
325

The Modular Decomposition
of Countable Graphs: Constructions

in Monadic Second-Order Logic

Bruno Courcelle1 and Christian Delhommé2

1 Université Bordeaux 1, LaBRI (CNRS)
courcell@labri.fr

2 Université de La Réunion, ERMIT
delhomme@univ-reunion.fr

Abstract. We show that the modular decomposition of a countable
graph can be defined from this graph, given with an enumeration of its set
of vertices, by formulas of Monadic Second-Order logic. A second main
result is the definition of a representation of modular decompositions by
a low degree relational structures, also constructible by Monadic Second-
Order formulas.

1 Introduction

The present article investigates the modular decomposition of countable graphs
and more precisely, its construction by Monadic Second-Order (MS in short) for-
mulas. The notion of modular decomposition of a finite graph has been studied
extensively in many articles, and under various names. Möhring and Raderma-
cher give in [17] a survey of this frequently rediscovered notion. It is important,
not only for algorithmic purposes, but also for establishing structural proper-
ties, in particular of partial orders and their comparability graphs (see Kelly [15]
who discusses finite and infinite comparability graphs and their modules); for
instance, one can determine the transitive orientations of a comparability graph
from its modular decomposition.

The modular decomposition of a finite graph is the finite tree of its strong
modules, with inclusion as ancestor relation, together with some structure at-
tached to the nodes of the tree. Each node is a graph operation, either the disjoint
union, the complete product, the sequential product or the substitution to the
vertices of a prime graph, i.e., a graph that is not expressible in terms of these
operations. The strong modules of an infinite graph can be defined in the very
same way as for finite graphs. They are either pairwise disjoint or comparable
for inclusion, but they do not form a tree, defined as a connected and directed
graph without circuits. They form a generalized tree defined as a partial order
such that the set of elements larger than any element is linearly ordered (and
called below simply a tree). Such trees may have no root. The linearly ordered
set Q of rational numbers is a tree in this sense. For defining the modular de-
composition of a countable graph, we do not take all strong modules, but only
some of them called robust. Doing so we obtain a countable tree associated with
a countable graph. The basic definitions are reviewed in Section 2.

L. Ong (Ed.): CSL 2005, LNCS 3634, pp. 325–338, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: Individually Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [439.37 666.142] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Cancel JobEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /PageByPage /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

326 Bruno Courcelle and Christian Delhommé

Our goals here are to represent modular decompositions of countable graphs
by relational structures, and to use MS logic to construct from a graph its modu-
lar decomposition. Another concern is to describe dense graphs (i.e., graphs hav-
ing “lots of edges”) by relational structures (actually vertex- and edge-labelled
graphs) which are as sparse as possible. The linearly ordered set Q has an empty
Hasse diagram. One may think that one must represent it by a complete infi-
nite graph. However, it can be defined as a certain ordering of the nodes of the
complete infinite binary tree (here in the usual sense). A similar binary tree can
be constructed from any linearly ordered set A by first-order formulas using an
auxiliary enumeration of A (i.e., an ordering of A isomorphic to the ordinal ω).
By using these facts, we can represent the modular decomposition of a count-
able graph G by a countable graph of maximum degree m + 3 where m is the
least upper bound of the degrees of the prime induced subgraphs of G. It may
happen that m is finite, even if G has vertices of infinite degree. This is the case
for countable cographs, defined as the graphs without induced P4 (i.e., without
induced path of length 3).

Because of space limitations, proofs are sketched or omitted. Complete proofs
can be found in [11].

2 Robust Modules and Modular Decomposition

Unless otherwise specified, trees, forests, graphs and relational structures are
countably infinite. A linear order isomorphic to ω is called an ω-order. An ω-
ordering of a set is equivalent to an enumeration x0, x1, ..., xn, ... of this set.

Definitions 1. (Trees, ∨-trees and leafy trees.) A forest is a partial order (T,≤)
such that for every element x, called a node, the set T x = {y ∈ T | x ≤ y} is
linearly ordered. A tree is a forest that is directed, i.e., such that every two nodes
have an upper bound. A forest is the disjoint union of the trees which are the
connected components of its comparability graph.

A tree is a ∨-tree (read a “sup-tree”) if any two nodes x and y have a least
upper bound denoted by x ∨ y. A sub-∨-tree must preserve the function ∨.

