
Fly-automata for checking monadic
second-order properties of graphs

of bounded tree-width

Bruno Courcelle a,1

a LaBRI, CNRS and Bordeaux University, 33405 Talence, France

Abstract

Every graph property expressible in monadic second-order (MSO) logic, possibly
with quantifications over edges, can be checked in linear time on graphs of bounded
tree-width, in particular by means of finite automata running on terms denoting
tree-decompositions. However, implementing these automata is difficult because of
their huge sizes. Fly-automata (FA) are deterministic automata that compute the
necessary states and transitions when running (instead of looking into tables); they
allow us to overcome this difficulty. In previous works, we constructed FA to check
MSO properties of graphs of bounded clique-width. An MSO property with edge
quantifications (called an MSO2 property) of a graph is an MSO property of its
incidence graph and, on the other hand, graphs of tree-width k have incidence
graphs of clique-width O(k). Thus, our existing constructions can be used for
MSO2 properties of graphs of bounded tree-width. We examine concrete aspects of
this adaptation.

Keywords: Graph algorithm, fixed-parameter tractability, tree-width, incidence
graph, clique-width, finite automaton, fly-automaton, monadic second-order logic,
edge quantification, model-checking.

1 Introduction

Graphs are finite and directed. The extension to undirected graphs is easy. Our
goal is to check their monadic second-order (MSO) properties by using finite

1 Email: courcell@labri.fr. This work has been supported by the French National
Research Agency (ANR) within the IdEx Bordeaux program ”Investments for the future”,
CPU, ANR-10-IDEX-03-02.

automata running on the terms that denote input graphs of bounded tree-
width or clique-width, and to get fixed-parameter tractable (FPT) algorithms,
constructed by automatic and usable methods.

Fact 1 : For each k and MSO expressible graph property P , there is an
O(n3)-algorithm that checks this property on graphs with n vertices of clique-
width ≤ k. It is based on a finite automaton AP,k that takes as input a term t
of width at most k that denotes the input graph assumed of clique-width ≤ k
[6,7].

Fact 2 : The size of AP,k is usually so large that it forbids implementation
in the classical way. Instead of trying to list transitions in huge tables, we
describe them by small programs, and so, we make AP,k into a fly-automaton
(an FA in short). Implementation of FA has been tested in significant cases
[4].

Fact 3 : The algorithmic meta-theorem of Fact 1 has a similar version
for graphs of bounded tree-width and properties expressed by MSO formulas
using edge set quantifications (MSO2 properties), hence for ”less graphs” but
for ”strictly more properties” [6,2]. It suffices to take as input the incidence
graph Inc(G) of the input graph G. This method works because cwd(Inc(G)),
the clique-width of Inc(G), is bounded by a function of twd(G), the tree-width
of G.

Fact 4 : This method is usable because cwd(Inc(G)) ≤ 2.twd(G)+4 for G
directed by a recent result [1,3] improving a previous exponential upper-bound.
See the appendix. The reduction of Fact 3 needs some work on automata.

The present contribution : The reduction of Fact 3 needs some work on
automata. We will detail some new necessary constructions and we will give
a proof of Fact 4.

This work has been presented at the international conference LAGOS,
Beberibe, Ceará, Brazil, in May 2015. A shortened version of this text will
appear in the proceedings (Electronic Notes in Discrete Mathematics).

2 Definitions and discussion of background results.

About Fact 1 : MSO logic. A simple graph G is identified with the logical
structure 〈VG, edgG〉 with domain VG, the set of vertices and edgG, the binary

relation such that (x, y) ∈ edgG if and only if there is an edge from x to y
(denoted by x→ y). 3-vertex colorability is expressible by the MSO formula
∃X, Y.Col(X, Y) where Col(X, Y) expresses that X, Y and VG− (X ∪Y) are
the three color classes of a 3-coloring. The existence of an acyclic p-coloring,
connectedness, planarity (via forbidden minors) are MSO-expressible.

Clique-width is a graph complexity measure, comparable to tree-width,
that is defined from operations that construct simple graphs equipped with
vertex labels. Let C be a finite set of labels. A C-graph is a triple G =
〈VG, edgG, πG〉 where πG is a mapping: VG → C. We let FC be the following
finite set of operations on C-graphs: ⊕ is the union of two disjoint graphs,
the unary operation relabh changes every vertex label a into h(a), where h is

a mapping from C to C, the unary operation
−→
adda,b, for a 6= b adds an edge

from every a-labelled x to every b-labelled y (unless we already have an edge
x → y) and for each a ∈ C, the nullary symbol a denotes an isolated vertex
labelled by a.

Every term t in T (FC) denotes a C-graph G(t). The clique-width of a
graph G, denoted by cwd(G), is the least integer k such that G is isomorphic,
up to vertex labels, to G(t) for some t in T (F[k]) ([k] := {1, ..., k}). The clique-
width of a simple graph G is bounded in terms of its tree-width twd(G) by
cwd(G) ≤ 22twd(G)+2 + 1, see [6].

For every integer k and MSO formula expressing a property P , one can
construct a finite deterministic automaton AP,k that recognizes the terms in
T (F[k]) that define graphs satisfying P . This gives a linear time recognition
algorithm for graphs given by such terms (finding a term needs cubic time).

