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Abstract. We prove that there exists a@(log(n))-labeling scheme for every
first-order formula with free set variables in every clasgiphs that isiicely
locally cwd-decomposahlevhich contains in particular, theicely locally tree-
decomposable classd=or every class dbounded expansione prove that every
bounded formuldas arO(log(n))-labeling scheme. We also prove that, for fixed
k, every quantifier-free formula has &@tlog(n))-labeling scheme in graphs of
arboricity at mostk. Some of these results are extended to counting queries.

1 Introduction

The model-checking problem for a class of structureend a logical languagé con-

sists in deciding, for gives € ¢ and for some fixed sentengec L if S= ¢, i.e.,ifS

satisfies the property expresseddnyMore generally, ifp is a formula with free vari-
ablesxi, ..., Xm one asks whethe® = ¢(di,...,dm) whered,...,dn € Ds are values
given toxy, ..., Xm. One may also wish to list the setwftuples(d, . .. ,dm) that satisfy
¢ in S, or simply count them.

Polynomial time algorithms for these problems (for fixgdexist for certain classes
of structures and certain logical languages. In this semaphg of bounded degree
“fit” with first-order (FO for short) logic [17,7] and graphg bounded tree-width or
clique-width “fit” with monadic second-order (MSO for shplagic. Frick and Grohe
[8,9,11] have definedrixed Parameter Tractabl¢FPT for short) algorithms of FO
model-checking problems on graphs of unbounded degreeeadvidth (Definitions
and Examples are given in Section 4). We will also use dedimitifrom Nesetril and
Ossona de Mendez [15].

We will use the same tools for the following labeling problelat be given a class
of graphsC and a propertyP(xy,...,Xm, Y1,...,Yq) of verticesxy,...,Xn and of sets
of verticesYs,...,Yq of graphsG in C. We want two algorithms, an algorithrd that
attaches to each vertexof a given graptG in C a labellL(u), defined as a sequence
of 0’s and 1's of lengthO(log(n)) or O(logX(n)) (for some fixedk) wheren is the
number of vertices 06, and an algorithnB (independent o6) that checks property
P(ay,...,am,Wi,...,Wy) by using the labels : this algorithm must take as input the
labelsL(ay),...,L(am) and the sets of labels(\W,),...,L(Wg) of the sets\, ..., W
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and tell whetheP(ay, ..., am,Wi, ..., W) is true. (Each labdl(u) identifies the vertex
u, which is possible with a sequence of lengltbg(n)™.) Results of this type have been
established for MSO logic by Courcelle and Vanicat [5] arm,darticular properties
(connectivity queries, that are expressible in MSO logiclourcelle and Twigg in [4]
and by Courcelle et al. in [2].

Let us review the motivations for looking faompact labelings of graphBy com-
pact we mean of length of order less thé@tn), wheren is the number of vertices of
the graph, hence in particular of leng@iilog®(n)). By anO(log(n))-labeling we mean
one where each label is a word oV, 1} of length at mosa-log(n), wheren is the
number of vertices andis a constant depending on the type of the graph (e.g., planar
or of tree-width at most some fixed value).

In distributed computing over a communication network wittderlying grapiG,
nodes must act according to their local knowledge only. Kniswledge can be up-
dated by message passing. Due to space constraints on éhelemory of each node,
and on the sizes of messages, a distributed task cannot\szidn} representing the
whole graphG in each node or in each message, but it must rather manipulate
compact representations 6f Typically, the routing task may use routing tables, that
are sublinear in the size & (preferably of poly-logarithmic size), and short addresse
transmitted in the headers of messages (of poly-logariisime too). As surveyed in
[12] many distributed tasks can be optimized by the use dafltabttached to vertices.
Such labels should be usable even when the network has ndifk @rashes. They
are calledorbidden-set labelingchemes in [4]. In this framework local informations
can be updated just by transmitting to all surviving nodedigt of (short) labels of all
defected nodes and links, so that the surviving nodes caatetiteir local information,
e.g., their routing tables.

Let us comment about using set arguments. The forbiddereferctive) parts of a
network are handled as a set of vertices passed to a queryaaguament. This means
that algorithmA4 computes the labels once and for all, independently of ttesipte
forbidden parts of the network. In other words the labelingports node deletions
from the given network. (Edge deletions are supported inahelings of [2] and [4].)

