
Model-Checking by Infinite Fly-Automata

Bruno Courcelle and Irène Durand

Université Bordeaux-1, LaBRI, CNRS
351, Cours de la Libération

33405, Talence, France
{courcell,idurand}@labri.fr

Abstract. We present logic based methods for constructing XP and
FPT graph algorithms, parameterized by tree-width or clique-width. We
will use fly-automata introduced in a previous article. They make it pos-
sible to check properties that are not monadic second-order expressible
because their states may include counters, so that their set of states may
be infinite. We equip these automata with output functions, so that they
can compute values associated with terms or graphs. We present tools
for constructing easily algorithms by combining predefined automata for
basic functions and properties.

1 Introduction

Finite automata on terms that denote graphs of bounded tree-width or clique-
width can be used to check monadic second-order properties of the denoted
graphs. However, these automata have in most cases so many states that their
transition tables cannot be built [13,15]. In the article [4] we have introduced
automata called fly-automata whose states are described (but not listed) and
whose transitions are computed on the fly (and not tabulated). Fly-automata can
have infinite sets of states. For example, a state can record, among other things,
the (unbounded) number of occurrences of a particular symbol. We exploit this
feature in the construction of fly-automata that check properties that are not
monadic second-order (MS) expressible. Furthermore, we equip automata with
output functions, which map accepting states to some effectively given domain
D (e.g., the set of integers, or of pairs of integers, or the set of words over a
fixed alphabet). Hence, a fly-automaton A defines a mapping from T (F) (the
set of terms over the signature F) to D, and we construct automata that yield
polynomial-time algorithms for these mappings. The height ht(t) of a term t
and the number |t| of its positions are obviously computable in this way. The
uniformity of a term, i.e., the property that all maximal branches of its syntactic
tree have the same length, can be checked by a polynomial-time fly-automaton
(but not by a finite automaton). (Symbolic automata [16] have ”small” sets of
states and ”large” sets of symbols. Symbols are described by properties rather
than listed. Fly-automata have, to the opposite, ”small” sets of symbols and
”large” sets of states).

Our main interest is actually in the case where F is the signature F∞ of
”clique-width graph operations”, and for fly-automata that define mappings from

T. Muntean, D. Poulakis, and R. Rolland (Eds.): CAI 2013, LNCS 8080, pp. 211–222, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

212 B. Courcelle and I. Durand

the graphs defined by terms in T (F∞) to D. We construct fly-automata that yield
FPT and XP algorithms [10,12] for clique-width as parameter. Since the clique-
width cwd(G) of a simple graph G is bounded in terms of its tree-width twd(G)
(we have cwd(G) ≤ 22twd(G)+2+1, [7], Proposition 2.114, and [3]), all our results
for graphs of bounded clique-width apply immediately to graphs of bounded tree-
width. The graphs of clique-width at most k are those denoted by the terms in
T (Fk) where Fk is a finite subset of F∞. As in [4], we construct elementary fly-
automata for basic functions and properties, e.g., the degree of a vertex or the
regularity of graph. Then, we consider more complex functions and properties
written with these functions and properties (and the basic MS properties of [4])
and functional and logical constructors. For example, ∃X,Y.(Partition(X,Y)
∧Reg[X]∧Reg[Y]) expresses that the graph is the union of two disjoint regular
graphs with possibly some edges between them. Here are some typical examples
of questions and functions that we can handle in this way:

(1) Is it possible to cover a graph with s cliques?
(2) Does there exist an equitable s-coloring? Equitable means that the sizes

of any two color classes differ by at most 1 (see [11]). We express this property
by: ∃X1, . . . , Xs.(Partition(X1, . . . , Xs) ∧ St[X1] ∧ ... ∧ St[Xs]

∧|X1| = . . . = |Xi−1| ≥ |Xi| = . . . = |Xs| ≥ |X1| − 1)
where St[X] means that G[X] is stable, i.e., has no edge.

(3) Assuming that the graph is s-colorable, what is the minimum size of X1

in an s-coloring (X1, . . . , Xs) ?
(4) Which sets X such that G[X] and G[VG − X] are connected, minimize

the number of edges between X and VG −X?

