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Abstract. We prove that there exists anO(log(n))-labeling scheme for every
first-order formula with free set variables in every class ofgraphs that isnicely
locally cwd-decomposable, which contains in particular, thenicely locally tree-
decomposable classes. For every class ofbounded expansionwe prove that every
bounded formulahas anO(log(n))-labeling scheme. We also prove that, for fixed
k, every quantifier-free formula has anO(log(n))-labeling scheme in graphs of
arboricity at mostk. Some of these results are extended to counting queries.

1 Introduction

The model-checking problem for a class of structuresC and a logical languageL con-
sists in deciding, for givenS∈ C and for some fixed sentenceϕ ∈ L if S|= ϕ, i.e., if S
satisfies the property expressed byϕ. More generally, ifϕ is a formula with free vari-
ablesx1, . . . ,xm one asks whetherS |= ϕ(d1, . . . ,dm) whered1, . . . ,dm ∈ DS are values
given tox1, . . . ,xm. One may also wish to list the set ofm-tuples(d1, . . . ,dm) that satisfy
ϕ in S, or simply count them.

Polynomial time algorithms for these problems (for fixedϕ) exist for certain classes
of structures and certain logical languages. In this sense graphs of bounded degree
“fit” with first-order (FO for short) logic [17,7] and graphs of bounded tree-width or
clique-width “fit” with monadic second-order (MSO for short) logic. Frick and Grohe
[8,9,11] have definedFixed Parameter Tractable(FPT for short) algorithms of FO
model-checking problems on graphs of unbounded degree and tree-width (Definitions
and Examples are given in Section 4). We will also use definitions from Nesetril and
Ossona de Mendez [15].

We will use the same tools for the following labeling problem: let be given a class
of graphsC and a propertyP(x1, . . . ,xm,Y1, . . . ,Yq) of verticesx1, . . . ,xm and of sets
of verticesY1, . . . ,Yq of graphsG in C . We want two algorithms, an algorithmA that
attaches to each vertexu of a given graphG in C a labelL(u), defined as a sequence
of 0’s and 1’s of lengthO(log(n)) or O(logk(n)) (for some fixedk) wheren is the
number of vertices ofG, and an algorithmB (independent ofG) that checks property
P(a1, . . . ,am,W1, . . . ,Wq) by using the labels : this algorithm must take as input the
labelsL(a1), . . . ,L(am) and the sets of labelsL(W1), . . . ,L(Wq) of the setsW1, . . . ,Wq
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and tell whetherP(a1, . . . ,am,W1, . . . ,Wq) is true. (Each labelL(u) identifies the vertex
u, which is possible with a sequence of lengthplog(n)q.) Results of this type have been
established for MSO logic by Courcelle and Vanicat [5] and, for particular properties
(connectivity queries, that are expressible in MSO logic) by Courcelle and Twigg in [4]
and by Courcelle et al. in [2].

Let us review the motivations for looking forcompact labelings of graphs. By com-
pact, we mean of length of order less thanO(n), wheren is the number of vertices of
the graph, hence in particular of lengthO(logk(n)). By anO(log(n))-labeling, we mean
one where each label is a word over{0,1} of length at mosta · log(n), wheren is the
number of vertices anda is a constant depending on the type of the graph (e.g., planar,
or of tree-width at most some fixed value).

In distributed computing over a communication network withunderlying graphG,
nodes must act according to their local knowledge only. Thisknowledge can be up-
dated by message passing. Due to space constraints on the local memory of each node,
and on the sizes of messages, a distributed task cannot be solved by representing the
whole graphG in each node or in each message, but it must rather manipulatemore
compact representations ofG. Typically, the routing task may use routing tables, that
are sublinear in the size ofG (preferably of poly-logarithmic size), and short addresses
transmitted in the headers of messages (of poly-logarithmic size too). As surveyed in
[12] many distributed tasks can be optimized by the use of labels attached to vertices.
Such labels should be usable even when the network has node orlink crashes. They
are calledforbidden-set labelingschemes in [4]. In this framework local informations
can be updated just by transmitting to all surviving nodes the list of (short) labels of all
defected nodes and links, so that the surviving nodes can update their local information,
e.g., their routing tables.