If the network is augmented with new nodes and links, thelaleist be recomputed.
We leave this incremental extension as a topic for futureaesh. Set arguments can be
used to handle deletions, but also constraints, or quekieswhat are the nodes that
are at distance at most 3 fandY” where X andY are two specified sets of nodes.

2 Notations and Definitions

All graphs and relational structures are finite. theks, ..., Xm,Y1,...,Yq) be a FO for-
mula with free FO variables among, ..., Xy and free set variables amoig. .., Y.
Set variables are allowed in FO formulas but are not quadtifibey occur in atomic
formulas of the forny € Y;. Gaifman’s Theorem [10] and its stronger versions are valid
for such formulas becauges Y; is the same asR;(y) holds” whereR; is a unary relation
representing;.

Let Sbe arelational structure of the relevant tySes (Ds, (Rs)gc 4 ) With domain
Ds. A labelingof Sis an injective mapping : Ds — {0, 1}* (or into some more conve-



nient setA* whereAis a finite alphabet). I¥ C Dswe letJ (Y) be the family(J (y))
ClearlyY is defined fromJ (Y).

For a formulad (X1,...,%m,Y1,...,Yq) and a class of structurgswe are interested
in the construction of two algorithm@ and‘B doing the following:

yey:

1. 4 constructs for eacl$ € C a labelingJ of S such thatJ(a)| = O(log(n)) for
everya € Ds, wheren = |Dg|.

2. If Jis computed fronSby 4, thenB takes as input atm+ q)-tuple
(J(a),...,d(am),J(W),...,J (Wy)) and says correctly whether:

S’Z ¢(a1,...,am,W1,...,Wq).

In this case we say that the pdifl, ) defines arO(log(n))-labeling supporting
the query defined by for the structures irt.

Labelings based on logical descriptions of queries have deéned by Courcelle
and Vanicat [5] for MSO queries and graphs of bounded cligidth (whence also
of bounded tree-width). Applications to distance and catinigdy queries in graphs of
bounded clique-width and in planar graphs have been give@duyrcelle and Twigg
in [4] and by Courcelle, Gavoille, Kanté and Twigg in [2]. Inet present article, we
consider classes of graphs of unbounded clique-width arghiticular, classes that
arelocally decomposablé-rick and Grohe [8,9]) and classes lmdunded expansion
(Nesetril and Ossona de Mendez [15]). We are thus obligedrnsider only FO logic
and no longer MSO logic.

In this extended abstract we only consider vertex-labetagigs. The extension to
structures can be done in a standard way through the satcdéman graphsAn
A-labeled graph i€ = (Vg,edgs (-,-), (labag),ca) (Vertices, edge relations and unary
relation for vertex labels).

By replacing everywhere “clique-width”, “local clique-dth”, etc. by “tree-width”,
“local tree-width”, etc., one can handle formulas with edge quantifications.

Definition 1. Logic.
An FO formulad (Xq, ..., Xm, Y1,...,Yq) is basic bounded for somep € N we have the
following equivalence for all grapl, all as, ..., am € Vg and allW, ... ,\Wg C Vg

G’Z ¢(a17...,am,W1,...,Wq) iff G[XH: ¢(al,...,am,WmX,...,quX)

for someX C Vg such that|X| < p anday,...,am € X. (If this is true forX, then
GlY] E ¢(ag,...,am, W NY,...,WgNY) for everyY D X.)

An FO formulaisboundedf it is a Boolean combination of basic bounded formulas.
In particular, the negation of a basic bounded formula igimaeneral) basic bounded,
but it is bounded.

An FO formulad (X1, . ..,Xm,Y1,...,Yq) ist-local around(xy, ..., xm) if for every G
and, evenay,...,am € Vg, W, ..., Wy C Vg we have

G': ¢(a1,...,an17W1,...,Wq) iff G[N]|:¢(al,...,am,WlmN,...,quN)

whereN = N§ (a1, ...,am) = {y € Ve | d(y,a) <t for somei = 1,...,m} andd (u,v)
is the length of a shortest undirected path betweandv.



An FO sentence ibasic(t, s)-local if it is equivalent to a sentence of the form

Exl.---EIxs.< AN dxix)>2t A A lIJ(Xi)>

1<i<j<s 1<i<s
wherey (X) ist-local around its unique free variabte

Remark. The queryd(x,y) <r is basic boundedy(=r + 1) andt-local witht =r /2
if risevenandr —1) /2 if r is odd. Its negatiod (x,y) > r ist-local and bounded (but
not basic bounded).