More generally, let P (X1, ..., Xs) be a property of vertex sets X1, ..., Xs. Ev-
erywhere in the sequel, we denote (X1, ..., Xs) by X and t |= P (X) means that
X satisfies P in the graph G(t) defined by t; this writing does not assume that
P is written in any particular logical language. We are interested, not only to
check the validity of ∃X.P (X) in some term t, but also to compute from t the
following objects:

#X.P (X), defined as the number of assignments X such that t |= P (X),

SpX.P (X), the spectrum of P (X), defined as the set of tuples of the
form (|X1|, . . . , |Xs|) such that t |= P (X),

MSpX.P (X), the multispectrum of P (X), defined as the multiset of tu-
ples (|X1|, . . . , |Xs|) such that t |= P (X),

SatX.P (X) as the set of assignments X such that t |= P (X).

Each prefix #X, SpX. etc. can be considered as a generalized quantifier that
binds the variables of X. The associated values (numbers or sets of tuples of
numbers) can be computed from SatX.P (X), a set of s-tuples of subsets of
Pos(t) (the set of positions of t, i.e., of nodes of the syntactic tree of t) that may
be of exponential cardinality 2s.|t|, hence, not computable by a polynomial-time
algorithm.

Model-Checking by Infinite Fly-Automata 213

We provide logic based methods for proving the existence of FPT and XP
algorithms for terms and graphs. We generalize constructions of [1,2,8]. These
constructions have been implemented and tested [4,5,6].

Lacking of space (see [5] for details and proofs), we do not review MS logic and
clique-width. We only recall that edges are introduced by means of operations
on vertex labeled graphs. A vertex labeled by a is an a-port. Notation is as in
[4,7]. If t ∈ T (F), i.e., is a term over a signature F , we let Sig(t) be the set of
symbols of F that occur in t.

Tuples of Sets of Positions in Terms
Let F be a signature and s be a positive integer. We let F (s) be the set F×{0, 1}s
made into the signature such that the arity ρ((f, w)) of (f, w) is ρ(f). We let
prs : F

(s) → F be the relabeling that deletes the second component of a symbol
(f, w). To every term t ∈ T (F (s)) corresponds the term prs(t) in T (F) and the
s-tuple ν(t) = (X1, ..., Xs) of subsets of Pos(t) = Pos(prs(t)) such that u ∈ Xi

if and only if w[i] = 1 where the symbol at position u in t is (f, w). Conversely,
if t ∈ T (F) and (X1, ..., Xs) is an s-tuple of sets of positions of t, then there
is a unique term t′ ∈ T (F (s)) such that prs(t

′) = t and ν(t′) = (X1, ..., Xs).We
will denote this term by t ∗ (X1, ..., Xs) or by t ∗X .

A property P (X) of sets of positions of terms over a signature F is charac-
terized by the language TP (X) over F (s) defined as {t ∗X | t |= P (X)}. A key

fact about prs is that T∃X.P (X) = prs(TP (X)). A function α whose arguments

are t and X such that t ∈ T (F) and X is an s-tuple of positions of t, and
whose values are in a set D corresponds to a function α : T (F (s)) → D such that
α(t ∗X) = α(t,X).

Tuples of sets of vertices
The operations defining clique-width form a countably infinite signature F∞.
Those using only labels in [k] form Fk. The nullary symbols a (for vertex labels
a) denote the vertices of the graph G(t) defined by t. The same technique as
above applies to tuples of sets of vertices of graphs defined by terms in T (F∞).

In particular, we define F
(s)
∞ from F∞ by replacing all nullary symbols a by the

nullary symbols (a, w) for all w ∈ {0, 1}s. (The other symbols are not changed).

2 Polynomial-Time Fly-Automata

All automata run bottom-up (or frontier-to-root) on terms without ε-transitions.

Definitions 1: Fly-automata recognizing languages.
(a) Let F be a finite or infinite (effectively given) signature. A fly-automaton

over F (in short, an FA over F) is a 4-tuple A = 〈F,QA, δA,AccA〉 such that
QA is the finite or infinite, effectively given set of states, AccA is a computable
mapping QA → {True, False} so that Acc−1

A (True) is the set of accepting states,
and δA is a computable function that defines the transition rules : for each tuple
(f, q1, . . . , qm) with q1, . . . , qm ∈ QA, f ∈ F , ρ(f) = m ≥ 0, δA(f, q1, . . . , qm)

214 B. Courcelle and I. Durand

is a finite set of states. We will write f [q1, . . . , qm] →A q (and f →A q if f is
nullary) to mean that q ∈ δA(f, q1, . . . , qm). Each set δA(f, q1, . . . , qm) is linearly
ordered for some fixed (say lexicographic) linear order on Z∗ where Z is the
alphabet used to encode states. We say that A is finite if F and QA are finite.
If furthermore, QA, its accepting states and its transitions are listed in tables,
it is called a table-automaton.

