.
gforge.inria.fr

2. Courcelle, B., Durand, I.: Verifying monadic second ardeaph properties with tree au-
tomata. In: Proceedings of the 3rd European Lisp Sympogipm7/—21 (May 2010)

3. Courcelle, B., Durand, |.: Automata for the verificatidmmonadic second-order graph prop-
erties (2011), in preparation

4. Courcelle, B., Engelfriet, J.: Graph structure and manaécond-order logic, a language
theoretic approach (2011), available hatp://www.labri.fr/perso/courcell/
Book/CourGGBook.pdf To be published by Cambridge University Press

5. Durand, I.: Autowrite: A tool for term rewrite systems atnde automata. Electronics Notes
in Theorical Computer Science 124, 29-49 (2005)

6. Durand, |.: Implementing huge term automata. In: Proicegstbf the 4th European Lisp Sym-
posium. pp. 17-27 (March 2011)

7. Thatcher, J., Wright, J.: Generalized finite automatarthevith an application to a decision
problem of second-order logic. Mathematical Systems Th2p57—-81 (1968)