3 Graphs

We are interested in on-line checking properties of netwamlcase of (reported) fail-
ures. Hence for each property of inter@dixs, ..., Xn) we are not only interested in
checking ifG = ¢ (as,...,am) by usingJd(ai1),...,J(am) whereay,...,am € Vi but
also in checkingG\X = ¢ (a1,...,am) by usingJ(as),...,Jd(am) andJ(X) where
X CVg—A{ay,...,am} andG\X is the subgraph d& induced onvg — X.

However,G\X = ¢ (ay,...,am) for a FO formulad(xy,...,Xm) is equivalent to
GE ¢'(a1,...,am,X) and toGx = ¢” (a,...,an) for FO formulasp’(xq, . .., %m,Y)
and¢”(xq,...,xm) that are easy to write. We denote By the graphG equipped with
an additional vertex-label. Hence, we consi@gras the structur& augmented with a
unary relatioriab such thatabg, (u) holds iff u € X. We will handle “holes” in graphs
by means of set variables.

A graph hasarboricity at most kf it is the union ofk-edge disjoint forests (inde-
pendently of the orientations of its edges).

Classes witthbounded expansigefined in [15] have several equivalent character-
izations. We will use the following one: a clagshasbounded expansioif for every
integerp, there exists a constaht(C, p) such that for everg € C, one can partition
Vg in at mostN (C, p) parts such that any< p of them induce a subgraph of tree-width
at mosti — 1. (This implies that each part is a stable set, hence thigipartan be seen
as aproper vertex-coloring

4 Locally decomposable classes

We refer to [16] and to [3,5] for the definitions tke-widthand of clique-widthre-
spectively. (We denote bywd(G) the clique-width of a grap). We will use the same
notations as in [8,9]. Definition 2 is analogous to [9, Defonit5.1].

Definition 2. 1. Thelocal clique-widthof a graphG is the functionlew® : N — N
defined bylew®(t) := max{cwd(G[N (a)]) | a € Vs }.
2. AclassC of graphs habounded local clique-widtli there is a functionf : N — N
such thatew® (t) < f (t) for everyG € C andt € N.

Examples. 1. Every class of graphs of bounded clique-width has alsmted local
cliqgue-width sincewd(G[A]) < cwd(G) for everyA C Vg (see [3]).



2. The classes of graphs of bounded local tree-width havedexilocal clique-width
since every class of graphs of bounded tree-width has baucldpie-width (see
[3]). We can cite graphs of bounded degree and minor-clossdes of graphs that
do not contain all apex-graphs (see [8,9]) as examples s$etaof bounded local
tree-width.

3. The class of unit-interval graphs has bounded local eleyidth (using results from
[14]) but neither bounded clique-width nor bounded locaétwidth.

4. The class of interval graphs has not bounded local cligiadh.

If we want to give arD(log(n))-labeling for certain classes of graphs of bounded
local clique-width, we need as in [8,9] to cover them by gsaphsmall clique-width
in a suitable way. In [8] a notion aficely locally tree-decomposabttass of structures
was introduced. We will define slightly a more general nation

Definition 3. Letr,I > 1 andg: N — N. An (r,l,g)-cwd coverf a graphG is a family
T of subsets 0¥/ such that:

1. For evenya € Vg there exists & < 7 such thatNj (a) CU.
2. For eaclJ € T there exist less thdnmanyV € 7 such that) NV # 0.
3. For eaclJ we havecwd(G[U]) < g(1).

An (r,1,9)-cwd cover isniceif condition 3 is replaced by condition 3’ below:
3. ForallUy,...,Uq andg > 1 we havecwd(G[U1 U - -- UUq]) < 9(Qq).

A class( of graphs idocally cwd-decomposabléthere is a polynomial time al-
gorithm that given a grapB® <€ ¢ andr > 1, computes afr,|,g)-cwd cover ofG for
suitablel, g depending om.

A class C of graphs isnicely locally cwd-decomposabiethere is a polynomial
time algorithm that given a graph € C andr > 1, computes a nic, |,g)-cwd cover
of G for suitablel,g depending om. (These two definitions are the same as in [9,8]
where we substitute clique-width to tree-width.)