(b) Runs and recognized languages are defined as usual. A deterministic FA A
(”deterministic” will mean ”deterministic and complete”) has a unique run on
each term t, denoted by runA,t; we let also qA(t) := runA,t(roott). The mapping
qA is computable and the membership in L(A) of a term t is decidable.

Every fly-automaton A over F can be determinized as follows. For every term
t ∈ T (F), we denote by run∗

A,t the mapping: Pos(t) → Pf (QA) that associates
with every position u, the finite set of states of the form r(roott/u) for some run
r on the subterm t/u of t issued from u. The run of det(A) on t is called the
determinized run of A and we define ndegA(t), the nondeterminism degree of A
on t, as the maximal cardinality of run∗

A,t(u) for u in Pos(t). The mapping run∗
A,t

is computable and the membership in L(A) of a term in T (F) is decidable:
clearly, t ∈ L(A) if and only if the set run∗

A,t(roott) contains an accepting state.

Definitions 2: Fly-automata computing functions.
A fly-automaton over F with output function is a 4-tuple A = 〈F,QA, δA, OutA〉
as above except that AccA is replaced by a total and computable output function
OutA: QA → D where D is an effectively given domain. If A is deterministic,
the function computed by A is Comp(A) : T (F) → D such that Comp(A)(t) :=
OutA(qA(t)). If A is not deterministic, we let B be det(A) equipped with output
function OutB:Pf (QA) → Pf (D) such that OutB(R) := {OutA(q) | q ∈ R}.
Then, we define Comp(det(A)) as Comp(B). (In some cases, we may take a
computable function OutB : Pf (QA) → D′ where D′ is another effectively
given domain).

Definitions 3: Polynomial-time fly-automata and related notions
(a) A fly-automaton A over a signature F , possibly with output, is a polyno-

mial-time fly-automaton (a P-FA) if it is deterministic and there is a polynomial
p such that its computation time on any term t ∈ T (F) is at most p(‖t‖), where
‖t‖ is the size of t, written as a word; the operation symbols are encoded by
words of non constant length. This time includes the time taken by the output
function. We call p a bounding polynomial for A.

(b) A fly-automaton A as above is an XP fly-automaton (an XP-FA in short)
if, for each finite subsignature F ′ of F, A � F ′ (the subautomaton of A induced
by F ′) is a P-FA. It is an FPT fly-automaton (an FPT-FA in short) if, for each
finite subsignature F ′ of F , A � F ′ is a P-FA with bounding polynomial whose
degree does not depend on F ′. We have the inclusions of classes of automata:

P-FA ⊆ FPT-FA ⊆ XP-FA with equalities for finite signatures.

Lemma 4: Let A be a nondeterministic fly-automaton over a signature F .

Model-Checking by Infinite Fly-Automata 215

(1) The fly-automaton det(A) is a P-FA if and only if there are polynomials
p1, ..., p4 such that, in the determinized computation of A on any term t ∈ T (F),
p1(‖t‖) bounds the time for firing the next transition (and recognizing that there
is no next transition), p2(‖t‖) bounds the size of a state, p3(‖t‖) bounds the
time for checking if a state is accepting or for computing the output and p4(‖t‖)
bounds the nondeterminism degree of A on t.

(2) The fly-automaton det(A) is an XP-FA if and only if, for each finite
subsignature F ′ of F , there are polynomials p1, ..., p4 that bound as above the
computations on terms in T (F ′). It is an FPT-FA if and only if, for each finite
subsignature F ′ of F , there are polynomials p1, ..., p4 that bound as above the
computations on terms in T (F ′) and whose degrees are independent of F ′.

Definition 5: Functions computable by fly-automata.

A function α : T (F) → D is P-FA computable (or is a P-FA function for short)
if it is computable by a P-FA over F that we have constructed or that we know
how to construct by an algorithm. For a property P , we say that it is P-FA
decidable. In this definition, F can be H(s) for some signature H , hence, a P-FA
computable function or property can take as arguments, not only a term, but
also a tuple of sets of positions or of vertices.

It is well-known that every MS property P of a term over a finite signature
is P-FA decidable. The cardinality of a set and the height of a term are P-FA
functions. We will construct an FPT-FA to check if a graph is regular (this not
an MS property).

The mapping SatX.P (X) is not P-FA computable, and not even XP-FA
computable in general for the obvious reason that its output is not always of
polynomial size (take P (X) always true).