Let us comment about using set arguments. The forbidden (or defective) parts of a
network are handled as a set of vertices passed to a query as anargument. This means
that algorithmA computes the labels once and for all, independently of the possible
forbidden parts of the network. In other words the labeling supports node deletions
from the given network. (Edge deletions are supported in thelabelings of [2] and [4].)
If the network is augmented with new nodes and links, the labels must be recomputed.
We leave this incremental extension as a topic for future research. Set arguments can be
used to handle deletions, but also constraints, or queries like “what are the nodes that
are at distance at most 3 ofX andY” whereX andY are two specified sets of nodes.

2 Notations and Definitions

All graphs and relational structures are finite. Letϕ(x1, . . . ,xm,Y1, . . . ,Yq) be a FO for-
mula with free FO variables amongx1, . . . ,xm and free set variables amongY1, . . . ,Yq.
Set variables are allowed in FO formulas but are not quantified. They occur in atomic
formulas of the formy∈Yi . Gaifman’s Theorem [10] and its stronger versions are valid
for such formulas becausey∈Yi is the same as “Ri(y) holds” whereRi is a unary relation
representingYi .

Let Sbe a relational structure of the relevant type,S= 〈DS,(RS)R∈R 〉 with domain
DS. A labelingof S is an injective mappingJ : DS→{0,1}∗ (or into some more conve-



nient setA∗ whereA is a finite alphabet). IfY⊆DS we letJ(Y) be the family(J(y))y∈Y.
ClearlyY is defined fromJ(Y).

For a formulaϕ(x1, . . . ,xm,Y1, . . . ,Yq) and a class of structuresC we are interested
in the construction of two algorithmsA andB doing the following:

1. A constructs for eachS∈ C a labelingJ of S such that|J(a) | = O(log(n)) for
everya∈ DS, wheren = |DS|.

2. If J is computed fromSbyA , thenB takes as input an(m+q)-tuple
(J(a1) , . . . ,J(am) ,J(W1) , . . . ,J(Wq)) and says correctly whether:

S|= ϕ(a1, . . . ,am,W1, . . . ,Wq) .

In this case we say that the pair(A ,B) defines anO(log(n))-labeling supporting
the query defined byϕ for the structures inC .

Labelings based on logical descriptions of queries have been defined by Courcelle
and Vanicat [5] for MSO queries and graphs of bounded clique-width (whence also
of bounded tree-width). Applications to distance and connectivity queries in graphs of
bounded clique-width and in planar graphs have been given byCourcelle and Twigg
in [4] and by Courcelle, Gavoille, Kanté and Twigg in [2]. In the present article, we
consider classes of graphs of unbounded clique-width and inparticular, classes that
are locally decomposable(Frick and Grohe [8,9]) and classes ofbounded expansion
(Nesetril and Ossona de Mendez [15]). We are thus obliged to consider only FO logic
and no longer MSO logic.

In this extended abstract we only consider vertex-labeled graphs. The extension to
structures can be done in a standard way through the so-called Gaifman graphs. An
A-labeled graph isG = 〈VG,edgG(·, ·) ,(labaG)a∈A〉 (vertices, edge relations and unary
relation for vertex labels).

By replacing everywhere “clique-width”, “local clique-width”, etc. by “tree-width”,
“local tree-width”, etc., one can handle formulas with edge-set quantifications.

Definition 1. Logic.
An FO formulaϕ(x1, . . . ,xm,Y1, . . . ,Yq) is basic boundedif for somep∈N we have the
following equivalence for all graphsG, all a1, . . . ,am∈VG and allW1, . . . ,Wq⊆VG

G |= ϕ(a1, . . . ,am,W1, . . . ,Wq) iff G[X] |= ϕ(a1, . . . ,am,W1∩X, . . . ,Wq∩X)

for someX ⊆ VG such that|X| ≤ p and a1, . . . ,am ∈ X. (If this is true forX, then
G[Y] |= ϕ(a1, . . . ,am,W1∩Y, . . . ,Wq∩Y) for everyY ⊇ X.)

An FO formula isboundedif it is a Boolean combination of basic bounded formulas.
In particular, the negation of a basic bounded formula is not(in general) basic bounded,
but it is bounded.