About Fact 2 : These automata AP,k have in most cases so many states
that their transition tables cannot be built. This is not avoidable [9]. In the
article [4] we have introduced automata called fly-automata (FA) whose states
are described (but not listed) and whose transitions are computed ”on the
fly” (and not tabulated) 2 . The states, although numerous, have a common

2 FA can have infinitely many states: a state can record the (unbounded) number of oc-
currences of a particular symbol. We can construct fly-automata [5] that check properties
that are not MSO expressible (e.g., that a graph is regular or can be partitioned into p dis-
joint regular graphs). These automata yield FPT or XP algorithms [8] for clique-width as
parameter. By equipping fly-automata with output functions, we can make them compute
values attached to graphs. We can compute the number of s-colorings, or, assuming that
the graph is s-colorable, the minimum size of X1 in an s-coloring (X1, . . . , Xs). The number
of acyclic 4-colorings of Petersen’s graph is 10800 and the number of acyclic 3-colorings of
McGee’s graph is 57024, see [5].

syntactic structure. An FA having 2210 states computes only 100 states on a
term of length 100. (If P is s-colorability, the automaton AP,k has more than

22s.k states.) The maximum size of a state (the number of bits for encoding it)
used on an input term is more important in order to bound the computation
time than the total number of states (see [5]).

About Facts 3 and 4 : Since the domain of the structure 〈VG, edgG〉 is the
vertex set and quantifications over binary relations are not allowed, MSO for-
mulas cannot quantify over sets of edges. The incidence graph of G is the
bipartite graph Inc(G) := 〈VG ∪ EG, incG〉 such that EG is the set of edges
and incG is the set of pairs (x, u) such that x is the tail of edge u and (u, y)
such that y is its head. As each edge of G is made into a vertex of Inc(G),
an MSO formula over Inc(G) can be seen as an MSO formula using quan-
tifications on edges, called an MSO2 formula. That the considered graph has
a directed Hamiltonian cycle is MSO2 expressible but not MSO expressible
over 〈VG, edgG〉, [6]. However, the meta-theorem of Fact 1 does not extend to
inputs Inc(G) for G of cwd at most k because the clique-width of such graphs
Inc(G) is unbounded. But it can be used for graphs G of tree-width at most
k, because :

Theorem 2.1 ([1,3] and the appendix) : If a directed graph G has tree-width
k, then cwd(Inc(G)) ≤ 2k + 4 and a term in T (F[2k+4]) that defines Inc(G)
can be constructed in linear time from a tree-decomposition of G of width
k. If G is undirected, then cwd(Inc(G)) ≤ k + 3. Conversely, twd(G) =
O(cwd(Inc(G))).

3 Automata

In [4], we have constructed fly-automata for atomic MSO formulas (like X ⊆ Y
or edg(X, Y) expressing that X = {x}, Y = {y} and x → y) and particular
MSO properties (like Partition(X1, . . . , Xs), Conn(X) expressing that G[X]
is connected or Cycle(X) expressing that G[X] has an undirected cycle). They
are useful for other properties (e.g. that G contains a fixed minor H or is
acyclically p-vertex colorable) because automata can be combined so as to
reflect logical connectives : ∨,∧,¬,∃X.

Adapting the basic construction of ”automata for MSO”, cf. Fact 1.

MSO logic : We use two types of set variables: X, Y, ... for sets of vertices
and U, V,W for sets of edges (i.e., sets of degree two vertices representing in
Inc(G) the edges of G).

Clique-width terms for incidence graphs : We use two disjoint sets of labels,
C for the ”real” vertices and D for the vertices representing edges. No label

in C can be changed to a label in D, and no edge-addition
−→
adda,b can be used

with a and b both in C or in D. We let T (FC,D) be the corresponding set
of terms. If G has tree-width k, then Inc(G) is defined by a term in T (FC,D)
such that |C| = 2 and |D| = 2k + 3. (See the appendix).

Automata on T (FC,D).

1) Some terms in T (FC,D) may generate graphs that are not incidence
graphs: those with a vertex having label in D and indegree or outdegree
different from 1. An automaton described in appendix can check the property
that the given term is correct, i.e., defines an incidence graph. Its states are
Error and tuples in P(C)2 × P(D)4 hence, they can be encoded by words
of length O(k) for recognizing incidence graphs of graphs of tree-width k, by
Theorem 2.1. (P(X) denotes the powerset of a set X).

2) In the basic case [4,6], the atomic formula edg(X, Y) is checked by a
”small” automaton with k2+k+3 states for terms in T (F[k]). This construction
is easily applicable to the atomic formula inc(X,U) (resp. inc(U,X)) stating
that X is one vertex x, U is one edge u whose tail (resp. head) is x. In Inc(G),
the property edg(X, Y) is no longer atomic; it is expressed by ∃U.(inc(X,U)∧
inc(U, Y)). We can apply the general construction of [4,6] to this formula,
but it is more efficient to define directly an automaton over FC,D. Its states
are 5-tuples in C2 × P(D)3 hence, they can be encoded by words of length
O(|C| + |D|). We have an exponential jump from O(cwd2) to O(26twd) for
the number of states which is not surprizing because the formula expressing
edg(X, Y) has an existential quantification.

