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Abstract. We address the concrete problem of implementing huge bottom-up
term automata. Such automata arise from the verification of Monadic Second Or-
der propositions on graphs of bounded tree-width or clique-width. This applies
to graphs of bounded tree-width because bounded tree-widthimplies bounded
clique-width. An automaton which has so many transitions that they cannot be
stored in a transition table is represented be a fly-automaton in which the transi-
tion function is represented by a finite set of meta-rules.
Fly-automata have been implemented inside theAutowrite 1 software and ex-
periments have been run in the domain of graph model checking2.

1 Introduction

The following theorem connects the problem of verifying graph properties with term
(tree) automata.

Theorem 1. Monadic second-order model checking isfixed-parameter tractablefor
tree-width [Courcelle (1990)] and clique-width [Courcelle, Makowski, Rotics (2001)].

Tree-widthandclique-widthare graph complexity measures based on graph decompo-
sitions. Adecompositionproduces a term representation of the graph. For a graph prop-
erty expressed in monadic second order logic (MSO), thealgorithmverifying the prop-
erty takes the form of a term automaton which recognizes the terms denoting graphs
satisfying the property.

In [2], we have given two methods for finding such an automatongiven a graph
property. The first one is totally general; it computes the automaton directly from the
MSO formula; it starts with ad-hoc automata corresponding to atomic formulas and
combines them with boolean operations, relabellings and inverse relabellings; however
this method it is not practically usable because the intermediate automata that are com-
puted along the construction can be very big even if the final one is not. The second
method is very specific: it is a direct construction of the automaton; one must describe
the states and the transitions of the automaton. Although the direct construction avoids
the bigger intermediate automata, we are still faced with the hugeness of the automata.
For instance, one can construct an automaton recognizing graphs which are acyclic has
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states wherek is the clique-width of the graph. Even fork = 2, which yields the

1 http://dept-info.labri.fr/ ˜ idurand/autowrite/
2 http://dept-info.labri.fr/ ˜ idurand/autograph/



very restricted class of co-graphs, it is unlikely that we could store the transition table
of such an automaton.

The solution to this last problem is to usefly-automata. In a fly-automaton, the
transition function is represented, not by a table (that would use too much space), but by
a finite set of meta-rules. Little space is then required to represent the transition function.
In addition, fly-automata are more general than finite bottom-up term automata; they
can be infinite in two ways: they can work on an infinite (countable) signature. they can
have an infinite (countable) number of states. They are more powerful: a fly-automaton
can recognize{t ∈ T (F) | t = f(t1, t2) and |t1| = |t2|} whereF is a finite
signature.

The purpose of this article is to present in detail the concept of fly-automaton and
some experiments done with these automata for the verification of properties of graphs
of bounded clique-width.

2 Preliminaries: terms

We recall some basic definitions concerning terms. The formal definitions can be found
in the on-line book [1]. We callsignatureF a set of symbols equiped with a function
arity : F → N. We denote byFn the subset of symbols ofF with arity n. SoF =⋃

n Fn. T (F) denotes the set of (ground)termsbuilt upon the signatureF . Given a
term t, Pos(t) denotes the set of positions of the term. The position of the root of a
term is denoted byǫ. A term t can also be viewed as a map from its set of positions
Pos(t) to F .

Example 1.LetF be a signature containing the symbols{a, b, adda b, rela b, relb a,⊕}
with

arity(a) = arity(b) = 0 arity(⊕) = 2
arity(adda b) = arity(rela b) = arity(relb a) = 1

We will see in Section 3 that this signature is suitable to build terms representing graphs
of clique-width at most2.

t1, t2, t3 andt4 are terms built upon the signatureF of Example 1.

t1 = ⊕(a, b)
t2 = adda b(⊕(a,⊕(a, b)))
t3 = adda b(⊕(adda b(⊕(a, b)), adda b(⊕(a, b))))
t4 = adda b(⊕(a, rela b(adda b(⊕(a, b)))))

We will see in Table 1 their associated graphs.

3 Application domain

All this work will be illustrated through the problem of verifying properties of graphs of
bounded clique-width. We present here the connection between graphs and terms and
the connection between graph properties and term automata.
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3.1 Graphs as logical structures

We consider finite, simple, loop-free, undirected graphs (extensions are easy)3. Every
graph can be identified with the relational structure〈VG, edgG〉 whereVG is the set of
vertices andedgG the binary symmetric relation that describes edges:edgG ⊆ VG×VG

and(x, y) ∈ edgG if and only if there exists an edge betweenx andy. Properties of a
graphG can be expressed by sentences of relevant logical languages. For instance,G is
completecan be expressed by∀x, ∀y, edgG(x, y) orG is stableby∀x, ∀y,¬edgG(x, y)
Monadic Second order Logic is suitable for expressing many graph properties likek-
colorability, acyclicity, . . . .