Proposition 6: Let F be a signature. Every P-computable (resp. FPT- com-
putable or XP-computable) function α on T (F) is computable by a P-FA (resp.
by an FPT-FA or an XP-FA).

Hence, our three notions of FA may look trivial. Actually, we will be interested by
giving effective constructions of P-FA, FPT-FA and XP-FA from logical expres-
sions of functions and properties. These constructions will apply to properties
that are not MS expressible but are decidable in polynomial time on graphs of
bounded tree-width or clique-width.

3 Fly-Automata for Logically Defined Functions and
Properties

Proposition 7: (1) If α1, ..., αr are P-FA functions of same type and g is a
P-computable function (or relation) of appropriate type, the function (or the
property) g ◦ (α1, ..., αr) is P-FA computable (or decidable).

(2) If P and Q are P-FA properties of same type, then, so are ¬P , P ∨ Q
and P ∧Q.

216 B. Courcelle and I. Durand

(3) The same properties hold with FPT-FA and XP-FA.

The proof is based on easy constructions like taking a product of automata.

First-order constructions
We now consider the more delicate case of existential quantifications. We define
one more construction: if α(X) is a function (relative to a term t), we define
SetValX.α(X) as the set of values α(X) �= ⊥ (⊥ stands for undefined) for
all relevant tuples X. We let ∃x1, ..., xs.P (x1, ..., xs) (also written ∃x.P (x))
abbreviate ∃X1, ..., Xs.(P (X1, ..., Xs) ∧ Sgl(X1) ∧ ... ∧ Sgl(Xs)) (where Sgl(X)
means that X is singleton) and similarly, SetVal(x1, ..., xs).α(x1, ..., xs) (also
written SetValx.α(x)) is the set of well-defined values of α(X1, ..., Xs) such
that: Sgl(X1) ∧ ... ∧ Sgl(Xs).

Proposition 8: (1) If P (X) is a P-FA property, then the property ∃x.P (x) is P-
FA decidable and the functions Satx.P (x) and #x.P (x) are P-FA computable.

(2) If α(X) is a P-FA function, then the function SetValx.α(x) is P-FA
computable.

(3) The same implications hold for the classes FPT-FA and XP-FA.

Proof Sketch: If A, deterministic, checks P (x), then the nondeterministic
automaton prs(A) defines ∃x.P (x) with nondeterminism degree bounded by
the polynomial p(n) = 1 + (n + 1)s that does not depend on Sig(t). Hence
det(prs(A)) is a P-FA, an FPT-FA or an XP-FA by Lemma 4 if A is so. �

These results remain valid if each condition Sgl(Xi) is replaced by the condition
Card(Xi) = ci or Card(Xi) ≤ ci for fixed integers ci. For example, we can
compute

#(X1, ..., Xs).P (X1, ..., Xs) ∧ Card(X1) ≤ c1 ∧ ... ∧ Card(Xs) ≤ cs.

The exponents in the bounding polynomial become larger, but they still depend
only on the numbers c1, ..., cs. This does not work for Card(Xi) ≥ ci because
the bound would not be polynomial.

Monadic second-order constructions
We recall that for finite signatures, the notions of P-FA, FPT-FA and XP-FA
coincide. We let P (X) be a property of terms in T (F) with s set arguments and
α(X) be similarly a function. The relabeling pr: F (s) → F has a computable
inverse. We consider infinite signatures F . Our main application will be to the
infinite signature F∞ that generates all finite graphs. We will use Sig(t), the set
of symbols that occur in a term t, as a parameter for FPT and XP algorithms.
If t ∈ T (F∞), this is equivalent to taking as parameter the minimal k such that
t ∈ T (Fk), hence, the clique-width of the considered graph because clique-width
can be approximated in cubic time.

Definitions 9: Multisets of tuples of numbers; a semi-ring.

Model-Checking by Infinite Fly-Automata 217

(a) If μ and μ′ are two mappings Ns → N, we define μ+μ′ and μ∗μ′ : Ns → N

by:

(μ+ μ′)(n1, ..., ns) := μ(n1, ..., ns) + μ′(n1, ..., ns), and
(μ ∗ μ′)(n1, ..., ns) :=

∑

0≤pi≤ni

μ(p1, ..., ps).μ
′(n1 − p1, ..., ns − ps).