3) For the three properties:

Link∃∃(X, Y) meaning that x→ y for some x ∈ X and y ∈ Y ,

Link∀∃(X, Y) meaning that for all x ∈ X there is y ∈ Y such that x→ y,
(Y dominates X in some sense), and

Link∀∀(X, Y) meaning that x→ y for all x ∈ X and y ∈ Y ,

in the appendix, we will contruct automata whose states are tuples, be-
longing respectively, to the following sets:

P(C)2 × P(D)3; states are of size O(k), where k = |C|+ |D| ,
P(C)2 × P(D)2 × P(C × P(D))2; states are of size O(k2.2k)),

P(C)×P(D)×P(C×P(D))2×P(C2×P(D)2) ; states of size O(k3.22k).

For comparison, the corresponding automata over F[k], constructed as in
[4], have states of respective sizes O(k), O(k) and O(k2). A universal quantifi-

cation corresponds to a negation before an existential quantification. This ex-
plains the exponential jump between Link∃∃(X, Y) and the two others. These
sets of states may look very large, but an FA uses only the necessary states
on a given term, and usual terms do not have the combinatorial properties
yielding the maximal sizes. So these automata are actually implementable.

4) Inc-stable properties are easy.

A property P is Inc-stable if P (G) ⇐⇒ P (Inc(G)). So are, for instance,
connectedness and strong connectedness, the properties that G has a directed
cycle, or an undirected cycle, or a path from vertex x to vertex y or has all
its vertices of outdegree at most p. For them, FA on terms in T (FC,D) are
constructible from the FA AP,k (cf. Fact 1) without needing any significant
modification.

To summarize, we have the following theorem.

Theorem 3.1 Let k bound the tree-width of the considered graphs G: this
value determines sets C and D and incidence graphs Inc(G) are given by
terms in T (FC,D).

(1) That a term in T (FC,D) is correct is checked by an FA with states of
size O(k).

(2) Properties edg(X, Y) and Link∃∃(X, Y) are checked by FA with states
of size O(k).

(3) Properties Link∀∃(X, Y) and Link∀∀(X, Y) are checked by FA with
states of size 2O(k).

(4) Inc-stable properties are checked by FA of same state sizes as for
clique-width terms.

Conclusion : These results indicate that the tools of [4,5] can be applied
to the verification of MSO2 properties of graphs of bounded tree-width given by
their tree-decompositions. The software AUTOGRAPH can be used basically
as it is (up to minor syntactic adaptations) although the terms that describe
tree-decompositions are fairly different from those defining clique-width [2,6].

References

[1] T. Bouvier, Graphes et décompositions, Doctoral dissertation, Bordeaux
University, December 2014.

[2] B. Courcelle, On the model-checking of monadic second-order formulas with edge
set quantifications, Discrete Applied Mathematics 160(2012) 866-887.

[3] B. Courcelle, Clique-width and tree-width of sparse graphs, Research report,
2015.

[4] B. Courcelle and I. Durand, Automata for the verification of monadic second-
order graph properties, J. Applied Logic 10 (2012) 368-409.

[5] B. Courcelle and I. Durand, Computations by fly-automata beyond monadic
second-order logic, June 2013, to appear in Theor. Comput. Sci., Short version
in Proceedings of the Conference on Algebraic Informatics, Lecture Notes in
Computer Science 8080 (2013) 211-222.

[6] B. Courcelle and J. Engelfriet, Graph structure and monadic second-order logic,
a language theoretic approach, Volume 138 of Encyclopedia of mathematics and
its application, Cambridge University Press, June 2012.

[7] B. Courcelle, J. Makowsky and U. Rotics, Linear-time solvable optimization
problems on graphs of bounded clique-width, Theory Comput. Syst. 33 (2000)
125-150.

[8] R. Downey and M. Fellows, Parameterized complexity, Springer-Verlag, 1999.

[9] M. Frick, M. Grohe, The complexity of first-order and monadic second-order
logic revisited, Ann. Pure Appl. Logic 130 (2004) 3-31.

A Appendix

A: MSO expressible properties.

MSO expressibility

3-colorability is expressible by the MSO formula ∃X, Y.Col(X, Y) where
Col(X, Y) is the formula

X ∩ Y = ∅ ∧ ∀u, v.{edg(u, v) =⇒ [¬(u ∈ X ∧ v ∈ X)

∧¬(u ∈ Y ∧ v ∈ Y) ∧ ¬(u /∈ X ∪ Y ∧ v /∈ X ∪ Y)]}.
Capital variables X and Y denote sets of vertices and Col(X, Y) expresses

that X, Y and VG − (X ∪ Y) are the three color classes of a 3-coloring. More
generally, p-colorability is expressible in a similar way. A p-coloring defined
by a partition (X1, ..., Xp) is acyclic if each induced subgraph G[Xi ∪Xj] has
no undirected cycle (i.e., neglecting edge directions), which is MSO express-
ible. The existence of an acyclic p-coloring is MSO-expressible. Connectivity,
planarity (via forbidden minors) are also MSO-expressible.

Quantifications over binary relations are not allowed in MSO logic; equipo-
tence of two sets is not MSO expressible.