An FO formulaϕ(x1, . . . ,xm,Y1, . . . ,Yq) is t-local around(x1, . . . ,xm) if for everyG
and, everya1, . . . ,am∈VG, W1, . . . ,Wq ⊆VG we have

G |= ϕ(a1, . . . ,am,W1, . . . ,Wq) iff G[N] |= ϕ(a1, . . . ,am,W1∩N, . . . ,Wq∩N)

whereN = Nt
G (a1, . . . ,am) = {y∈VG | d (y,ai) ≤ t for somei = 1, . . . ,m} andd (u,v)

is the length of a shortest undirected path betweenu andv.



An FO sentence isbasic(t,s)-local if it is equivalent to a sentence of the form

∃x1. · · ·∃xs.

(

^

1≤i< j≤s

d (xi ,x j) > 2t ∧
^

1≤i≤s

ψ(xi)

)

whereψ(x) is t-local around its unique free variablex.

Remark. The queryd (x,y) ≤ r is basic bounded (p = r +1) andt-local with t = r/2
if r is even and(r−1)/2 if r is odd. Its negationd (x,y) > r is t-local and bounded (but
not basic bounded).

3 Graphs

We are interested in on-line checking properties of networks in case of (reported) fail-
ures. Hence for each property of interestϕ(x1, . . . ,xm) we are not only interested in
checking ifG |= ϕ(a1, . . . ,am) by usingJ(a1) , . . . ,J(am) wherea1, . . . ,am ∈ VG but
also in checkingG\X |= ϕ(a1, . . . ,am) by usingJ(a1) , . . . ,J(am) and J(X) where
X ⊆VG−{a1, . . . ,am} andG\X is the subgraph ofG induced onVG−X.

However,G\X |= ϕ(a1, . . . ,am) for a FO formulaϕ(x1, . . . ,xm) is equivalent to
G |= ϕ′ (a1, . . . ,am,X) and toGX |= ϕ′′ (a1, . . . ,am) for FO formulasϕ′(x1, . . . ,xm,Y)
andϕ′′(x1, . . . ,xm) that are easy to write. We denote byGX the graphG equipped with
an additional vertex-label. Hence, we considerGX as the structureG augmented with a
unary relationlab such thatlabGX (u) holds iff u∈ X. We will handle “holes” in graphs
by means of set variables.

A graph hasarboricity at most kif it is the union ofk-edge disjoint forests (inde-
pendently of the orientations of its edges).

Classes withbounded expansion, defined in [15] have several equivalent character-
izations. We will use the following one: a classC hasbounded expansionif for every
integerp, there exists a constantN(C , p) such that for everyG∈ C , one can partition
VG in at mostN(C , p) parts such that anyi ≤ p of them induce a subgraph of tree-width
at mosti−1. (This implies that each part is a stable set, hence the partition can be seen
as aproper vertex-coloring.)

4 Locally decomposable classes

We refer to [16] and to [3,5] for the definitions oftree-widthand ofclique-widthre-
spectively. (We denote bycwd(G) the clique-width of a graphG). We will use the same
notations as in [8,9]. Definition 2 is analogous to [9, Definition 5.1].

Definition 2. 1. The local clique-widthof a graphG is the functionlcwG : N→ N
defined bylcwG(t) := max{cwd(G[Nt

G (a)]) | a∈VG}.
2. A classC of graphs hasbounded local clique-widthif there is a functionf : N→N

such thatlcwG (t)≤ f (t) for everyG∈ C andt ∈N.

Examples. 1. Every class of graphs of bounded clique-width has also bounded local
clique-width sincecwd(G[A])≤ cwd(G) for everyA⊆VG (see [3]).



2. The classes of graphs of bounded local tree-width have bounded local clique-width
since every class of graphs of bounded tree-width has bounded clique-width (see
[3]). We can cite graphs of bounded degree and minor-closed classes of graphs that
do not contain all apex-graphs (see [8,9]) as examples of classes of bounded local
tree-width.

3. The class of unit-interval graphs has bounded local clique-width (using results from
[14]) but neither bounded clique-width nor bounded local tree-width.

4. The class of interval graphs has not bounded local clique-width.

If we want to give anO(log(n))-labeling for certain classes of graphs of bounded
local clique-width, we need as in [8,9] to cover them by graphs of small clique-width
in a suitable way. In [8] a notion ofnicely locally tree-decomposableclass of structures
was introduced. We will define slightly a more general notion.