[Ns → N]f is the set of finite mappings: Ns → N, i.e., with value 0 almost
everywhere. The functions μ + μ′ and μ ∗ μ′ are finite if μ and μ′ are. The
operations + and ∗ are associative and commutative. The constant mapping:
N

s → N with value 0 is denoted by 0. If w ∈ {0, 1}s, we let Mw: N
s → N be such

that Mw(n) :=if n = w then 1 else 0. We have μ+ 0 = μ, μ ∗ 0 = 0 and μ ∗
M0...0 = μ. Since ∗ is distributive over +, we get that 〈[Ns → N]f ,+, ∗,0,M0...0 〉
is a semi-ring; μ ∈ [Ns → N]f is (represents) a finite multiset of s-tuples of
integers.

(b) If E is a set and Z ⊆ Pf (E)s, we define MSp(Z) as the mapping: Ns → N

such that MSp(Z)(n1, ..., ns) is the number of tuples (X1, . . . , Xs) ∈ Z such that
ni = |Xi| for each i, hence is the multiset {(|X1|, ..., |Xs|) | (X1, . . . , Xs) ∈ Z}.
If Z and Z ′ ⊆ Pf (E)s are disjoint, then MSp(Z ∪ Z ′) = MSp(Z) +MSp(Z ′). If
Z ⊆ Pf (E)s and Z ′ ⊆ Pf(E

′)s with E ∩E′ = ∅, and if W = {(X1∪Y1, . . . , Xs∪
Ys) | (X1, . . . , Xs) ∈ Z, (Y1, . . . , Ys) ∈ Z ′}, then MSp(W) = MSp(Z)∗MSp(Z ′).

Definition 10: A fly-automatonA over F has an FPT-bounded nondeterminism
degree (cf. p4 in Lemma 4) if, for every t ∈ T (F), ndegA(t) ≤ f(Sig(t)) · ‖t‖a
for some fixed function f and constant a. It has an XP-bounded nondeterminism
degree if ndegA(t) ≤ f(Sig(t)) · ‖t‖|g(Sig(t)) for some fixed functions f and g,
equivalently, if A � H has a polynomially bounded nondeterminism degree for
each finite subsignature H of F .

Proposition 11: (1) If P (X) is decided by a P-FA (resp. FPT-FA, resp. XP-
FA) A over F (s) such that the FA pr(A) has a polynomially bounded (resp.
FPT-bounded, resp. XP-bounded) nondeterminism degree, then the property
∃X.P (X) is P-FA (resp. FPT-FA, resp. XP-FA) decidable, and the function
MSpX.P (X) is P-FA (resp. FPT-FA, resp. XP-FA) computable. These results
also hold for SpX.P (X), #X.P (X), MinCardX.P (X) and MaxCardX.P (X).

(2) If α(X) is computed by a P-FA (resp. FPT-FA, resp. XP-FA) A such that
pr(A) has a polynomially bounded (resp. FPT-bounded, resp. XP-bounded)
nondeterminism degree, then the function SetValX.α(X) is P-FA (resp.
FPT-FA, resp. XP-FA) computable.

Proof Sketch: We start from a deterministic automaton A over F (s) that
defines P (X). Let t ∈ T (F). For each state q and position u of t, we let Z(q, u)
be the set of s-tuples X ∈ (Pf (Pos(t)/u))s (where Pos(t)/u is the set of po-
sitions of t below or equal to u; to be distinguished from Pos(t/u)) such that
runA,t∗X(u) = q. At the root, these sets define SatX.P (X). We extract informa-
tion from Z(q, u) and make it into an attribute of q. Depending on the case, this
attribute may be a Boolean for emptiness of Z(q, u) (for ∃X), its cardinality
(for #X), the multiset MSp(Z(q, u)) (for MSpX). We focus on the last case.

218 B. Courcelle and I. Durand

The operation + sums the multisets coming from the different runs of pr(A)
that reach q at u. The operation ∗ combines the attributes at the sons of u in
each run that reaches q at u. We obtain a nondeterministic automaton B whose
states are pairs (q, α) where α is an attribute. Then det(B) is a determinis-
tic FA that computes MSpX.P (X) which is equal to the sum of the multisets
MSp(Z(q, roott)) for q accepting.

We consider the case where P (X) is MS expressible and F is finite. Then
A is finite. A state of det(B) can be implemented as the finite set of tuples
(q, n1, ..., ns,m) such that q ∈ QA, m = α(n1, ..., ns) �= 0 where α is the attribute
of q (at some position). Then det(B) is a P-FA because its states (on a term with
n nodes) can be encoded by words of length ≤ |QA|.(n+1)s. log(2s.n) = O(ns+1)
(the numbers α(n1, ..., ns) being written in binary). Computing the transitions
and the output takes polynomial time. The proof extends to infinite F as stated.
The cases of SpX.P (X) etc. are even simpler because we have less information
from Z(q, u) to encode. The computation of SetValX.α(X), the set of all values
of α, is based on det(A) .