A leaf is a minimal node, a root is a maximal one. An internal node is one
that is not a leaf. A forest may have one or several roots, or no root at all. It
may have no leaf. A tree has at most one root. We say that a tree is leafy if it is
a ∨-tree and every internal node is the least upper bound of two leaves. A finite
tree is a finite rooted tree in the usual sense, and its root is the unique maximal
element.

If x ≤ y, we say that the node y is an ancestor of x. We say that y is the
father of x if it the (unique) minimal node among those > x. We say in this case
that x is a son of y.

For a partial order (P,≤) we use the notations P x = {y ∈ P | x ≤ y},
P>x = {y ∈ P | y > x}, Px = {y ∈ P | y ≤ x} and P<x = {y ∈ P | y < x}. We
let HD(P) denote its Hasse diagram, i.e. the directed graph with set of vertices
P and edges x → y whenever x < y and there is no z with x < z < y. We say
that P is diagram-connected if P is the transitive closure of HD(P) and HD(P)
is connected.

The Modular Decomposition of Countable Graphs 327

Thus a tree is diagram-connected iff every node which is not the root has a
father, and the graph of the father relation is connected. Any two nodes are thus
at finite distance in the graph HD(P). A diagram-connected tree may have no
root.

Definitions 2. (Directions in ∨-trees.) Let T be a ∨-tree. For every x, T<x

ordered by the induced ordering is a forest, hence a union of trees. Each of these
trees D is called a direction relative to x. If y ∈ D, we say that D is the direction
of y relative to x. We denote it by dirx(y). We denote by Dir(x, T) the set of
directions relative to x. The degree of a node x is the cardinality of Dir(x, T).
A tree is binary if every node has degree at most 2. If a node is y ∨ z where y
and z are incomparable, it has degree at least 2. If T is finite, this definition of
the degree of a node yields the number of its sons.

A ∨-tree (T,≤) is ordered if it is equipped with a linear order �x on each set
Dir(x, T).

Definitions 3. (Graph substitutions.) Graphs are simple, directed, loop-free.
Undirected graphs are those where each edge has an opposite edge. We denote
by x → y the existence of an edge from x to y. Although a forest is a graph
or can be considered as a graph, we will use the special term “nodes” for the
vertices of a tree or a forest. We denote by VGthe set of vertices of a graph G.

If G is a graph and X ⊆ VG, we denote by G[X] the induced subgraph of G
consisting of X and all the edges, the two ends of which are in X . If E is a set
of edges of G, we denote by G[E] the subgraph of G consisting the edges of E
and all their end vertices.

If G and H are graphs with disjoint sets of vertices, and u is a vertex of G,
we denote by G[H/u] the graph resulting of the substitution of H for u in G. Its
set of vertices is VG ∪VH −{u}, its edges are those of H , those of G that are not
incident with u, the edges x → y whenever x ∈ VG − {u}, x → u in G, y ∈ VH ,
and the edges y → x whenever x ∈ VG − {u}, u → x in G, y ∈ VH .

If G and H are not disjoint, we replace H by an isomorphic copy disjoint
with G. If u1, ..., un are vertices of G and H1, ..., Hn are graphs, we define
G[H1/u1, ..., Hn/un] as G[H1/u1]...[Hn/un]. The order in which substitutions
are done is irrelevant, hence we can consider they are done simultaneously.

If Hv is a graph associated with each v ∈ VG, we denote by G[Hv/v, v ∈ VG]
the graph resulting from the simultaneous substitution in G of Hv for v ∈ VG.
It can be defined as the graph with vertices (v, w) for v ∈ VG and w ∈ VHv and
edges (v, w) → (v′, w′) iff either v = v′ and w → w′ (in Hv), or v → v′ (in G).

We will also use the graph operations ⊕,⊗ and −→⊗ : G ⊕ H is the disjoint
union of G and H , G

−→⊗H is G⊕H augmented with edges from each vertex of G
to each vertex of H , and G⊗H is G

−→⊗H augmented with edges from each vertex
of H to each vertex of G. The graphs G ⊕ H, G

−→⊗H and G ⊗ H can be defined
as K[G/u, H/v] for graphs K with two vertices u and v, and, respectively, no
edge, an edge from u to v, edges between u and v in both directions. They are
associative. We will consider them as operations of variable arity in the usual
way. The operations ⊕,⊗ are also commutative.

328 Bruno Courcelle and Christian Delhommé

More generally, every graph can be turned into a graph operation. With a
finite graph G, with vertices v1, ..., vn we associate an n-ary graph operation,
denoted by σG (where σ stands for substitution) defined by σG(H1, ..., Hn) =
G[H1/v1, ..., Hn/vn]. If G is infinite, then σG is defined similarly as an operation
of countably infinite arity.