Definition 3. Let r, l ≥ 1 andg : N→N. An (r, l ,g)-cwd coverof a graphG is a family
T of subsets ofVG such that:

1. For everya∈VG there exists aU ∈ T such thatNr
G (a)⊆U .

2. For eachU ∈ T there exist less thanl manyV ∈ T such thatU ∩V 6= /0.
3. For eachU we havecwd(G[U ])≤ g(1).

An (r, l ,g)-cwd cover isnice if condition 3 is replaced by condition 3’ below:

3’. For allU1, . . . ,Uq andq≥ 1 we havecwd(G[U1∪·· ·∪Uq])≤ g(q).

A classC of graphs islocally cwd-decomposableif there is a polynomial time al-
gorithm that given a graphG∈ C andr ≥ 1, computes an(r, l ,g)-cwd cover ofG for
suitablel ,g depending onr.

A classC of graphs isnicely locally cwd-decomposableif there is a polynomial
time algorithm that given a graphG∈ C andr ≥ 1, computes a nice(r, l ,g)-cwd cover
of G for suitablel ,g depending onr. (These two definitions are the same as in [9,8]
where we substitute clique-width to tree-width.)

Examples. 1. It is clear that every nicely locally cwd-decomposable class is locally
cwd-decomposable and the converse is not true.

2. Each class of nicely locally tree-decomposable structures [8] is nicely locally cwd-
decomposable.

3. LetG be a unit-interval graph. Using results from [14, Theorems 1,3 and Corollary
5] one can prove thatG has an(r, r, f (2r +1))-cwd cover. Then every class of unit-
interval graphs is locally cwd-decomposable.

4. Figure 1 shows inclusion relations between the many classes defined in Sections 3
and 4. It completes the diagram [9, Figure 2].

5 Results

The main results are as follows. In each case we consider labeled graphs over a finite
setA of vertex-labels.
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Fig. 1. Inclusion diagram indicating which results apply to which classes. An arrow means an
inclusion of classes.

Theorem 4 (First Main Theorem). There exist O(log(n))-labeling schemes for the
following queries and graph classes:

1. Quantifier-free queries in graphs of arboricity≤ k, for each k.
2. Bounded FO queries for each class of graphs of bounded expansion.
3. Local queries with set arguments on locally cwd-decomposable classes.
4. FO queries without set arguments on locally cwd-decomposable classes.
5. FO queries with set arguments on nicely locally cwd-decomposable classes.

We recall that if a graphG has clique-width at mostk there exists a cubic time
algorithm that computes a cwd-term that definesG without being optimal [13]. (It uses
2k+1−1 labels, hence does not witnesscwd(G) ≤ k; however this term is enough for
using [5].) And if a graphG has tree-width at mostk, there exists a linear time algorithm
that computes a tree-decomposition of widthk of G [1]. We will also use results by
Gaifman [10], Frick and Grohe [9,8] recalled below.

Theorem 5 ([10]).Letϕ(x̄) be a FO formula wherēx= (x1, . . . ,xm). Thenϕ is logically
equivalent to a Boolean combination B(ϕ1(ū1), . . . ,ϕp(ūp),ψ1, . . . ,ψh) where:

– each(ϕi)1≤i≤p is a t-local formula around̄ui ⊆ x̄.
– each(ψi)1≤i≤h is a basic(t ′,s)-local sentence.

Moreover B can be computed effectively and, t,t ′ and s can be bounded in terms of m
and the quantifier-rank ofϕ.



We will use a stronger form from [8]. Letm,t ≥ 1. Thet-distance typeof anm-tuple
ā is the undirected graphε = ([m],edgε) whereedgε(i, j) iff d(ai ,a j) ≤ 2t + 1. The
satisfaction of at-distance type by anm-tuple can be expressed by at-local formula:

ρt,ε(x1, . . . ,xm) :=
^

(i, j)∈edgε

d(xi ,x j)≤ 2t +1 ∧
^

(i, j)/∈edgε

d(xi ,x j ) > 2t +1.

We recall that Gaifman’s Theorem and its variants extend to FO formulas with set
variables.