If SatX.P (X)) is not empty, a P-FA (resp. an FPT-FA, resp. an XP-FA) can
compute one of its tuples (but not all of them in general). �

4 Properties of Terms and Functions on Terms

The height of a term t can be computed by a P-FA Aht whose states are positive
integers (the state at u is ht(t/u) where ht(a) = 1 for a nullary symbol a). A
term t is uniform (this property is denoted by Unif (t)) if and only if any two
leaves of its syntactic tree are at same distance to the root. This is equivalent to
the condition that for every position u with sons u′ and u”, the subterms t/u′ and
t/u” have same height. The automaton Aht can be modified into a P-FA AUnif

that decides uniformity. Its set of states is N+ ∪ {Error} and qAUnif
(t) = ht(t)

if t is uniform, = Error if t is not uniform.

Definition 12: An extension of MS logic on terms.
We consider properties and functions constructed in the following way:
(a) We use free set variablesX1, ...,Xs (that will not be quantified), first-order

(FO) variables, y1, ..., ym and set terms over X1, ..., Xs, {y1}, ..., {ym}.
(b) As basic properties, we use Unif and all properties P expressible by

MS formulas (that can use other bound variables than X1, ..., Xs, y1, ..., ym). As
basic functions, we use ht, Card (that yields the cardinality of a set of positions).

(c) We construct properties from already constructed properties P,Q, ... and
from functions α,α1, ..., αr, ... by the following compositions:

P ∧Q,P ∨Q,¬P,
R ◦ (α1, ..., αr) where R is an r-ary P-decidable relation on D,
P (S1, ..., Sp) where S1, ..., Sp are set terms over X1, ..., Xs, {y1}, ..., {ym}
(set terms are built with union, intersection and complementation; see
[4]).
∃y.P (y) where y is a tuple of variables among y1, ..., ym.

Model-Checking by Infinite Fly-Automata 219

(d) Similarly, we construct functions in the following ways:

g ◦ (α1, ..., αr) where g is P-computable: D → Dr,
α(S1, ..., Sp) where S1, ..., Sp are set terms over X1, ..., Xs, {y1}, ..., {ym},
SetValy.α(y) (the set of values of α), #y.P (y) and Saty.P (y) where y
is a tuple of variables among y1, ..., ym.

We assume that we have for R in (c) and g in (d) a certified polynomial-time
algorithm. This is necessary to build automata. We denote by PF(F) the set of
all these formulas.

Theorem 13: Every property (or function) defined by a formula of PF(F)
is decidable (or computable) by a P-FA over F . Such an automaton can be
constructed from automata for the basic properties and functions.

Our language PF(F) does not exhaust the possibilities of extension of MS logic
that yield P-FA computable properties and functions. We can for example in-
troduce a relativized height ht(t,X) for t ∈ T (F) and X ⊆ Pos(t), defined as
the maximal number of elements of X on a branch of the syntactic tree of t.
However, we cannot use set quantifications.

5 Properties and Functions on Graphs

1. Degrees of vertices
For a directed graphG, we generalize the notion of outdegree by defining e(X1, X2)
as the number of edges from X1 to X2 if X1 and X2 are disjoint sets of vertices
and as ⊥ otherwise. Hence e({x}, VG−{x}) is the outdegree of x in G (all graphs
are loop-free). Note that e(X1, X2) is not of the form #Y.P (Y,X1, X2) for an
MS property P as we do not allow edge set quantification.

We can define a deterministic FA Ak over F
(2)
k , intended to run on irredundant

terms (such that no edge is defined twice, see [4]) written with labels in C := [k].
Its set of states is (N×[C → N]× [C → N])∪ {Error}. If X ⊆ VG, we denote by
λX the mapping that gives, for each a, the number of a-ports in X ; if X = VG,
we denote it by λG. We want that qAk

(t∗ (X1, X2)) = Error if X1∩X2 �= ∅ and
qAk

(t ∗ (X1, X2)) = (e(X1, X2), λX1 , λX2) otherwise. The transitions are easy to

write. For example
−−→
adda,b[(m,λ1, λ2)] → (m + λ1(a).λ2(b), λ1, λ2), is correct

because t is assumed irredundant.
On a term that denotes a graph with n vertices, each state belongs to the set