Definition 4. (Modules.) Let G be a graph. A module of G is a subset M of
its set of vertices VG such that for every vertices x, y in M and every vertex
z not in M : x → z implies y → z and: z → x implies z → y . In words this
means that every vertex not in M “sees” all vertices of M in the same way. (This
notion is studied in several works in particular [15], [17] and [13], in different
formal frameworks and using different terminologies). If M is a module then
G = H [G[M]/v] for some H and v. Hence the notion of a module identifies a
way of expressing a graph as the result of a substitution.

A module is strong if it is non empty and does not overlap any module. (Two
sets meet if they have a nonempty intersection. They overlap if they meet and are
incomparable for inclusion.) The singletons and the set VG are strong modules.
We will identify frequently a module M and the subgraph G[M] it induces. A
graph G is prime if it has no trivial module, where the trivial modules are ∅,
the singletons and VG.

The smallest prime undirected graph is the path P4 with 3 edges and 4
vertices. The smallest prime directed graphs have 3 vertices. The graph H is a
module of G[H/u] and the graphs G and H are modules of G ⊕ H , G

−→⊗H and
G ⊗ H .

Fact. A countable graph may have uncountably many strong modules.

Given two vertices x, y in a graph G, we let M(x, y) be the intersection of
all strong modules containing x and y. It is a strong module. We call M(x, y) a
robust module. It may be the set of all vertices or {x} = M(x, x). A countable
graph has countably many robust modules. The maximal proper strong (mps in
short) modules of a graph G are the maximal proper strong submodules of its
robust modules.

Proposition 1. For every graph G, the robust modules form a leafy tree, de-
noted by rdec(G) which is a sub-∨-tree of the tree of strong modules. Every strong
module (in particular G) is the union of the directed set of robust modules in-
cluded in it. A strong module that is not a singleton is robust iff it is the father
of some strong module.

Proposition 2. [12] Let G be a graph.

1. For every non singleton robust module M, we have one and only one of the
following possibilities:
(I) either G[M] is the disjoint union (denoted ⊕) of a family of connected
graphs Ci, i ∈ I,
(II) or G[M] is the complete product (denoted ⊗) of a family of graphs
Ci, i ∈ I,where no Ci is of type II,

The Modular Decomposition of Countable Graphs 329

(III) or G[M] is the linear product (denoted −→⊗) of a linearly ordered family
of graphs Ci, i ∈ I,where no Ci is of type III,
(IV) or G[M] = P [Ci/ui, i ∈ I] where P is a prime graph ; this prime graph
is unique up to isomorphism.

2. The graphs Ci are the mps submodules of M . They are not necessarly robust.
Their common father in the tree of strong modules of G is M .

3. The graphs P of Case IV are induced subgraphs of G.

The graphs P of case IV are called the prime factors of G. If G is given as
Q[P [Hv/v, v ∈ VP]/u], with P prime, then P is one of its a prime factors. In
order to decompose G it suffices to decompose separately Q and the graphs Hv.

Definition 5. (Modular decomposition.) By decomposing all robust modules
(using Proposition 2), we obtain a hierarchical structure yielding the modular
decomposition. The modular decomposition of a (countable) graph G is defined
formally as the countable tree mdec(G) of its robust and mps modules. For
finite graphs, the notions of a strong and of a robust module coincide. Hence
this notion of modular decomposition is equivalent for finite graphs to the usual
one which is the finite rooted tree of the strong modules.

We now analyze the structure of the trees mdec(G). A limit node in a tree
is a node which is the least upper bound of a directed set of strictly smaller
elements. A father node is a node that has at least one son. In a ∨-tree, a father
node may be also a limit node.

A ∨-tree is said to be modular if it satisfies the following conditions:

1. No father node is a limit node.
2. Every father node is the least upper bound of two leaves.
3. A limit node has degree one. Every limit node is the least upper bound of a

directed set of non-limit nodes.

Proposition 3. 1. The tree of the modular decomposition of a graph is a mod-
ular tree.