Lemma 1 ([8]). Let ϕ(x̄,Y1, . . . ,Yq) be a t-local formula around̄x = (x1, . . . ,xm), m≥
1. For each t-distance typeε with ε1, . . . ,εp as connected components, one can compute
a Boolean combination Ft,ε(ϕ1,1, . . . ,ϕ1, j1, . . . ,ϕp,1, . . . ,ϕp, jp) of formulas ϕi, j with
FO free variables among those ofx̄ and set arguments in{Y1, . . . ,Yq} such that:

– The FO free variables of eachϕi, j are amongx̄ | εi (x̄ | εi is the restriction ofx̄ to
εi ).

– ϕi, j is t-local aroundx̄ | εi .
– For each m-tuplēa, each q-tuple of sets W1, . . . ,Wq:

G |= ρt,ε(ā) ∧ ϕ(ā,W1, . . . ,Wq) iff G |= ρt,ε(ā) ∧ F t,ε(. . . ,ϕi, j(ā | εi ,W1, . . . ,Wq), . . .).

The lemma below is an easy adaptation of the results in [9].

Lemma 2 ([9]).Let G be in a locally cwd-decomposable class. Every basic(t,s)-local
sentence can be decided in polynomial time.

We now give the proofs of each statement of Theorem 4. For clarity, we give them
seperately.

Proof (of Theorem 4 (1)).Let G be a forest with edges anyway directed. Let us choose
a rootr and let f +, f− : VG→VG be mappings such that:

f +(u) = v iff u→ v in G andv is on the unique undirected path betweenu andr

f−(u) = v iff u← v in G andv is on the unique undirected path betweenu andr.

The edge relation inG is defined by:

edg(u,v)⇐⇒ v = f +(u)∨ u = f−(v) (1)

If G is the union ofk edge-disjoint forestsF1, . . . ,Fk we take a pair( f +
i , f−i ) for each

Fi . The edge relation ofG is defined in a similar way as in (1) with 2k unary functions.
If vertices are numbered from 1 ton andpxq is the 0-1 representation of the index

of x, then we letJ(x) =
(

pxq,p f +
1 (x)q,p f−1 (x)q, . . . ,p f +

k (x)q,p f−k (x)q
)

. ⊓⊔

Proof (of Theorem 4 (2)).Let ϕ be a basic bounded formula with boundp and at least
one free FO variable. We letN = N(C , p) and we partitionVG into V1⊎V2⊎·· · ⊎VN as
in the definition,Vi 6= /0.



For everyα⊆ [N] of sizep we letVα =
S

i∈αVi so that the tree-width ofG[Vα] is at
mostp−1. Each vertexu belongs to less than(N−1)p−1 setsVα.

Hence a basic bounded formulaϕ(x1, . . . ,xm,Y1, . . . ,Yq) is true inG iff it is true in
someG[X] with |X| ≤ p, hence in someG[Vα] such thatx1, . . . ,xm∈Vα. For eachα we
construct a labelingJα of G[Vα] (of tree-width at mostp−1) supporting queryϕ by
using [5]. We letJ(x) =

(

pxq,{(pαq,Jα(x)) | x∈Vα}
)

. We have|J(x)|= O(log(n)).
We now explain how to decideϕ by using the labels only. GivenJ(a1), . . . ,J(am)

we can determine all those setsα such thatVα containsa1, . . . ,am. Using the com-
ponentsJα(·) of J(a1), . . . ,J(am) and the labels inJ(W1), . . . ,J(Wq) we can deter-
mine if for someα, G[Vα] |= ϕ(a1, . . . ,am,W1∩Vα, . . . ,Wq∩Vα) hence whetherG |=
ϕ(a1, . . . ,am,W1, . . . ,Wq).

It remains to consider the case of a basic bounded formula of the formϕ(Y1, . . . ,Yq).
For eachα we determine the truth valuetα of ϕ( /0, . . . , /0) in G[Vα]. The family of pairs
(α,tα) is of fixed size (depending onp) and is appended toJ(x) defined as above. From
J(W1), . . . ,J(Wq) we getD = {α | Vα∩ (W1∪·· ·∪Wq) 6= /0}.

By using theJα(·) components of the labels inJ(W1)∪ ·· · ∪ J(Wq) we can deter-
mine if for someα ∈ D we haveG[Vα] |= ϕ(W1∩Vα, . . . ,Wq∩Vα). If one is found we
conclude positively. Otherwise we look for sometβ = Truewhereβ /∈D. This gives the
final answer.