3.2 Term representation of graphs of bounded clique-width

Let L be a finite set of vertex labels and let us consider graphsG such that each vertex
v ∈ VG has a labellabel(v) ∈ L. The operations on graphs are⊕4, the union of disjoint
graphs, the unary edge additionadda b that adds the missing edges between every vertex
labeleda and every vertex labeledb, the unary relabelingrela b that renamesa to b (with
a 6= b in both cases). A constant terma denotes a graph with a single vertex labeled
by a and no edge. LetFL be the set of these operations and constants. Every term
t ∈ T (FL) defines a graphG(t) whose vertices are the leaves of the termt. Note that,
because of the relabeling operations, the labels of the vertices in the graphG(t) may
differ from the ones specified in the leaves of the term. A graph hasclique-width(cwd
for short) at mostk if it is defined by somet ∈ T (FL) with |L| ≤ k.

t1 t2 t3 t4

b

a a

b

a

ba

ab b b

a

Table 1.The graphs corresponding to the terms of Example 1

We will express graph properties using MSO formulas that formalize coloring and
partitioning problems to take a few examples.

4 Term automata

We recall some basic definitions concerning term automata. Again, much more infor-
mation can be found in the on-line book [1].

4.1 Finite bottom-up term automata

Definition 1. A finite (bottom-up)term automaton5A is a quadruple(F , QA, Q
Acc
A

, ∆A)
consisting of a finite signatureF , a finite setQA of states, disjoint fromF , a subset

3 We consider such graphs for simplicity of the presentation but we can work as well with
directed graphs, loops, labeled vertices and edges

4 oplus will be used instead of⊕ inside the softwareAutowrite
5 Term automata are frequently called tree automata, but it isnot a good idea to identify trees,

which are particular graphs, with terms.
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QAcc
A

⊆ QA of accepting states, and a set of transitions rules∆A. Every transition is
of the formf(q1, . . . , qn) → q with f ∈ F , arity(f) = n andq1, . . . , qn, q ∈ QA.

Example 2.Figure 1 shows an example of such an automaton. It recognizesterms rep-
resenting graphs of clique-width 2 which are stable (do not contain edges). State<a>
(resp.<b>) means that we have found at least a vertex labeleda (resp.b). State<ab>
means that we have at least a vertex labeleda and at least a vertex labeledb but no
edge. Stateerror means that we have found at least an edge so that the graph is not
stable. Note that when we are in the state<ab> , anadd_a_b operation creates at least
an edge so we reach the<error> state.6

Automaton 2-STABLE
Signature: a b ren_a_b:1 ren_b_a:1 add_a_b:1 oplus:2 *
States: <a> <b> <ab> <error>
Accepting States: <a> <b> <ab>
Transitions a -> <a> b -> <b>

add_a_b(<a>) -> <a> add_a_b(<b>) -> <b>
ren_a_b(<a>) -> <b> ren_b_a(<a>) -> <a>
ren_a_b(<b>) -> <b> ren_b_a(<b>) -> <a>
ren_a_b(<ab>) -> <b> ren_b_a(<ab>) -> <a>
oplus * (<a>,<a>) -> <a> oplus * (<b>,<b>) -> <b>
oplus * (<a>,<b>) -> <ab> oplus * (<b>,<ab>) -> <ab>
oplus * (<a>,<ab>) -> <ab> oplus * (<ab>,<ab>) -> <ab>
add_a_b(<ab>) -> <error> ren_a_b(<error>) -> <error>
add_a_b(<error>) -> <error> ren_b_a(<error>) -> <error>
oplus * (<error>,q) -> <error> for all states q

Fig. 1. An automaton recognizing terms representing stable graphs

Finite term automata recognizeregular term languages[7]. The class of regular term
languages is closed under the Boolean operations (union, intersection, complementa-
tion) on languages which have their counterpart on automata. For all details on terms,
term languages and finite term automata, the reader should refer to [1]. Figure 2 shows
in a graphical way the run of the automaton2-STABLE on a term representing a graph
of clique-width2. Below we show a successful run of the automaton on a term repre-
senting a stable graph.

add_a_b(ren_a_b(oplus(a,b))) -> add_a_b(ren_a_b(oplus (<a>,b)))
-> add_a_b(ren_a_b(oplus(<a>,<b>)) -> add_a_b(ren_a_b( <ab>))
-> add_a_b(<b>) -> <b>

To distinguish these automata from the infinite automata defined in the next sec-
tion (4.2) and as we only deal with terms in this paper we will refer to the previously
defined term automata astable-automata.