Examples. 1. Itis clear that every nicely locally cwd-decomposabbesslis locally
cwd-decomposable and the converse is not true.

2. Each class of nicely locally tree-decomposable strest[8] is nicely locally cwd-
decomposable.

3. LetG be a unit-interval graph. Using results from [14, Theorer3sahd Corollary
5] one can prove thd has anr,r, f (2r + 1))-cwd cover. Then every class of unit-
interval graphs is locally cwd-decomposable.

4. Figure 1 shows inclusion relations between the many etadsfined in Sections 3
and 4. It completes the diagram [9, Figure 2].

5 Results

The main results are as follows. In each case we considelethigeaphs over a finite
setA of vertex-labels.



4(3,5), 7 | nicely Locally cwd—decomposadr.e—{ Locally cwd—decomposabl% 4(3,4)
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Bounded Degre% ‘ Planar }—_{ Excludes a Minor

Bounded Local Tree-Widt)

Bounded Expansi n(2)

Bounded Local Cquue—Wile’

Bounded Arboricity 4(2)

Fig. 1. Inclusion diagram indicating which results apply to whidasses. An arrow means an
inclusion of classes.

Theorem 4 (First Main Theorem). There exist @Qlog(n))-labeling schemes for the
following queries and graph classes:

1. Quantifier-free queries in graphs of arboricityk, for each k.

2. Bounded FO queries for each class of graphs of boundedsiqra

3. Local queries with set arguments on locally cwd-decoraplesclasses.

4. FO queries without set arguments on locally cwd-decomipleslasses.

5. FO queries with set arguments on nicely locally cwd-dgmmsable classes.

We recall that if a grapl® has clique-width at most there exists a cubic time
algorithm that computes a cwd-term that defi@asithout being optimal [13]. (It uses
2kt1 _ 1 labels, hence does not witnessd(G) < k; however this term is enough for
using [5].) And if a graplG has tree-width at mo&t there exists a linear time algorithm
that computes a tree-decomposition of widtiof G [1]. We will also use results by
Gaifman [10], Frick and Grohe [9,8] recalled below.

Theorem 5 ([10]).Let(x) be a FO formulawherg= (x1,...,xm). Thend is logically
equivalent to a Boolean combinatior(@(u1),...,¢p(Up), W1,...,PYn) where:

— each(¢i)1<i<p is a t-local formula aroundi; C X.
— each(i)1<i<n is a basic(t’,s)-local sentence.

Moreover B can be computed effectively antl,and s can be bounded in terms of m
and the quantifier-rank af.



We will use a stronger form from [8]. Leb,t > 1. Thet-distance typef anm-tuple
ais the undirected graph= ([m),edg) whereedg(i, j) iff d(aj,a;) <2t+1. The
satisfaction of d-distance type by am-tuple can be expressed by-#ocal formula:

Pre(Xt, ... xm) == A dix)<2t+1 A A d(x,x)>2t+1
(i,j)cedg (i,j)¢edg

We recall that Gaifman’s Theorem and its variants extendQddrmulas with set
variables.

Lemmal ([8]).Letd(x,V1,...,Yy) be at-local formula around = (x1,...,Xm), m>

1. For each t-distance typewith €1,.. .. ,€p as connected components, one can compute
a Boolean combination tﬁ(q)l,l,...,q)l,,-l,...,¢p,1,...,¢p,,-p) of formulas ¢;; with

FO free variables among thosefnd set arguments ifi1, ..., Yq} such that:

— The FO free variables of eadh j are amongx | € (X| € is the restriction ok to
&).

— ¢i,j ist-local aroundx | €.

— For each m-tuple, each g-tuple of setsj\V.. ,W:

GE pre(@) A QEWL...\Wy) iff G |= pre(@) A FU(.... 01 (a] & W, Wy),...).
The lemma below is an easy adaptation of the results in [9].

Lemma 2 ([9]).Let G be in a locally cwd-decomposable class. Every b@s®-local
sentence can be decided in polynomial time.

We now give the proofs of each statement of Theorem 4. Foitylare give them
seperately.

Proof (of Theorem 4 (1)).et G be a forest with edges anyway directed. Let us choose
arootr and letf*, f~ : Vg — Vg be mappings such that:

f*(u) = viff u— vin G andv is on the unique undirected path betweeandr
f~(u) = viff u— vin Gandv is on the unique undirected path betwesmdr.