For a Boolean combination of basic bounded formulasϕ1, . . . ,ϕt with associated
labelingsJ1, . . . ,Jt we take the concatenationJ1(x) • J2(x) • · · · • Jt(x). It is of size
O(log(n)) and gives the desired result. ⊓⊔

Proof (of Theorem 4 (3)).Letϕ(x̄,Y1, . . . ,Yq) be at-local formula around ¯x= (x1, . . . ,xm),
m≥ 1. ThenG |= ϕ(ā,W1, . . . ,Wq) iff G[Nt

G(ā)] |= ϕ(ā,W1∩Nt
G(ā), . . . ,Wq∩Nt

G(ā)).
Let ε be at-distance type withε1, . . . ,εp as connected components. By Lemma 1,G |=
ρt,ε(ā) ∧ ϕ(ā,W1, . . . ,Wq) iff G |= ρt,ε(ā) ∧ Ft,ε(ϕ1,1(ā | ε1,W1, . . . ,Wq), . . . ,ϕp, jp(ā |
εp,W1, . . . ,Wq)).

We letT be an(r, l ,g)-cwd cover ofG wherer = m(2t + 1). We use such anr in
order to warranty that ifa1, . . . ,am are in a connected component of at-distance type,
there exists aU ∈ T such thatNt

G(a1, . . . ,am) ⊆ U . For each vertexx there exist less
thanl manyV ∈ T such thatx∈V. We assume that eachU ∈ T has an index encoded
as a bit stringpUq. There are at mostn · l sets inT . HencepUq has lengthO(log(n)).

By the results of [5] we can label each vertex with a labelK(x) of lengthO(log(n))
and decide inO(log(n))-time if d(u,v) ≤ 2t + 1 or not by usingK(u) andK(v)1. We
build a labelingKU for eachU ∈ T ; then for eachx we let

K(x) =
(

pxq, {
(

pUq,KU(x)
)

| N(x)⊆U}, {
(

pUq,KU(x)
)

| N(x) * U}
)

.

whereN(x) = N2t+1
G (x). (We always assume thatx∈ Nt

G(x) for all t ∈ N.)
By [5] for eachϕi, j(x̄ | εi ,Y1, . . . ,Yq) and eachU ∈ T we can label each vertexx∈U

with Jε
i, j ,U(x) of lengthO(log(n)) and decideϕi, j(ā | εi ,W1, . . . ,Wq) in G[U ] by using

1 For checking ifd(u,v) ≤ 2t +1, an(r ′, l ′,g′)-cwd cover suffices, withr ′ = 2t +1.



(

Jε
i, j ,U(b)

)

b∈ā |εi
andJε

i, j ,U(W1∩U), . . . ,Jε
i, j ,U(Wq∩U). For eachx we let

Jε(x) :=
{

(

pUq,Jε
1,1,U(x), . . . ,Jε

1, j1,U(x), . . . ,Jε
p,1,U(x), . . . ,Jε

p, jp,U (x)
)

| Nt
G(x)⊆U

}

.

It is clear that|Jε(x)|= O(log(n)) since eachx is in less thanl manyV ∈ T .
There exist at mostk′ = 2k(k−1)/2 t-distance type graphs; we enumerate them by

ε1, . . . ,εk′ . For eachx we letJ(x) :=
(

pxq,K(x),Jε1(x), . . . ,Jεk′ (x)
)

.
From the labelsK(x), we can determine{pUq | U ∈ T , x ∈ U}, hence the sets

U ∈ T such thatW∩U 6= /0, W⊆VG, whereW is a set argument. It is clear thatJ(x) is
of lengthO(log(n)) and is computed in polynomial time sinceT is computed in poly-
nomial time and eachJε is computed in polynomial time. We now explain how to decide
whetherG |= ϕ(a1, . . . ,am,W1, . . . ,Wq) by usingJ(a1), . . . ,J(am) andJ(W1), . . . ,J(Wq).