2. Every modular tree is the tree of the modular decomposition of some graph.

Definition 6. (Embeddings of trees.)
Let (T,≤, �) and (U,≤′, �′) be ordered trees. (We denote by � the family

of linear orders �x associated with nodes). A ∨-embedding of T into U is an
injective mapping h : T → U , such that for all x, y in T : h(x) ≤′ h(y) iff x ≤ y,
h(x ∨ y) = h(x) ∨′ h(y), and if D, E ∈ Dir(x, T) and D �x E, then h(D) �′

h(x)

h(E), where h(D) is the unique direction in Dir(h(x), U) that contains {h(u) |
u ∈ D} (it is not the set extension of h on the set D).

If furthermore, T ⊆ U and h is the inclusion mapping, we say that T is a
sub-∨–tree of U. For trees which are not ordered, the definitions are the same
without the conditions on the ordering of directions.

Proposition 4. 1. Every leafy tree T ∨−embeds into a unique (up to isomor-
phism) minimal (for ∨−embedding) modular tree denoted by T̂ .

2. T is the sub-∨–tree of T̂ induced by the non-limit nodes.

330 Bruno Courcelle and Christian Delhommé

Proof (Sketch). This construction is a completion, where we add only the ele-
ments needed as greatest elements of certain directions. (Similar but different
completions are used in semantics of recursive program schemes, see [5]). We let
T̂ consist of the following sets: the set of all directions (i.e., the union of the sets
Dir(x, T)) and the sets of the form Tu (= {w ∈ T | w ≤ u}) for all nodes u, (a
direction can be of the form Tu) ordered by inclusion. The “new” elements in T̂
are the directions which have no greatest element in T .

Proposition 5. For every graph G, we have mdec(G)= ̂rdec(G), where rdec(G)
is the leafy tree of robust modules of G.

We wish to have a representation of the modular decomposition of a graph
G by a relational structure from which G can be defined in a unique way. Hence,
it is not enough to know the “abstract” tree mdec(G), we need also represent in
a way or another the information attached to each node, that describes which
of cases I-IV of Proposition 2 does apply.

The tree mdec(G) can be seen as the syntactic tree of an algebraic expression
denoting G, built with substitution operations, possibly of infinite arity. We do
not develop here this algebraic aspect (see [11]), but we define a relational struc-
ture, somehow equivalent to these algebraic expressions and suitable for express-
ing properties of modular decomposition in MS logic. Hence we construct from
mdec(G) and the five types of nodes (of modules) a binary relational structure
Gdec(G), equivalently a vertex- and edge-labelled directed graph, from which G
can be defined. We call it the graph representation of the modular decomposition
of G.

Definition 7. (Graph representations of modular decompositions.)
The structure Gdec(G) consists of the tree mdec(G) = (T,≤), augmented

with edges between the sons of the nodes M of T (which are modules of G),
in order to represent the edges of G between the submodules corresponding to
these sons. It is a straightforward generalization of the similar notion defined
in [8]. Formally, we define Gdec(G) from mdec(G) as follows:

For each node M of mdec(G) which is neither a limit node nor a leaf, whence
has at least two sons, we do the following according to its type (cf. Proposition 2):

– if M corresponds to a robust module of type I, we label it by ⊕,
– if M corresponds to a robust module of type II, we label it by ⊗,
– if M corresponds to a robust module of type III, we label it by −→⊗ , and we

define a linear order on the sons of M (which corresponds to the linear order
of the strong modules Ci, cf. Proposition 2),

– if M corresponds to a robust module of type IV, we create edges between
the sons of M corresponding to the edges of P in an obvious way.

We obtain thus the structure Gdec(G) defined as:

(T,≤, lab⊕, lab⊗, lab−→⊗ , edg, order)

where (T,≤) is the tree mdec(G), lab⊕, lab⊗, lab−→⊗ are unary predicates defin-
ing the labels ⊕,⊗, −→⊗ of the nodes of types I,II,III, edg is a binary relation

The Modular Decomposition of Countable Graphs 331

representing the edges created between sons of nodes of type IV, and order is
the binary relation such that order(x, y) iff x �x∨y y and x, y are sons of x ∨ y,
which implies that x∨y is labelled by −→⊗ . If G is undirected then order and lab−→⊗
are empty and can be omitted. We can consider Gdec(G) as a graph with three
types of edges, corresponding to the binary relations ≤, edg, order, and labelled
by ≤, edg, order. The symbols ⊕,⊗, −→⊗ are thus vertex labels.

The objectives are to prove that Gdec(G) and G can be defined from each
other by transformations of relational structures specified by monadic second-
order formulas, and thus to obtain that the monadic second-order properties of
the modular decomposition of a graph G are monadic second-order expressible
in G and vice-versa.