6 Our software Autowrite takes into account the notion of commutative symbols. The star in
oplus * means that this symbol is commutative. When we have a rule likeoplus * (q1,q2)
-> q the ruleoplus * (q2,q1) -> q is implicitly defined.
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tG = add a b(⊕(a, b))

G

Fig. 2. Graphical representation of an (unsuccessful) run of the automaton on a term

4.2 Infinite (bottom-up) term automata

Definition 2. From now on, aterm automatonA will be given by(F , δ, acf) or (F , δ)
where the signatureF may be countably infinite,δ is the transition relation defined as
a function

δ :
⋃

n Fn ×Qn → Pf (Q)
fq1 . . . qn 7→ {q ∈ Q | f(q1, . . . , qn) → q}

where the setQ of states accessible usingδ may be countably infinite,Pf (Q) is the set
of finite subsets ofQ andacf is the accepting state function acf : Q → Boolean

which indicates whether a state is accepting or not. Note that the set of statesQ is given
implicitely byδ. The notions of a run, of an accepting run, the setsL(A, q) andL(A)
are the same. Term automata may be complete and/or deterministic in an obvious way.
We will shortly consider effectivity conditions insuring that membership of a term to
L(A) is decidable.

Sometimes, in the case where the number of states is infinite,these automata will
have no accepting state function. It is the case for instance, for counting automata as
shown in the following example.

Example 3.The automatonCOUNTINGpresented p.6 is an example of an infinite automaton.
Given a term, it counts the number of vertices of the associated graph of any clique-width. State
<i> means that we have foundi vertices. The set of statesQ = {<i> | i ∈ N}. There is no
accepting state function. However, if we want an automaton recognizing terms corresponding
to graphs having anprime number (or a multiple of some integer) of vertices, we may addan
accepting state functionacf : <i> 7→ T if i is prime,F otherwise. Note that as the automaton
works on graphs of any clique-width, we need a countable set of labels, so we use numbers
instead of letters in the finite examples.

4.3 Fly term automata

Definition 3. A fly-automatonis an automaton(F , δ, acf) such thatδ andacf are com-
putable functions.

Theorem 2. LetA be a fly-automaton. Membership toL(A) is decidable. The empti-
ness ofL(A) is not decidable.
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Automaton COUNTING
Signature: 0 1 2 ...

ren_0_1:1 ren_1_0:1 add_0_1:1 ren_0_2:1 ren_2_0:1 add_0_ 2:1 ...
oplus:2 *

States: <0> <1> <2> ...
Metarules:

x -> <1> for all x
add_x_y(<i>) -> <i> for all x,y s.t. x < y
ren_x_y(<i>) -> <i> for all x,y
oplus * (<i>,<j>) -> <i+j> for all i,j

Theorem 3. Fly-automata are closed under Boolean operations, arity-preserving re-
labellings and inverse-relabellings.

Proof. Let A = (F , δ, acf) be a deterministic and complete fly-automaton. The com-
plement ofA is (F , δ, acfc) whereacfc(q) = ¬acf(q) for everyq ∈ QA.
Given two fly-automataA1 = (F , δ1, acf1) andA2 = (F , δ2, acf2), one can easily de-
fine a computable transition functionδ corresponding to the product of the two automata
whose states are inQA ×QB. The following accepting state functions are suitable (and
computable) for union and intersection respectively.

acfu : QA ×QB → Boolean

{q1, q2} 7→ acf1(q1) ∨ acf2(q2)
acfi : QA ×QB → Boolean

{q1, q2} 7→ acf1(q1) ∧ acf2(q2)

ThenA1 ∪A2 = (F , δ, acfu) andA1 ∩A2 = (F , δ, acfi) are fly-automata. The proofs
are similar for arity-preserving relabellings and inverse-relabellings.

In the same spirit, fly-automata may be determinized and completed. The deter-
minized version ofA is an automatond(A) = (F , δ′, acf′). If QA is the domain of
δ (the set of states ofA), let d(QA) denote the set of states ofd(A). Each subset
{q1, . . . , qp} of QA yields a state[q1, . . . , qp] in d(QA). δ′ is defined by with

δ′ :
⋃

n Fn × d(QA)
n → d(QA)

f, S1, . . . , Sn 7→ S

with q ∈ S if and only if ∃q1, . . . , qb ∈ S1 × . . . Sn such thatq ∈ δ(f, q1, . . . , qn).
When a fly-automaton(F , δ, acf) is finite, it can be compiled into a table-automaton

(F , Q,QAcc, ∆), provided that the resulting table is not too big. The transition table∆
can be computed fromδ starting from the constant transitions and then saturatingthe
table with transitions involving new accessible states until no new state is computed.
The set of (accessible) statesQ is obtained during the construction of the transitions
table. The set of accepting statesQAcc is obtained by removing the non accepting
states (according to the accepting state functionacf) from the set of states. A table-
automaton is a particular case of a fly-automaton. It can be seen as a compiled version
of a fly-automaton whose transition functionδ is described by the transitions table∆
and whose accepting state functionacf corresponds to membership toQAcc. It follows
that the automata operations defined for fly-automaton will work for table-automata.
Table-automata are faster for recognizing a term but they use space for storing the
transitions table and the access time may be important in case of a very large table.
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Fly-automata use a much smaller space (the space corresponding to the code of the
transition function) but are slower for term recognition when the transition function is
complex. A table-automaton should be used when the transition table can be computed
in reasonable space and a fly-automaton otherwise.