By usingK(a1), . . . ,K(am) from J(a1), . . . ,J(am) we can construct thet-distance
type ε satisfied bya1, . . . ,am; let ε1, . . . ,εp be the connected components ofε. From
eachJ(ai) we can recoverJε(ai). For each ¯a | εi there exists at least oneU ∈ T such
thatNt

G(ā | εi)⊆U . We can recover them (there are less thanl ) from theJ(b), b∈ ā | εi .
We can now decide whetherG |= F t,ε(ϕ1,1(ā | ε1,W1∩U1, . . . ,Wq∩U1), . . . ,ϕp, jp(ā |
εp,W1∩Up, . . . ,Wq∩Up)) for someU1, . . . ,Up determined fromJ(a1), . . . ,J(am). By
using alsoJ(W1), . . . ,J(Wq) we can determine the setsWi ∩U j and this is sufficient by
Lemma 1. ⊓⊔

Proof (of Theorem 4 (4)).Let ϕ(x1, . . . ,xm) be a FO formula without set arguments. By
Theorem 5ϕ is equivalent to a Boolean combinationB(ϕ1(x̄), . . . ,ϕp(x̄),ψ1, . . . ,ψh)
whereϕi is t-local andψi is a basic(t ′,s)-local sentence for suitablet,t ′,s.

By Lemma 2 one can decide in polynomial time each sentenceψi . Letb= (b1, . . . ,bh)
wherebi = 1 if G satisfiesψi and 0 otherwise. For each 1≤ i ≤ p we construct a label-
ing Ji supporting queryϕi by Theorem 4 (3) (G belongs to a locally cwd-decomposable
class andϕi is at-local formula around ¯x). For eachx we let

J(x) := (pxq,J1(x), . . . ,Jp(x),b).

It is clear that|J(x)| = O(log(n)). Since fromb one can recover the truth value of
each sentenceψi , we can decide whetherG |= ϕ(a1, . . . ,am) by usingJ(a1), . . . ,J(am),
the truth values ofϕi(ā) andb. ⊓⊔

Proof (of Theorem 4 (5)).By Theorem 4 (3) it is sufficient to consider FO formulas
ϕ(Y1, . . . ,Yq) of the form:

∃x1. · · ·∃xm.

(

^

1≤i< j≤m

d(xi ,x j) > 2t ∧
^

1≤i≤m

ψ(xi ,Y1, . . . ,Yq)

)

whereψ(x,Y1, . . . ,Yq) is t-local aroundx. We show how to check their validity by means
of O(log(n))-labelings.

We consider for purpose of clarity the particular case ofm = 2. Let T be a nice
(r, l ,g)-cwd cover ofG wherer = 2t + 1. We letK(U) = {x∈ U | N2t

G (x) ⊆U} (the
2t-kernel ofU (see [8])).



We letγ be a distance-2 coloring of the intersection graph ofT (vertices at distance
1 or 2 have different colors). For every 2 colorsi, j we letGi, j be the graph induced by
the union of the blocksU ∈ T of colorsi and j.

Claim 1. cwd(Gi, j )≤ g(2).

Proof (of Claim 1). Gi, j is a disjoint union of setsU in T and of unionsU ∪U ′ with
U ∩U ′ 6= /0 for U,U ′ ∈ T . This union is disjoint because ifU ∪U ′ with U ∩U ′ 6= /0
would meet someU ′′ ∈ T , U ′′ 6= U, U ′′ 6= U ′, then we would haveγ(U) = i, γ(U ′) = j
andU ′′ meetsU or U ′. It cannot have colori or j becauseγ is a distance-2 coloring.
Sincecwd(G[U ∪U ′])≤ g(2), we are done. ⊓⊔

Claim 2. Let x∈ K(U) and y∈ K(U ′) for some U,U ′ ∈ T . Then dG(x,y) > 2t iff
dG[U∪U ′ ](x,y) > 2t.

Proof (of Claim 2).The “if direction” is clear since distance increases if we goto
induced subgraphs.