The edge relation i is defined by:
edgu,v) <= v=fr(u)v u=f(v) 1)

If Gis the union ok edge-disjoint foresthy, .. ., i we take a paitf;", f;) for each
F. The edge relation db is defined in a similar way as in (1) wittk2inary functions.

If vertices are numbered from 1 toand™x is the 0-1 representation of the index
of x, then we letd(x) = ("x7," ;" () 7,7 f; (x)7,...,"f () 7," f (x)7). O

Proof (of Theorem 4 (2))et ¢ be a basic bounded formula with boup@nd at least
one free FO variable. We 1&¢ = N(C, p) and we partition/g intoViuVo 6 - -- WV as
in the definition); # 0.



For everya C [N] of sizep we letVy = U;cq Vi SO that the tree-width dB[Vy] is at
mostp — 1. Each vertexi belongs to less thafN — 1)~ setsVj.

Hence a basic bounded formugxy, ..., Xm,Y1,...,Yqy) is true inG iff it is true in
someG[X] with |X| < p, hence in som&[Vy] such thaky, ..., xm € V. For eacto we
construct a labelingy of G[Vy] (of tree-width at mosp — 1) supporting query by
using [5]. We let)(x) = ("X, {("a™,Ju(X)) | X € Va}). We haveld(x)| = O(log(n)).

We now explain how to decid by using the labels only. Givel(a;), .. .,J(am)
we can determine all those satssuch thatVy containsay,...,an. Using the com-
ponentsJy(-) of J(a1),... ,Jd(am) and the labels iR(Wy),...,J(W,) we can deter-
mine if for somea, G\Vo] = ¢(ag,...,am, Wi NVqy,...,WgNVy) hence whethe6 |=
¢(a1, e, @m, W, ... ,Wq).

Itremains to consider the case of a basic bounded formuteedbrmé (Y1, ...,Yy).
For eacho we determine the truth valug of ¢(0,...,0) in G[Vy]. The family of pairs
(a,ty) is of fixed size (depending gp) and is appended ti(x) defined as above. From
JW),...,J(Wy) we getD = {a | Vg N (WL U - -- UWg) # 0}.

By using theJy(-) components of the labels (W) U --- U J(Wy) we can deter-
mine if for somea € D we haveG[Vy| = ¢(WANVy,...,.WgNVq). If one is found we
conclude positively. Otherwise we look for sotge= Truewheref ¢ D. This gives the
final answer.

For a Boolean combination of basic bounded formdlas .., ¢; with associated
labelingsJi, ..., & we take the concatenatial(x) e Jx(x) e --- e J(X). It is of size
O(log(n)) and gives the desired result. O

Proof (of Theorem4 (3)).etd(X,Y,...,Yq) be at-local formulaarounat = (xy, ..., Xm),
m> 1. ThenG = ¢(aW,..., W) iff GIN5(@)] E ¢(@&WLNN§(a),...,WgNNE(a)).
Let e be at-distance type witlgy, ..., €p as connected components. By Lemm&l=
pt,E(é) A ¢(a_aW1a s qu) iff G ': ptS(é) A Ft.8(¢l.l(a_| €1,Wa,. .. 7Wq)7 e a¢pajp(a_|
Sp,Wl, e ,Wq)).

We let‘T be an(r,l,g)-cwd cover ofG wherer = m(2t + 1). We use such anin
order to warranty that iy, ...,am are in a connected component of-distance type,
there exists & € T such thatNg(al,...,am) C U. For each vertex there exist less
thanl manyV € 7 such thax € V. We assume that eathe 7 has an index encoded
as a bit stringU ™. There are at most- | sets in7. Hence U ™ has lengtfO(log(n)).