Monadic second-order logic and monadic second-order transformations of
structures (called MS transductions) are presented in many works by the first
author ([6], [8], [7]). Lacking of space, we only recall that an MS transduction
(also called sometimes an MS interpretation, but this term conflicts with its use
in semantics, cf. [5]) is a transformation of relational structures that is specified
by MS formulas forming its definition scheme. It transforms a structure S into a
structure T (possibly over a different set of relations) such that the domain DT

of T is a subset of DS × {1, ..., k}. (The numbers 1, ..., k are just a convenience
for the formal definition ; we are actually interested by relational structures up
to isomorphism). In many cases, this transformation involves a bijection of DS

onto a subset of DT , and the definition scheme can be constructed in such a way
that this bijection is the mapping: x 	→ (x, 1). Hence, in this case DT contains
DS × {1}, an isomorphic copy of DS, and we will say that the MS transduction
is domain extending, because it defines the domain of T as an extension of that
of S. (This does not imply that the relations of T extend those of S). An FO
transduction is a transduction defined by a first-order definition scheme.

Proposition 6. A graph G can be defined by an FO transduction from Gdec(G)
as a graph, the vertices of which are the leaves of mdec(G).

Theorem 1. There is a domain extending MS transduction, let γ, constructing
Gdec(G) from (G, �) where � is an ω-order. There is an FO transduction δ
such that δ(Gdec(G)) = G for every graph G.

Proof (Sketch). We describe the main steps of the construction of γ.
Step 1 : The notions of a module, of a strong module and of a robust module

are MS expressible. The types I, ..., IV of robust modules can also be identified by
MS formulas. Moreover, there exist MS formulas ϕ1(X, Y) (resp. ϕ2(X, Y)) such
that for all sets of vertices M, M ′ of a graph G, ϕ1(M, M ′) (resp. ϕ2(M, M ′))
holds in G iff M is a robust module of type I, (resp. of type II), and M ′ is one of
the corresponding modules Ci.There exists an MS formula ϕ3(X, Y, Z) such that
for all sets of vertices M, M ′, M”, ϕ3(M, M ′, M”) holds iff M is a robust module
of type III, M ′ is a module Ci, M” is a module Cj and i < j. Finally, there
exists an MS formula ϕ4(X, Y, Z) such that for all sets of vertices M, M ′, M”,
ϕ4(M, M ′, M”) holds iff M is a robust module of type IV, M ′ is a module Ci,

332 Bruno Courcelle and Christian Delhommé

M” is a module Cj and ui → uj in the graph P . All these formulas can be
constructed by straightforward translations from the definitions.

Step 2 : Given a graph G, we construct the leafy tree rdec(G) of its robust
modules. The leaves of rdec(G) are the vertices of the graph. We must define the
internal nodes of rdec(G) which correspond to the robust modules. The ω-order
� on vertices is here useful. Each robust module M has at least 2 sons (they are
also modules). We let fl(X) be the �-smallest vertex in X ⊆ VG. We let N be
the son of M containing fl(M), and we take fl(M − N) as the representative
of M . Two robust modules are represented by different vertices. (This would
not be the case if we decided to represent M by fl(M)). We can thus construct
rdec(G), by an MS transduction, as a tree with set of nodes VG×{1}∪RG×{2},
where RG is the set of vertices which represent some module.

Step 3 : We know from Proposition 5 that mdec(G) is the completion of
rdec(G). This completion is a domain extending MS-transduction, using again
an auxiliary ω-ordering. The technique is similar to the one used in the previous
step. We represent by some leaf, in a well-defined way, each direction to be com-
pleted: using � we define a linear order on directions ; we represent a direction
D by fl(D′) where D′ is the next one in this order (among directions relative to
the same node x) ; a maximal direction (in the case where x has finite degree)
is represented by x. Hence if N is the set of nodes of rdec(G), the completed
tree mdec(G) has set of nodes Nmdec(G) = N × {1} ∪ R × {2} ∪ S × {3}, where
R (S) is the set of nodes representing non-maximal (maximal) directions to be
completed.

Step 4 : An MS transduction transforms (VG∪Nmdec(G), edgG,≤mdec(G)) into
Gdec(G). Its definition is a straightforward translation from the definition using
Step 1.

Since the composition of several domain extending MS transductions is a
domain extending MS transduction, we get a domain extending MS transduction
γ that maps (VG, edgG, �) into Gdec(G).