For the “converse direction”, we letdG(x,y)≤ 2t; there exists a path of length≤ 2t
from x to y. This path is inU ∪U ′ sincex∈ K(U) andy∈ K(U ′). Hence it is also in
G[U ∪U ′], hencedG[U∪U ′ ] ≤ 2t. ⊓⊔

Let us now give to each vertexx of G the smallest colori such thatx∈ K(U) and
γ(U) = i. Hence a vertex has one and only one color. For each pairi, j we consider the
formulaψi, j (possibly j = i):

∃x,y.
(

d(x,y) > 2t ∧ ψ(x,Y1, . . . ,Yq) ∧

ψ(y,Y1, . . . ,Yq) ∧ “x has colori” ∧ “y has colorj”
)

We use [5] to construct a labelingJi, j for the formulaψi, j in the graphGi, j (with
vertices colored byi or j, that is, we use new unary “color” predicates). We compute
the truth valuebi, j of ψi, j( /0, . . . , /0) in Gi, j ; we get a vectorb of fixed length. We also
label each vertexx by its color. We concatenate to thatb and theJi, j(x) for x ∈ VGi, j ,
giving J(x).

From J(W1), . . . ,J(Wq) we can determine thoseGi, j such thatVGi, j ∩ (W1 ∪ ·· · ∪
Wq) 6= /0, and check if for one of themGi, j |= ψi, j(W1, . . . ,Wq). If one is found we are
done. Otherwise we use thebi, j ’s to look for Gi, j such thatGi, j |= ψi, j( /0, . . . , /0) and
(W1∪·· ·∪Wq)∩VGi, j = /0. This gives the correct results because of the following facts:

– If x,y satisfy the formulaϕ, thenx ∈ K(U), y ∈ K(U ′) (possiblyU = U ′) and
dG(x,y) > 2t impliesdGi, j (x,y) > 2t, henceGi, j |= ψi, j(W1, . . . ,Wq) wherei = γ(U)
and j = γ(U ′).

– If Gi, j |= ψi, j(W1, . . . ,Wq) then we getG |= ϕ(W1, . . . ,Wq) by similar argument (in
particulardGi, j (x,y) > 2t impliesdG[U∪U ′ ](x,y) > 2t which implies thatdG(x,y) >
2t by Claim 2).

For m= 1, the proof is similar withγ a proper (distance-1) coloring and we useGi

instead ofGi, j .



For the casem > 2, the proof is the same: one takes forγ a distance-m proper
coloring of the intersection graph, one considers graphsGi1,...,im defined as (disjoint)
unions of setsU1∪ ·· · ∪Um for U1, . . . ,Um in T , of respective colorsi1, . . . , im and
cwd(G[U1∪·· ·∪Um])≤ g(m). This terminates the proof of Theorem 4. ⊓⊔

Let us ask a very general question: what can be done withO(log(n)) labels ? Here
is a fact that limits the extension of these results.

Fact 1. One cannot express adjacency in arbitrary graphs with labels of size O(log(n)).
It follows that one cannot handle all local or bounded FO queries for graphs of arboric-
ity at most2 with O(log(n)) labels.

We now discuss extension to counting queries. Letϕ(x1, . . . ,xm,Y1, . . . ,Yq) be a
MSO formula andSbe a finite structure. ForW1, . . . ,Wq ⊆ DS we define

#Sϕ(W1, . . . ,Wq) :=
∣

∣

∣

{

(a1, . . . ,am) ∈ Dm
S | S|= ϕ(a1, . . . ,am,W1, . . . ,Wq)

}

∣

∣

∣

A counting queryconsists in determining #Sϕ(W1, . . . ,Wq) for given(W1, . . . ,Wq).
We will need the following extension of the results of [5].

Theorem 6. Let ϕ(x1, . . . ,xm,Y1, . . . ,Yq) be an MSO formula over labeled graphs and
k∈ N. There exists an O

(

log2 (n)
)

-labeling scheme for graphs of clique-width or tree-
width at most k supporting the counting query#Gϕ. For computing#Gϕ(W1, . . . ,Wq)
modulo some fixed integer s, or up to s (threshold counting) weneed only labels of size
O(log(n)).

We now state our second main theorem. The proof is omitted because of space
constraints.

Theorem 7 (Second Main Theorem).There exists an O(log2(n))-labeling scheme for
counting queries based on FO formulas for nicely locally cwd-decomposable classes.
O(log(n)) is enough for modulo counting.

We conjecture that the results of Theorem 4 (3,4,5) extend toclasses of graphs
excluding, or locally excluding a minor [6,11].

Question. Does there exist anO(log(n))-labeling scheme for FO formulas with set
arguments on locally cwd-decomposable classes ?
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