MSO2 expressibility (through incidence graphs)

The formula : ”there exists a set of edges that induces a directed cycle
and goes through all vertices”, expresses that the considered graph has a
directed Hamiltonian cycle. This property is not expressible in MSO logic
over 〈VG, edgG〉 [6].

B: Clique-width of incidence graphs.

We sketch the proof that cwd(Inc(G)) ≤ 2.twd(G) + 4 if G is directed,
where twd(G) denotes the tree-width of G.

Tree-width is based on tree-decompositions and these decompositions can
be expressed by terms [6]. By induction on the structure of a term t that
defines a tree-decomposition of G, we construct a term in T (FC,D) that defines
Inc(G), in order to prove the claimed bounding. We need some definitions.

Graphs with sources.

Let G be a directed graph with vertex set VG and edge set EG. It may
have loops and multiple edges. The notation u : x → y means that edge u
links x to y. We equip G with distinguished vertices called sources in [6] and

boundary vertices or terminals by other authors [8]. Let K be a finite set of
labels, let src be an injective mapping: K → VG. We say that x is the a-source
if src(a) = x. If H is a sourced graph (G, src), we let τ(H) := K and Src(H)
be the set of sources of H, i.e., the set src(K). The set of internal vertices of
H is IntH := VG − Src(H).

We now define some operations on sourced graphs:

If H = (G, src), then fga(H) := (G, src � (τ(H) − {a})). In words, the
a-source of H is no longer a source in fga(H) (fg means ”forget” and � denotes
the restriction of a function to a subset of its domain) but an internal vertex;
nothing else is changed. If H has no a-source, then fga(H) = H.

If H = (G, src) and H ′ = (G′, src′) then H//H ′ is constructed as follows:
one takes the union of G and a copy of G′ disjoint from G and one fuses the
a-source of G and the a-source of G′ for each a ∈ τ(H) ∩ τ(H ′). We have
τ(H//H ′) = τ(H)∪τ(H ′). (Any two isomorphic copies of G′ yield isomorphic
results).

Basic graphs are a, a` and
−→
ab, respectively an isolated a-source, an a-source

with a loop and an edge directed from an a-source to a b-source (b 6= a).

We let LK be the set of operations fga, //, a, a
` and

−→
ab for a, b ∈ K. Every

term t ∈ T (LK) defines a sourced graph Ĝ(t) such that τ(Ĝ(t)) ⊆ K. (Ĝ(t)
is well-defined up to isomorphism because of //; details are in [6]; K can be
empty: every graph is a sourced graph).

Proposition 1 ([6], Theorem 2.83 and Remark 2.84(1)) : A graph has

tree-width at most k iff it is (isomorphic to) Ĝ(t) for some t ∈ T (L[k+1]). A
term t can be constructed in linear time (for fixed k) from a tree-decomposition
of width at most k.

Constructing Inc(G) from G :

We insert on each edge of G a new vertex labelled by � intended to repre-
sent this edge. The sources of G remain sources in Inc(G) with same labels.
The new vertices, called edge-vertices are not sources and form the EVG. The
operations // and fga applied to incidence graphs with sources do not modify
edge-vertices. Clearly:

Inc(G//H) = Inc(G)//Inc(H) and Inc(fga(G)) = fga(Inc(G)).

The main construction

Let G be a graph with source labels in a finite set K. We define a sourced
graph α(G) and a labelled graph β(G).

Fig. A.1. A sourced graph G, β(G) and α(G).

1) α(G) := G[Src(G)], i.e., it is the subgraph of G induced on its sources.
The sources of α(G) are those of G with same labels.

2) We let D := {c+, c− | c ∈ K} ∪ {�} and C ′ := {•}.
We define a labelled graph β(G): its vertex set is IntG∪W whereW ⊆ EVG

is the set of vertices of Inc(G) that represent edges of G incident with at least
one internal vertex (the other edges of G are in G[Src(G)] = α(G)); the edges
of β(G) are those of Inc(G)[IntG ∪W] and its vertices are labelled as follows:

a vertex in IntG has label •,
a vertex in W that represents an edge of G whose two ends are internal

vertices has label �,
a vertex in W that represents an edge u : x → y such that x is the

c-source has label c−,
a vertex in W that represents an edge u : x→ y such that y is the c-source

has label c+.

If G has no source, then β(G) = Inc(G) (with labels � and •) and α(G)
is the empty graph. Figure A.1 shows an example where τ(G) = Src(G) =
{1, 2, 3}.

Claim 2 : For all sourced graphs G and H:

(i) α(G//H) = α(G)//α(H) and β(G//H) = β(G)⊕ β(H).

(ii) Assume a ∈ τ(G) (otherwise fga(G) = G)):

α(fga(G)) = α(G)[Src(G)− {x}] where x is the a-source of G and

β(fga(G)) is constructed from β(G) as follows:

1) it has one new vertex, say x, labelled by • corresponding to x, the
a-source of G (and of α(G)) made internal in fga(G),

2) for each vertex u of β(G) labelled by a−, we add an edge: x → u,
and we relabel u by �,

Fig. A.2. The graphs fg2(G), β(fg2(G)) and α(fg2(G)) for G of Fig. A.1.