The inverse of γ: We define δ. The vertices of G are the leaves of the tree
underlying Gdec(G), hence can be identified by FO formulas. Given two vertices
x and y of G, whether there is in G an edge x → y can be determined from the
label of x ∨ y in Gdec(G) and, when x ∨ y satisfies case III, by the ordering the
directions of x and y relative to x ∨ y (by using the condition “there exist sons
u, v of x ∨ y such that order(u, v), x ≤ u, and y ≤ v”), and when x ∨ y satisfies
case IV, the existence of an edge in P between the submodules containing x and
y (by the condition “there exist sons u, v of x∨ y such that edg(u, v), x ≤ u and
y ≤ v”).

3 Universal ∨−Trees

It is well-known that the linearly ordered set Q is universal for finite and count-
able linear orders : it embeds each of them and is itself countable. We will con-
struct a universal ordered tree, where universality is relative to ∨-embeddings.

Definition 8. (Ordered trees constructed from linear orders.) We let S and D
be two nonempty linearly ordered sets. We let Aseq(S, D) denote the set of

The Modular Decomposition of Countable Graphs 333

alternating sequences of the form: s1d1s2d2...dnsn+1, for n ≥ 0; they have at
least one occurrence of an element in S. We order them by ≤S,D defined by:
w ≤S,D u iff u = u′s, w = u′s′w′ for some u′ in (SD)∗, some w′ in (DS)∗,
some s, s′ in S with s′ ≤S s. In particular, w ≤S,D u if u ≤pref w (where ≤pref

denotes the prefix order on sequences).

Lemma 1.

1. The ordered set (Aseq(S, D),≤S,D) is a ∨-tree, denoted by T (S, D).
2. The directions in T (S, D) relative to a node us (for u ∈ (SD)∗, s ∈ S) are

the nonempty sets of the following forms:

D(0, us) = {us′w | s′ ∈ S, s′ <S s, w ∈ (DS)∗} and:
D(d, us) = {usdw | w ∈ S(DS)∗} for d ∈ D.

D(0, us) is called the main direction relative to us. We let Q− be the set of
negative rational numbers and Q+ be the set of positive ones. Of course they
are both order-isomorphic to Q, but it is more convenient to distinguish them.
We let D = Q− + Q+ (i.e., we concatenate as ordered sets Q− and Q+), we
let S = Q and we make the ∨-tree T (S, D) into an ordered tree by ordering
directions as follows:

D(d, us) �us D(0, us) �us D(d′, us) for d ∈ Q−, d′ ∈ Q+, and
D(d, us) �us D(d′, us) for d, d′ ∈ D, d < d′.

We denote this tree by UT (Q,Q−,Q+) (read Universal Tree).

Proposition 7. Every ordered tree ∨-embeds into UT (Q,Q−,Q+).

Proof (Sketch). We consider an ordered tree (T,≤, �), ω-ordered by � with
corresponding enumeration denoted by t0, ..., tn, ... We define a structuring of T
that depends on this enumeration and associates a finite depth with each node.
This structuring will be the basis of a representation of ordered trees by “usual”
binary trees that will be considered in Section 4.

Step 1: We associate with every x ∈ T a unique subset U(x) characterized
as follows:

1. U(x) is a maximal chain containing x,
2. it is lexicographically minimal with this property, which means that for ev-

ery maximal chain W containing x and different from U(x), the �-smallest
element of (U(x) − W) ∪ (W − U(x)) is in U(x).

We note for later use that this set is MS definable. Some facts: if y < x and
y ∈ U(x), then U(y) = U(x). If U(x) �= U(y), then U(x) ∩ U(y) = T z for some
z, and if x and y are incomparable, then z = x ∨ y.

Step 2 : We define a sequence of chains W0, ..., Wn, ... by:
W0 = U(t0), w1 is the � -smallest node not in W0,
W1 = U(w1) − W0, ...
wn is the � -smallest node not in W0 ∪ W1 ∪ ... ∪ Wn−1,

334 Bruno Courcelle and Christian Delhommé

Wn = U(wn) − (W0 ∪ W1 ∪ ... ∪ Wn−1), ...
Every node has a finite depth, d(x) = 0 if x ∈ W0, d(x) = 1 + d(p(x)) if

x ∈ Wn+1 and p(x) is the ≤ −smallest node strictly above all nodes in Wn+1.
(Note that Wn+1 = U(wn+1) − T p(x)).

Hence x of depth n has a sequence of ancestors p(x), p2(x), ..., pn(x) of depths
n − 1, n − 2, ..., 0.