By the results of [5] we can label each vertex with a [ab@f) of lengthO(log(n))
and decide irO(log(n))-time if d(u,v) < 2t + 1 or not by using< (u) andK (v)%. We
build a labelingKy for eachU € T; then for eachx we let

KO = (™, {(TU7Ku () NG SUT, {(TUTKu () | NG £ UY).

whereN(x) = NZ™(x). (We always assume that N§(x) for all t € N.)
By [5] for eachd; j(X| i, Y1,...,Yq) and eacly € 7 we can label each vertexc U
with Jf,; , (x) of lengthO(log(n)) and decidep; j(a| &, Wi, ..., Wg) in G[U] by using

1 For checking ifd(u,v) < 2t +1, an(r’,l’,¢')-cwd cover suffices, with' = 2t + 1.



(Jis.j,u (b)) beale andJg; y(WanU),..., J¢; y(WgNU). For eachk we let

300 = { (U100, 3 0 (0 B0 (05,0 (9) [NG(X) CU .

Itis clear thatJe(x)| = O(log(n)) since eackx is in less thart manyV € 7.

There exist at most’ = 2kk-1)/2 t_distance type graphs; we enumerate them by
gl,...,e¥. For eactk we letd(x) := ("X, K(X),Jg1(X), ..., Ju (X)).

From the label¥(x), we can determing"™U™ | U € 7, x € U}, hence the sets
U € 7 suchthaWnU # 0, W C Vg, whereW is a set argument. It is clear thiix) is
of lengthO(log(n)) and is computed in polynomial time sin@éis computed in poly-
nomial time and each is computed in polynomial time. We now explain how to decide
whethe!G = ¢(ag,...,am,W,...,Wy) by usingl(as),...,J(am) andJ(Wy), ..., J(Wg).

By usingK(aj),...,K(am) from J(a1),...,J(am) we can construct thedistance
type ¢ satisfied byay,...,am, leteg,...,&p be the connected componentseofFrom
eachJ(a) we can recoveds(a ). For eacha] ¢ there exists at least o € 7 such
thatN§(a] &) CU. We can recover them (there are less thdrom theJ(b), be a] ;.

We can now decide wheth@ = F'#(¢11(a]| e, W NU1,... . WgNU1),...,0pj, (@]
ep, Wi NUp,... . WyNUp)) for someUy,...,Up determined froml(ay),...,J(am). By
using alsaJ(Wy), ...,J(Wy) we can determine the satg¢ "U; and this is sufficient by
Lemma 1. d

Proof (of Theorem 4 (4)Let¢(xq,...,xm) be a FO formula without set arguments. By
Theorem 5 is equivalent to a Boolean combinati@&{$1(X),...,¢p(X), W1,...,Yn)
whered; ist-local andy; is a basiqt’, s)-local sentence for suitabtet’; s.

By Lemma 2 one can decide in polynomial time each sentgndeetb = (by, ..., by)
whereb; = 1 if G satisfieq); and 0 otherwise. For each<li < p we construct a label-
ing J; supporting query; by Theorem 4 (3)G belongs to a locally cwd-decomposable
class and; is at-local formula around). For eachx we let

J(X) = ("X, d1(X),...,Ip(x),b).

It is clear that|J(x)| = O(log(n)). Since fromb one can recover the truth value of
each sentena$;, we can decide wheth&@ = ¢(ay,...,am) by usingd(az),...,J(am),
the truth values of;(a) andb. O

Proof (of Theorem 4 (5)By Theorem 4 (3) it is sufficient to consider FO formulas
¢ (VY1,...,Yqy) of the form:

Elxl.---ﬂxm.< A dixix)>28 A A llJ(Xi,Y]_,...,Yq))

1<i<j<m 1<i<m

wherey(x,Ys, ..., Yq) ist-local around. We show how to check their validity by means
of O(log(n))-labelings.

We consider for purpose of clarity the particular caserof 2. Let 7 be a nice
(r,1,9)-cwd cover ofG wherer = 2t + 1. We letK(U) = {x € U | N¥(x) CU} (the
2t-kernel ofU (see [8])).



We lety be a distance-2 coloring of the intersection grapi divertices at distance
1 or 2 have different colors). For every 2 colorg we letG; j be the graph induced by
the union of the block8l € T of colorsi andj.

Claim 1. cwd(Gij) < 9(2).

Proof (of Claim 1). G; is a disjoint union of setsl in 7" and of uniondJ UU’ with
UNU’ =0 for U,U’ € T. This union is disjoint because if UU’" with U NU’ #£ 0
would meet somb&” € T,U"” AU, U” £U’, then we would havgU) =i, yU') = j
andU” meetsU or U’. It cannot have color or j because is a distance-2 coloring.
Sincecwd(G[U UU’]) < g(2), we are done. O

Claim 2. Let xe K(U) and ye K(U’) for some UU’ € 7. Then &(x,y) > 2t iff
dguuu (X,y) > 2t.