3) for each vertex u of β(G) labelled by a+, we add an edge: u → x,
and we relabel u by �,

4) for each edge of α(G) from the a-source to some b-source, we add
a vertex labelled by b+ and an edge from x to this vertex,

5) for each edge of α(G) from some b-source to the a-source, we add
a vertex labelled by b− and an edge from this vertex to x,

6) for each loop of α(G) incident with the a-source, we add a vertex
labelled by �, an edge from x to this vertex and an edge from it to x.

Figure A.2 illustrates this description. The vertices and edges in red are
added to β(G) (or labels are modified) to build β(fg2(G)).

We now express the construction of β(fga(G)) in Claim 2 (ii) with clique-
width operations using the sets of label C := {•, ∗} and D. We denote relabh
by relaba→b if h only changes a into b.

We define the following labelled graphs:

H := relaba−→�(relaba+→�(
−→
add∗,a−(

−→
adda+,∗(β(G)⊕ ∗)))).

This graph H is obtained by performing steps 2) and 3) of Claim 2 (ii); x
is introduced by ∗. Note that a− and a+ do not belong to π(H), defined as
the set of labels of the vertices of H. For implementing steps 4) to 6) we take:

H ′ := Addep(....(Adde1(H))...)) where e1, ..., ep are the edges of α(G) inci-
dent with the a-source, and for each such edge e and labelled graph X, we
define:

Adde(X) := relaba+→b+(
−→
add∗,a+(X⊕a+)) if e goes from the a-source to the

b-source,

Adde(X) := relaba+→b−(
−→
adda+,∗(X ⊕ a+)) if e goes from the b-source to

the a-source,

Adde(X) := relaba+→�(
−→
adda+,∗(

−→
add∗,a+(X ⊕ a+))) if e is a loop incident

to the a-source.

Here, a+ is used as an auxiliary (temporary) label: it does not belong to
the sets π(X) for any of the graphs X we use to construct H ′. We could use
a− instead or an extra label (but we wish to use as few labels as possible).
Finally, we have :

β(fga(G)) = relab∗→•(H
′).

Note that ∗ is an auxiliary label, with no occurrence in the graphs β(G)
and β(fga(G)). To sum up, we have

β(fga(G)) = Bα(G)[β(G)],

where Bα(G) is a sequence of operations that depends only on α(G).

In the case of Figure A.2 we have :

β(fg2(G)) =

relab∗→•(relab2+→3+(
−→
add∗,2+(relab2+→1−(

−→
add2+,∗(H ⊕ 2+))⊕ 2+)))

where

H := relab2−→�(relab2+→�(
−→
add∗,2−(

−→
add2+,∗(β(G)⊕ ∗)))),

hence Bα(G)[X] is

relab∗→•(relab2+→3+(...(relab2−→�(...(X ⊕ ∗))))⊕ 2+))⊕ 2+))).

Theorem A.1 : (1) Let G be a directed graph of tree-width at most k. Then
Inc(G) is defined by a term in T (FC,D) where |C| = 2 and |D| = 2k + 3. The
clique-width of Inc(G) is at most 2k + 4.

If G is undirected, we have the same result with |C| = 2 and |D| = k + 2
and cwd(Inc(G)) ≤ k + 3.

(2) In all cases, twd(G) = O(cwd(Inc(G)).

Proof :

Claim : Let K be finite and C := {•, ∗}, D := {c+, c− | c ∈ K} ∪ {�}.
From every term t ∈ T (LK), one can construct in linear time a term γ(t) ∈
T (FC,D) that defines β(Ĝ(t)).

Proof of the claim : By induction on the structure of t, we construct
simultaneously τ(Ĝ(t)), α(Ĝ(t)) and γ(t). We use Claim 2, and, in particular,
for γ:

γ(t1//t2) := γ(t1)⊕ γ(t2),
γ(fga(t1)) := γ(t1) if a /∈ τ(val(t1)),

γ(fga(t1)) := Bα(val(t1))[γ(t1)] if a ∈ τ(Ĝ(t1)) by Claim 2 (ii).

γ(a), γ(a`) and γ(
−→
ab) are ∅ , another nullary symbol denoting the empty

graph.

Inductive rules for τ(G(t)) and α(G(t)) are easy.�

Main proof : (1) Let G be a graph of tree-width at most k without sources.
We apply this claim to a term t ∈ T (LK) representing a tree-decomposition
of G of width at most k where K has cardinality k + 1, C has cardinality 2
and D cardinatity 2(k + 1) + 1. We get a term γ(t) ∈ T (FC,D) that defines

β(Ĝ(t)) = Inc(Ĝ(t)) = Inc(G).

In this construction, we distinguish the vertices of VG from those of EVG by
the two labels • and �. This is motivated by our constructions of automata.
If we are only interested in bounding the clique-width, we can identify � and
•: it follows that cwd(Inc(G)) ≤ 2.twd(G) + 4.

For undirected graphs, we can use c instead of c+ and c−. If furthermore
we identify � and •, we can construct Inc(G) with the set of labels K∪{∗, •},
hence cwd(Inc(G)) ≤ twd(G) + 3.