Step 3 : For each m we fix an (order preserving) embedding hm : Wm → Q,
and we let h(x) = hm(x) if x ∈ Wm.

Step 4 : We associate with x as in Step 2 the sequence of rational numbers
h(pn(x))...h(p(x))h(x). We have in this way the elements s1, s2, ..., sn+1 of a
sequence s1d1s2d2...dnsn+1 in ASeq(Q,Q− ∪ Q+), but the di’s which encode
directions are still missing.

Step 5 : The main direction relative to x (cf. the lemma) is the one that meets
the maximal chain U(x). The set of directions �-smaller than the main direction
is linearly ordered by �. We embed it into Q− and we do the same into Q+ for
the directions which are �-larger than the main direction. Hence x is finally
represented by: h(pn(x))fn−1...h(p2(x))f1h(p(x))f0h(x), where fi represents the
direction of pi(x) relative to pi+1(x).

We have defined in this way a ∨-embedding of (T,≤, �) into the tree UT (Q,
Q−,Q+).

Remarks. 1. Using an obvious extension of the notation, UT (1, ∅,N) is a
tree where each infinite tree in the sense of [4] ∨-embeds.

2. Fräıssé defines in [14] (Theorem 6.2 of Chapter 10) a (countable) tree W,
which is actually the unordered tree underlying UT (Q, ∅,1). All finite or
countable trees embed in W. His theorem concerns trees and embeddings,
and not ordered trees and ∨-embeddings as does our Proposition 7. The tree
W is a binary ∨-tree and ∨-embeds all binary ∨-trees, but only binary ∨-
trees since it is binary and least upper bounds of pairs of nodes are preserved.

4 Representing Modular Decompositions
by Low Degree Relational Structures

Our objective is to represent ordered trees and modular decompositions by rela-
tional structures of lowest possible degree (the notion of degree is as for graphs)
by generalizing the observation that the dense structure (Q,≤) is isomorphic
to the set of nodes of the complete infinite binary tree, a graph of degree 3,
ordered appropriately. Let us give some motivations for this investigation. For
finite objects like graphs and partial orders, space efficient representations are of
interest. For an example, every finite partial order P can be represented by its
Hasse diagram, which may contain O(m1/2) edges whereas the directed graph of
P has m edges. The same ratio holds for certain dense cographs represented by
their modular decompositions. In both cases the original partial order (or graph)
can be determined from its Hasse diagram (or its modular decomposition) by
computations of transitive closures, hence by MS transductions.

The Modular Decomposition of Countable Graphs 335

This motivation does not apply to infinite graphs, but bounds on degrees
of infinite structures are nevertheless interesting because they yield structural
or logical properties. For examples, every equational graph of bounded degree is
prefix recognizable, see Caucal [3], or Barthelmann [1] for a similar result. MS
logic with edge set quantifications is as powerful as MS logic without them for
expressing properties of sparse graphs, see [9].

We achieve this goal and we define mutual transformations of relational struc-
tures that are MS transductions.

Definition 9. (Standard binary trees.) By a standard binary tree, we mean a
simple directed edge-labelled graph T = (NT , lsonT , rsonT) where NT is the
finite or countable set of nodes, lsonT and rsonT are two binary functional
relations defining for each node its left son and its right son. A node may have
no son, two sons, or just a right son or a left son. The root is the unique node of
indegree 0 and every node is reachable from it by a unique directed path. For a
standard binary tree T , and x, y ∈ NT , we write x →l y if y is the left son of x,
x →r y if y is the right son of x, and x → y if y is the left or the right son of x.

A linear order, the in-order, on NT is defined by: x ≤in,T y iff x = y or
x →r z →∗ y or y →l z →∗ x for some z, or t →l z →∗ x and t →r z′ →∗ y for
some t, z, z′.

We let Ω(T) denote the linearly ordered set (NT ,≤in,T). The mapping Ω is
an MS-transduction because the transitive closure of a given binary relation is
expressible by an MS formula. Our objective is to construct T from Ω(T) by an
MS transduction.

Proposition 8. 1. There exist first-order formulas λ(x, y) and ρ(x, y) that de-
fine in every structure (N,, �) such that is a linear order and � is an
ω-order, binary relations lson and rson such that (N, lson, rson) is a stan-
dard binary tree T such that Ω(T) = (N,). This tree T is defined from
(N,, �) by an FO transduction.