Proof (of Claim 2).The “if direction” is clear since distance increases if wetgo
induced subgraphs.

For the “converse direction”, we lels(x,y) < 2t; there exists a path of length 2t
from x to y. This path is inJ UU’ sincex € K(U) andy € K(U’). Hence it is also in
G[U UU/], hencedG[UUu/] < 2. O

Let us now give to each vertexof G the smallest color such thatx € K(U) and
y(U) =i. Hence a vertex has one and only one color. For each jaire consider the
formulay; j (possiblyj =1i):

X, y. (d(x,y) >2t A PX Y., Yg) A
Wy, Y1,...,Yg) A “xhas coloi” A “yhas colorj")

We use [5] to construct a labelinky; for the formulay; j in the graphG; j (with
vertices colored by or j, that is, we use new unary “color” predicates). We compute
the truth valueb; j of ; ;(0,...,0) in G j; we get a vectob of fixed length. We also
label each vertex by its color. We concatenate to thand theJ; j(x) for x € Vg, ,
giving J(x).

FromJ(W4),...,J(Wg) we can determine thosg; ; such thatvg; N (Wi U --- U
Wg) # 0, and check if for one of ther@; ; = W j(Wi,...,\Wy). If one is found we are
done. Otherwise we use tig;’s to look for Gj j such thaiG; j = Wi (0,...,0) and
(WaU---UWy) NV, ; = 0. This gives the correct results because of the followingstac

— If x,y satisfy the formulap, thenx € K(U), y € K(U’) (possiblyU = U’) and
dg(xy) > 2t impliesdg,; (x,y) > 2t, henceG; j |= Wi j(WA,...,Wg) wherei = y(U)
andj = y(U’).

- IfGij = Wij(W,...,Wy) thenwe geG = ¢(Wi,..., W) by similar argument (in
particulardg, ; (x,y) > 2t impliesdgjyuu| (X, y) > 2t which implies thatdg(x,y) >
2t by Claim 2).

Form= 1, the proof is similar witty a proper (distance-1) coloring and we &e
instead ofG; ;.



For the casan > 2, the proof is the same: one takes foa distancen proper
coloring of the intersection graph, one considers graphs. ;,, defined as (disjoint)
unions of setdJ; U ---UUpy, for Uyg,...,Uny in 7, of respective colors,,...,im and
cwd(GU1 U---UUp]) < g(m). This terminates the proof of Theorem 4. O

Let us ask a very general question: what can be done®@ftbg(n)) labels ? Here
is a fact that limits the extension of these results.

Fact 1. One cannot express adjacency in arbitrary graphs with laloékize Qlog(n)).
It follows that one cannot handle all local or bounded FO dasifor graphs of arboric-
ity at most2 with O(log(n)) labels.

We now discuss extension to counting queries. @.&ty,...,Xm,Y1,...,Yy) be a
MSO formula ands be a finite structure. Foi, ... ,\ Wy C Ds we define

Hsd (W, ..., W) = ’{(al,...,an)eDg‘|S|: ¢(a1,...,an,Wl,...,Wq)}’

A counting quenyconsists in determiningsh (Wi, ... ,\Wg) for given (W, ..., Wg).
We will need the following extension of the results of [5].

Theorem 6. Let¢ (Xg,...,Xm,Y1,...,Yq) be an MSO formula over labeled graphs and
k € N. There exists an ((ilog2 (n))—labeling scheme for graphs of clique-width or tree-
width at most k supporting the counting quefyd. For computing#c¢ (Wi, ..., W)
modulo some fixed integer s, or up to s (threshold counting)eeel only labels of size

O(log(n)).

We now state our second main theorem. The proof is omittedusecof space
constraints.

Theorem 7 (Second Main Theorem)There exists an Qog?(n))-labeling scheme for
counting queries based on FO formulas for nicely locally ededomposable classes.
O(log(n)) is enough for modulo counting.

We conjecture that the results of Theorem 4 (3,4,5) extendasses of graphs
excluding, or locally excluding a minor [6,11].

Question. Does there exist a®(log(n))-labeling scheme for FO formulas with set
arguments on locally cwd-decomposable classes ?
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