(2) If G be undirected, then Inc(G) is undirected and has no subgraph
isomorphic to K3,3. By a result due to Gurski and Wanke ([6], Proposi-
tion 2.115) twd(Inc(G)) ≤ 6.cwd(Inc(G))− 1. But twd(Inc(G)) is twd(G) or
twd(G) + 1. If G is directed, the undirected graph H obtained from Inc(G)
by omitting edge directions has no subgraph isomorphic to K3,3. We have
twd(Inc(G)) = twd(H) ≤ 6.cwd(H)− 1 ≤ 6.cwd(Inc(G))− 1. (T. Bouvier [1]
has proved that : twd(H) ≤ 2.cwd(H)− 1). �

Assertion (2) shows that our method needs the condition that the input
graphs have bounded tree-width.

C : Some constructions of automata.

If G is a graph, we denote by EG its set of edges and by EVG the set of
vertices of Inc(G) that represent the edges of G. Of course, EG and EVG are
in bijection, but conceptually, these sets are distinct.

C.1 The automaton ACT , for checking that a term is correct.

Every term t ∈ T (FC,D) defines a directed bipartite graph G(t) that is
an incidence graph iff its vertices labelled in D have indegree and outde-
gree 1. A state of ACT is either Error or a 6-tuple (γ1, γ2, δ00, δ01, δ10, δ11) ∈
P(C)2 × P(D)4. At the root of a term t ∈ T (FC,D), ACT reaches the state
(γ1, γ2, δ00, δ01, δ10, δ11) if and only if:

γ1 is the set of labels in C that label a single vertex,
γ2 is the set of labels in C that label at least two vertices (hence γ1∩γ2 =
∅),
δ00 is the set of labels in D of isolated vertices,
δ01 is the set of labels in D of vertices of indegree 0, outdegree 1,
δ10 is the set of labels in D of vertices of indegree 1, outdegree 0,
δ11 is the set of labels in D of vertices of indegree 1, outdegree 1,
and no vertex labelled in D has indegree or outdegree 2 or more.

It reaches the state Error if and only if some vertex labelled in D has inde-
gree or outdegree 2 or more. The accepting states are the tuples (γ1, γ2, ∅, ∅, ∅,
δ11). Its transitions are as follows:

1) ⊕[Error, q]→ Error and ⊕[q, Error]→ Error for all states q.
⊕[(γ1, γ2, δ00, δ01, δ10, δ11), (γ

′
1, γ
′
2, δ
′
00, δ

′
01, δ

′
10, δ

′
11)]→

(γ1, γ2, δ00 ∪ δ′00, δ01 ∪ δ′01, δ10 ∪ δ′10, δ11 ∪ δ′11)
where γ1 := (γ1− (γ′1∪γ′2))∪ (γ′1− (γ1∪γ2)) and γ2 := γ2∪γ′2∪ (γ1∩γ′1).

2) relabh[Error]→ Error and
relabh[(γ1, γ2, δ00, δ01, δ10, δ11)]→ (γ1, γ2, h(δ00), h(δ01), h(δ10), h(δ11))
where γ1 is the set of labels in h(γ1) that are the image of a single label

in γ1, and γ2 := h(γ1 ∪ γ2)− γ1.

For c ∈ C and d ∈ D:

3) c→ ({c}, ∅, ∅, ∅, ∅, ∅) and d→ (∅, ∅, {d}, ∅, ∅, ∅).

4)
−→
addc,d[Error]→ Error
−→
addc,d[(γ1, γ2, δ00, δ01, δ10, δ11)]→ q where the following holds:

if c /∈ γ1 ∪ γ2 or d /∈ δ00 ∪ δ01 ∪ δ10 ∪ δ11, then
q := (γ1, γ2, δ00, δ01, δ10, δ11);

otherwise [then c ∈ γ1 ∪ γ2 , d ∈ δ00 ∪ δ01 ∪ δ10 ∪ δ11],

if c ∈ γ2 or d ∈ δ11 ∪ δ10, then q := Error;
otherwise [c ∈ γ1 and d ∈ δ00 ∪ δ01 − (δ11 ∪ δ10)] we have :

q := (γ1, γ2, δ00, δ01, δ10, δ11) where:
δ00 := δ00 − {d}
δ10 := if d ∈ δ00 then δ10 ∪ {d} else δ10
δ01 := δ01 − {d}
δ11 := if d ∈ δ01 then δ11 ∪ {d} else δ11.

5) The case of
−→
addd,c is fully similar.

This construction is intended for irredundant terms : we mean by this that

an operation
−→
addc,d never tries to create an edge from a vertex x labelled by c

to a vertex u labelled by d if we already have x→ u (and similarly for
−→
addd,c

with c ∈ C and d ∈ D). Every term can be made irredundant by an easy
preprocessing [4,6]. This condition insures the correctness of the transition
−→
addc,d[(γ1, γ2, δ00, δ01, δ10, δ11)]→ Error when c ∈ γ1 and d ∈ δ11 ∪ δ10.

The number of states evaluated in terms of k := |C|+ |D| may seem large,
but actually, for FA, the maximal size of a state in the run on an input term
matters more than the number of states (that may actually be infinite, see
footnote 2, Section 2). This size is here O(k) (with no huge hidden constant).

C.2 The automata for edg(X, Y), Link∃∃(X, Y), Link∀∃(X, Y) and

Link∀∀(X, Y).

All automata constructed below are intended to run on correct and ir-
redundant terms. Correctness can be checked by ACT and irredundancy by
another FA [4]. P≤1(C) is the set of subsets of C with at most one element.