([0, n2]×[C → [0, n]]×[C → [0, n]])∪{Error} of cardinality less than (n+1)2+2k,
hence, has size O(k. log(n)) (the integers m and the values of λ1 and λ2 are
written in binary notation). Transitions and outputs can be computed in time
O(k. log(n)). Hence, Ak is a P-FA. We represent a function λ : C → N by the
set {(a, λ(a)) | λ(a) �= 0}. This implies that Ak is a subautomaton of Ak′ if

k < k′. Hence, the union of the automata Ak is a P-FA A∞ over F
(2)
∞ . For an

undirected graph, we define e(X1, X2) as the number of edges between X1 and
X2 if X1 and X2 are disjoint and ⊥ otherwise. The construction is similar.

220 B. Courcelle and I. Durand

2. Regularity of a graph
The regularity of an undirected graph is not MS expressible because the complete
bipartite graph Kn,m is regular if and only if n = m and we apply the arguments
of Proposition 5.13 of [7]. That a graph is not regular can be checked by a FA
constructed from the formula ∃X,Y.(P (X,Y)∧Sgl(X)∧Sgl(Y)) where P (X,Y)
is the property e(X,Xc) �= e(Y, Y c). By previous constructions, this property is
P-FA decidable, and we can apply Proposition 14(1) to get a P-FA for checking
regularity. However, we can construct directly a simpler P-FA without using an
intermediate nondeterministic automaton. Its state at position u is Error if two
a-ports of G(t/u) have different degrees, and otherwise indicates, for each a, the
number of a-ports and their common degree. In its run on a term t such that
G(t) has n vertices, less than (n + 1)2k states occur and these states have size
O(k. log(n)). We get a P-FAAReg[X]. The nondeterminism degree of pr(AReg[X])

is bounded by O((n+ 1)2k) where the exponent depends on the bound k to the
clique-width.

The property ∃X.(Card≤p(X)∧Reg[Xc]) expressing that the considered graph
becomes regular if we remove at most p vertices, is P-FA decidable by Proposi-
tion 11(1) and the remark following it. The function MaxCardX.Reg[X] that
defines the maximal cardinality of a regular induced subgraph of the considered
graph is XP-FA computable. So is the property that the graph can be partitioned
into two regular subgraphs, expressed by ∃X.(Reg[X]∧Reg[Xc]) (the proof uses
the same propositions).

3. Graph partition problems with numerical constraints
Many partition problems (cf. also [14]) consist in finding (X1, · · · , Xs), an s-tuple
satisfying:

Partition(X1, ..., Xs) ∧ P1(X1) ∧ ... ∧ Ps(Xs) ∧R(|X1|, ..., |Xs|),
where, P1, ..., Ps are properties of sets and R is a P-computable arithmetic con-
dition. We may also wish to count the number of such partitions, or to find
one that maximizes or minimizes the number Ext(X) := Σ1≤i<j≤se(Xi, Xj) of
external edges, i.e., of edges not in the induced subgraphs G[X1], ..., G[Xs]. This
number is P-FA computable.

We can handle partitions in s planar induced subgraphs with an FPT-FA,
however, its implementation does not seem doable (planarity is MS expressible,
but the formula is complicated).

If Pi(Xi) is stability for each i, (i.e., the induced subgraphs have no edge),
we get a constrained coloring problem of the form:

∃X1, ..., Xs.(Partition(X1, ..., Xs) ∧ St[X1] ∧ ... ∧ St[Xs] ∧R(|X1|, ..., |Xs|)).

An example is the notion of equitable s-coloring : condition R(|X1|, ..., |Xs|) is
∃i ∈ [s].(|X1| = ... = |Xi−1| ≥ |Xi| = ... = |Xs| ≥ |X1| − 1), which means
that any two color classes have same cardinality up to 1. The existence of an
equitable 3-coloring is not trivial: it holds for the cycles but not for the graphs
Kn,n for large n. The existence of an equitable s-coloring is W[1]-hard for the

Model-Checking by Infinite Fly-Automata 221

parameter defined as s plus the tree-width [11], hence presumably not FPT
for this parameter. Our constructions yield, for each integer s, an FPT-FA for
checking the existence of an equitable s-coloring for clique-width as parameter.