5 Implementation of fly-automata

We will call basicfly-automata the ones that are built from scratch in order to distin-
guish them from the ones that are obtained by combinations ofexisting automata using
the operations cited in Theorem 3, determinization and completion. We call the later
composedfly-automata. Fly-automata have been implemented inside the software Au-
towrite [5] (entirely written in Common Lisp) which alreadyhad table-automata. States
are not stored in the representation. For basic fly-automata, they are created on the fly by
calls to the transition function. For composed automata, the states returned by the transi-
tion function are constructed from the ones returned from the transition functions of the
combined automata. For operations like determinization, inverse-relabellings, sets of
states are involved. The implementation of fly-automata useintensively the functional
paradigm to represent and combine transition and acceptingstates functions. More de-
tails about the implementation can be found in [6]. The main operations that are imple-
mented on fly-automata are: run of an automatonA on a termt, recognition of a term
t by an automatonA, decision of emptiness forL(A) (whenA is finite), completion,
determinization, complementation of an automatonA, union, intersection of two (or
more) automata, relabellings and inverse-relabellings ofconstants.

For table-automata, we have also implemented reduction (removal of inaccessible
states), minimization but this is not discussed in this paper. Because a table-automaton
can always be transformed into a fly-automaton and a finite fly-automaton back to a
table-automaton we get the corresponding operations for table-automata for free once
we have implemented them for fly-automata. However, for efficiency reasons, it might
be interesting to implement some of these operations at the level of table-automaton.
For instance, the complementation which consists in inverting non accepting and ac-
cepting states is easily performed directly on a table-automaton. Implementing opera-
tions directly at the level of table-automaton has the drawback that it depends on the
representation chosen for the transitions table. Whenever, we would want to change this
representation we would have to re-implement these operations. The only advantage is
a gain in efficiency. Some operations on table-automata may give a blow-up in terms of
the size of the transition table (determinization, intersection). In this case, the solution
is to omit to compile the resulting operation back to a table-automaton. It is though
possible to deal uniformly with table and fly-automata.

6 Experiments

Most of our experiments have been run in the domain of verifying graph properties.
Many construction of basic automata can be found in [4, 3] andhave been implemented
with Autowrite . In order to compare the running time of a fly-automaton and that of
the corresponding table-automaton, we have chosen a property and a clique-width for
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which the automaton is compilable. This is the case for theconnectedness property. We
have a direct construction of an automaton verifying whether a graph is connected. The
corresponding table automaton has22

cwd
−1 + 2cwd − 2 states. It is compilable up to

cwd = 3. Forcwd = 4, which gives|Q| = 32782, we run out of memory. It is possible
to show that the number of states of the minimal automaton is|Q| > 22

⌊cwd/2⌋

. So there
is no hope of having a table-automaton for this property andcwd > 3.

We have direct constructions of the automata for propertieslike Edge(X1, X2),
k-Cardinality(), k-Coloring(X1, . . . , Xk), Connectedness(), Acyclic() among others.
With these properties and using relabellings and Boolean operations, we obtain au-
tomata for properties likek-Colorability(), k-Acyclic-Colorability(), k-Vertex-Cover()
among others. The Vertex-Cover property can be expressed bya combination (intersec-
tion, homomorphisms) of already defined basic automata (stablility, k-cardinality).

Many problems that where unthinkable to solve with table-automata could be solved
with fly-automata. For very difficult (NP-complete) problems we still reach time or
space limitations.

7 Conclusion and perspectives

In the near future, we plan to implement more graph properties and to run tests on
real and random graphs. We cannot hope to check arbitrary Monadic Second Order
formulas because, even on words, the problem is intractableif the formula is part of
the input. However, many interesting graph properties seemto be reachable. We did not
address the problem of finding terms representing a graph, that is, to find a clique-width
decomposition of the graph. In some cases, the graph of interest comes with a “natural
decomposition” from which the clique decomposition of bounded clique-width is easy
to obtain but for the general case the known algorithms are not practically usable.

The concept of fly-automaton is general and could be applied to other domains
where big automata are needed.
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