C.2.1 The deterministic FA Aedg(X,Y) for checking edg(X, Y).

The property edg(X, Y) takes as arguments an incidence graph G(t) and
two sets of vertices X and Y of it, labelled in C. In a term t, X and Y are
encoded by a pair (i, j) of Booleans (0 or 1) attached to each occurrence w
of a constant in C. Actually, w can be considered as (or even is) the vertex
defined by this occurrence, i = 1 iff w ∈ X, and j = 1 iff w ∈ Y . (As an easy
example, the automaton checking the property X ⊆ Y need only verify that
no pair (1,0) occurs.)

The states of Aedg(X,Y) are Ok, Error and the tuples (γ1, γ2, δ0, δ1, δ2) ∈
P≤1(C)2 × P(D)3.

Consider a correct and irredundant term t ∈ T (FC,D) equiped with pairs
of Booleans. It defines an incidence graph G(t) = Inc(H(t)) and a pair X, Y
of sets of vertices of H(t). Let t′ be a subterm of t. It is irredundant and
defines a bipartite graph G(t′) that may not be an incidence graph. Let
X ′ = X ∩ VG(t′), Y

′ = Y ∩ VG(t′).

At the root of t′, Aedg(X,Y) reaches the following state:

the state Ok iff X ′ and Y ′ are singletons {x} and {y} and x→ y,
the state Error iff X ′ or Y ′ has cardinality 2 or more,
the state (γ1, γ2, δ0, δ1, δ2) if and only if:
γ1 = πG(t′)(X

′) and |X ′| ≤ 1, (πG(t′)(X
′) is the set labels in G(t′) of the

vertices in X ′),
γ2 = πG(t′)(Y

′) and |Y ′| ≤ 1,
δ0 is the set of labels in D of isolated vertices (they are in EVH(t)),
δ1 is the set of labels in D of vertices u in EVH(t) such that, in G(t′),

X ′ → u 9 Y ′ (which means there is an edge from a vertex of X ′ to u and
no edge from u to any vertex of Y ′),
δ2 is the set of labels in D of vertices u in EVH(t) such that, in G(t′),

X ′ 9 u→ Y ′

and the conditions for Ok do not hold.

The accepting state is Ok. Some transitions are given below (the others
easy or similar).

⊕[(γ1, γ2, δ0, δ1, δ2), Error]→ Error,
⊕[Ok,Ok]→ Error (because of cardinality conditions),
⊕[(γ1, γ2, δ0, δ1, δ2), (γ

′
1, γ
′
2, δ
′
0, δ
′
1, δ
′
2)]→ q where

q := Error if |γ1|+ |γ′1| ≥ 2 or |γ2|+ |γ′2| ≥ 2 and
q := (γ1 ∪ γ′1, γ2 ∪ γ′2, δ0 ∪ δ′0, δ1 ∪ δ′1, δ2 ∪ δ′2) otherwise.

−→
addc,d[(γ1, γ2, δ0, δ1, δ2)]→ q where the following holds:

if γ1 6= {c} or d /∈ δ0 ∪ δ2, then q := (γ1, γ2, δ0, δ1, δ2)
else [then γ1 = {c}, d ∈ δ0 ∪ δ2]

if d ∈ δ2 then q := Ok,

else [then γ1 = {c}, d ∈ δ0 − δ2] q := (γ1, γ2, δ0 − {d}, δ1 ∪ {d}, δ2).

Remarks : (1) Since this automaton is intended to run on a correct and irre-

dundant term t, it needs no transition of the form
−→
addc,d[(γ1, γ2, δ0, δ1, δ2)]→ q

where γ1 = {c}, d ∈ δ1 − (δ0 − δ2). Otherwise, the graph G(t) would have a
vertex labelled in D of indegree ≥2.

(2) The role of Error is to shorten the computation when X or Y is too
large.

C.2.2 The deterministic fly-automaton ALink∃∃(X,Y) that checks the prop-
erty Link∃∃(X, Y).

It is similar to Aedg(X,Y) but the differences are interesting: it is simpler
because it need not check that X and Y are singletons but it has more states.
Its states are Success and the tuples (γ1, γ2, δ0, δ1, δ2) ∈ P(C)2 ×P(D)3. It is
intended to run on correct and irredundant terms t ∈ T (FC,D) equiped with
pairs of Booleans that define incidence graphs Inc(H(t)) and pairs X, Y of
sets of vertices of H(t). Let t′ be a subterm of t, X ′ = X∩VG(t′), Y

′ = Y ∩VG(t′)

as in C.2.1. At the root of t′, ALink∃∃(X,Y) reaches the following state:

the state Success iff X ′ → Y ′,
the state (γ1, γ2, δ0, δ1, δ2) if and only if:

γ1 = πG(t′)(X
′),

γ2 = πG(t′)(Y
′),

δ0 is the set of labels in D of isolated vertices (they are in
EVH(t) ∩ VG(t′)),

δ1 is the set of labels in D of vertices u in
EVH(t) ∩ VG(t′) such that, in G(t′), X → u9 Y ,

δ2 is the set of labels in D of vertices u in
EVH(t) ∩ VG(t′) such that X 9 u→ Y,

and the conditions for Success do not hold.