6 Implementations

Let AP (X) be an automaton recognizing graphs with assignments of sets to the

variables of X. From AP (X), we can obtain the automaton AΓ.P (X) for Γ ∈
{#X, SpX,MSpX, MinCardX,MaxCardX} for graphs with no assignments.
This is done in two steps. The first step is to associate to the automaton an
attribute mechanism such that the automaton, instead of computing a state q,
computes a state [q, a] where a is the attribute to be computed according to Γ , for
instance the number of runs yielding q for #X.P (X). The attribute mechanism
is composed of two functions: the first function applies to symbols and yields
a function for computing the attribute obtained at t = f(t1, . . . , tp) from the
ones obtained for t1, . . . , tp in the deterministic case; sometimes this function
is the same for all symbols as for the counting case. The second function is
for combining several attributes of identical states accessed with different runs.
For #X.P (X), the first function is the addition function for all symbols and
the second is the multiplication function. (The case of ∃X.P (X) is handled by
determinizing pr(AP (X)).)

This can be applied for counting the s-colorings of a graph or for constructing
”special” colorings. From an appropriate A, we can obtain an automaton that
computes the number of s-colorings as the number of runs of A on the repre-
senting term. This is done by using the attribute mechanism for counting runs.
For classic graphs such as Petersen’s, with known chromatic polynomials, we can
verify the computation. We can also count acyclic-colorings [4]. The number of 4-
acyclic colorings of Petersen’s graph is 10800. The number of 3-acyclic-colorings
of McGee’s graph is 57024. We also provide a mechanism for enumerating color-
ings (more generally, satisfying assignments) [9]. It is also useful for determining
”quickly” the existence a coloring (but not for counting them).

7 Conclusion and References

In this communication, we have given logic based methods for proving the exis-
tence of FPT and XP algorithms that check properties or compute functions on
terms and on graphs defined by terms. These constructions are currently under
implementation. They are quite general and flexible and so, they do not give
necessarily the best possible time complexities. They generalize constructions
of [1,2,8]. Detailed definitions and proofs are in [5]. Implementation issues are
described in [6,9].

222 B. Courcelle and I. Durand

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12, 308–340 (1991)

2. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-
decomposable graphs. Theor. Comput. Sci. 109, 49–82 (1993)

3. Courcelle, B.: On the model-checking of monadic second-order formulas with edge
set quantifications. Discrete Applied Mathematics 160, 866–887 (2012)

4. Courcelle, B., Durand, I.: Automata for the verification of monadic second-order
graph properties. J. Applied Logic 10, 368–409 (2012)

5. Courcelle, B., Durand, I.: Computations by fly-automata beyond monadic second-
order logic (preprint, June 2013)

6. Courcelle, B., Durand, I.: Infinite transducers on terms denoting graphs In:
Proceedings of the 6th European Lisp Symposium, Madrid (June 2013)

7. Courcelle, B., Engelfriet, J.: Graph structure and monadic second-order logic, a
language theoretic approach. Encyclopedia of mathematics and its application,
vol. 138. Cambridge University Press (June 2012)

8. Courcelle, B., Makowsky, J., Rotics, U.: Linear-time solvable optimization problems
on graphs of bounded clique-width. Theory Comput. Syst. 33, 125–150 (2000)

9. Durand, I.: Object enumeration. In: Proceedings of the 5th European LISP
Conference, Zadar, Croatia, pp. 43–57 (May 2012)

10. Downey, R., Fellows, M.: Parameterized complexity. Springer (1999)
11. Fellows, M., et al.: On the complexity of some colorful problems parameterized by

treewidth. Inf. Comput. 209, 143–153 (2011)
12. Flum, J., Grohe, M.: Parametrized complexity theory. Springer (2006)
13. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic

revisited. Ann. Pure Appl. Logic 130, 3–31 (2004)
14. Rao, M.: MSOL partitioning problems on graphs of bounded treewidth and clique-

width. Theor. Comput. Sci. 377, 260–267 (2007)
15. Reinhardt, K.: 13 the complexity of translating logic to finite automata. In:

Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and Infinite Games.
LNCS, vol. 2500, pp. 231–238. Springer, Heidelberg (2002)

16. Veanes, M., Bjørner, N.: Symbolic automata: The toolkit. In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 472–477. Springer,
Heidelberg (2012)

	Model-Checking by Infinite Fly-Automata
	Introduction
	Polynomial-Time Fly-Automata
	Fly-Automata for Logically Defined Functions and Properties
	Properties of Terms and Functions on Terms
	Properties and Functions on Graphs
	Implementations
	Conclusion and References