The accepting state is Success. Some transitions are given below (the
others are similar or easy).

⊕[Success, q]→ Success for any state q,
⊕[(γ1, γ2, δ0, δ1, δ2), (γ

′
1, γ
′
2, δ
′
0, δ
′
1, δ
′
2)]→ q where

q := (γ1 ∪ γ′1, γ2 ∪ γ′2, δ0 ∪ δ′0, δ1 ∪ δ′1, δ2 ∪ δ′2) (no Error case),
−→
addc,d[Success]→ Success,
−→
addc,d[(γ1, γ2, δ0, δ1, δ2)]→ q where the following holds:

if c /∈ γ1 or d /∈ δ0 ∪ δ2, then q := (γ1, γ2, δ0, δ1, δ2);
otherwise [c ∈ γ1, d ∈ δ0 ∪ δ2]

if d ∈ δ2 then q := Success,

else [c ∈ γ1, d ∈ δ0 − δ2] q := (γ1, γ2, δ0 − {d}, δ1 ∪ {d}, δ2).

C.2.3 The deterministic fly-automaton ALink∀∀(X,Y) that checks the prop-
erty Link∀∀(X, Y).

We use the same hypotheses and notation as in the previous case.

The state at the root of t′ will contain the following relation:

θ := {(πG(t′)(x), πG(t′)(y)) | x→ X ′, y → Y ′, x9 y}.
A state will be accepting iff this relation is empty. However, for defin-

ing the transition rules (they implement inductive computations), additional
information is needed.

Let G be a directed bipartite graph. If x ∈ VG, we let OutG(x) be the set
of vertices u of outdegree 0 such that x→ u and InG(x) the set of vertices u
of indegree 0 such that u→ x.

A state is a tuple (γ, δ,∆,Λ,Θ) belonging to

P(C)×P(D)×P(C ×P(D))×P(P(D)× C)×P(C ×P(D)×P(D)× C).

The state at the root of t′ will be (γ, δ,∆,Λ,Θ) such that :

γ = π(G(t′)) ∩ C,
δ is the set of labels in D of isolated vertices (they are in EVH(t) ∩VG(t′)),
∆ = {(πG(t′)(x), πG(t′)(OutG(t′)(x))) | x ∈ X ′},
Λ = {(πG(t′)(InG(t′)(x)), πG(t′)(x)) | x ∈ Y ′},
Θ = {(πG(t′)(x), πG(t′)(OutG(t′)(x)), πG(t′)(InG(t′)(y)), πG(t′)(y)) |

x ∈ X ′, y ∈ Y ′, x9 y}.
The accepting states are those whose component Θ is empty.

Note that Θ ⊆ ∆×Λ and that θ can be computed from Θ. More notation
will be useful:

γ(∆) := {c ∈ C | (c, η) ∈ ∆ for some η},
γ(Λ) := {c ∈ C | (η, c) ∈ Λ for some η}.

Some representative transitions are as follows:

⊕[(γ1, δ1,∆1,Λ1,Θ1), (γ2, δ2,∆2,Λ2,Θ2)]→
(γ1 ∪ γ2, δ1 ∪ δ2,∆1 ∪∆2,Λ1 ∪ Λ2,Θ) where

Θ := Θ1 ∪Θ2 ∪ {(c, η, η′, c′) |
((c, η) ∈ ∆1 and (η′, c′) ∈ Λ2) or ((c, η) ∈ ∆2 and (η′, c′) ∈ Λ1))}.

c(1, 1)→ ({c}, ∅, {(c, ∅)}, {(∅, c)}, {(c, ∅, ∅, c)}),

c(1, 0)→ ({c}, ∅, {(c, ∅)}, ∅, ∅),
c(0, 0)→ ({c}, ∅, ∅, ∅, ∅),
d→ (∅, {d}, ∅, ∅, ∅).

−→
addc,d[(γ, δ,∆,Λ,Θ)]→ q where the following holds:

if c /∈ γ or d does not occur in (δ,∆,Λ), then q := (γ, δ,∆,Λ,Θ),
otherwise , q := (γ, δ,∆,Λ,Θ), where δ,∆,Λ,Θ are defined respectively

as follows from δ,∆,Λ,Θ :
δ := δ − {d}, (there is no change if d /∈ δ);
∆ : if d ∈ δ then, each pair (c, η) in ∆ is replaced by (c, η ∪ {d});

otherwise, ∆ := ∆;
Λ: each pair (η′, c′) in Λ is replaced by (η′ − {d}, c′);
Θ is defined as follows:

every tuple of the form (c, η, η′, c′) is deleted if d ∈ η′,
otherwise, if d ∈ δ, it is replaced by (c, η ∪ {d}, η′, c′).

Remarks : The tuples (a, η, η′, c′) in Θ such that a 6= c are not modified.

We cannot have c ∈ γ and d occurring in a pair of ∆ because the input
term t is assumed irredundant and correct.

C.2.4 The deterministic fly-automaton ALink∀∃(X,Y) that checks the prop-
erty Link∀∃(X, Y).

The construction is similar to the previous one. The set of states is :

P(C)2 × P(D)2 × P(C × P(D))2.

	Introduction
	Definitions and discussion of background results.
	Automata
	References
	Appendix