2. There exists a domain extending FO transduction that transforms a standard
binary tree T into a standard binary tree U such that (Leaves(U),≤in,U) is
isomorphic to (NT ,≤in,T).

By combining the two constructions, one can represent, using an FO-transdu-
ction, the ordered set N as the in-ordered set of leaves of a standard binary tree
whereas the first one represents it as the in-ordered set of nodes.

Proof (Sketch).

1. See [10].
2. This is a classical transformation: for an example, using the notation of trees

by terms, a(b, c) is replaced by ∗(b, ∗(a, c)).

Thus we can represent the universal tree UT (Q,Q−,Q+) and whence to all
trees via Proposition 7, by standard binary trees with appropriate node labels.

336 Bruno Courcelle and Christian Delhommé

Proposition 9. There exists a domain extending MS transduction α that asso-
ciates with every ordered tree T that is also ω-ordered, a node-labelled standard
binary ω-ordered tree W = (NW , nodeT , lsonW , rsonW) and an MS-transduction
β that defines T from W .

Intuitively, α encodes T into a binary tree and β is its inverse, the decoding
transduction.

Proof (Sketch). We first describe the idea for a tree that is embedded into
UT (Q,Q−,Q+), by Proposition 7. A node x is described by a sequence of ra-
tional numbers s1d1s2d2...dnsn+1 such that s1 is a node on the chain of nodes
of depth 0, d1 is a direction relative to s1, saying “in which direction to go next
below s1”. This direction indicates a chain of nodes of depth 1, in which s2 is
selected. Then d2 indicates where to go next, etc... until one reaches sn+1.

By Proposition 8, every rational number can be represented by a path in a
standard binary tree, i.e. a word in {left, right}∗. We concatenate the words
representing s1, d1, s2, d2, ..., dn, sn+1 in this order, and we obtain a path in a
standard binary tree. The edges of this path are colored, say in blue for those
encoding the positions s1, s2, ..., sn+1 and in red for those encoding the direc-
tions d1, d2, ..., dn. So we can distinguish in a path the portions encoding posi-
tions and those encoding directions. It follows that all trees, and in particular
UT (Q,Q−,Q+) can be represented as subtrees of the complete standard binary
tree with colored edges. Actually, coloring an edge is equivalent to coloring its
target. So node labels are sufficient and we can use a single unary relation nodeT .

Proposition 8 says also that for a linear order given with an auxiliary ω-order,
the encoding of its elements by paths of the binary tree is definable by an MS
transduction. By combining the transductions associated at each depth with the
chains Wi and with the sets of directions (cf. the proof of Proposition 7), one
obtains the desired one.

We now apply this result to the representation of modular decompositions.

Definition 10. (Sparse representations of modular decompositions.) Assuming
that, by Proposition 9, (T,≤) is represented by a node-labelled standard binary
tree (W, nodeT , lsonW , rsonW), then we define a sparse representation of the
modular decomposition of G as a structure:

Sdec(G) = (W, nodeT , lsonW , rsonW , lab⊕, lab⊗, lab−→⊗ , edg).

The relation order is no longer necessary because the linear order on directions
in T is handled by the inorder on W derived from the left and right types of
sons.

Theorem 2. There exists a domain extending MS transduction that associates
with an ω-ordered graph G a sparse representation Sdec(G) of its modular de-
composition. The structure Sdec(G) is a vertex- and edge-labelled graph of degre
m+3 where m is the maximum degree of a vertex in a prime factor of G (cf
case IV of Proposition 2). There exists an MS-transduction that defines G from
Sdec(G).

The Modular Decomposition of Countable Graphs 337

Proof. It suffices to combine the MS transductions of Proposition 1 and Propo-
sition 9. The tree (T,≤) underlying Gdec(G) is not ordered: only the sons of the
nodes of type III are linearly ordered, whereas Proposition 9 uses ordered trees.
But since an ω-order is available in G whence in T , we can use it to make T into
an ordered tree, just by defining a linear order on the directions relative to the
nodes of types I,II and IV. The bound on the degree of Sdec(G) follows from
the definitions.

5 Concluding Remarks and Questions

We have proved that the graph Sdec(G) representing the modular decomposition
of a countable graph G can be defined from G and any ω-order of its vertices by
an MS transduction, and that, conversely, G is definable from Sdec(G) also by
an MS transduction.

Finite presentations of countable graphs of several types are studied by Blu-
mensath and Graedel in [2]. One can thus ask whether a finite presentation of
G yields one of same type of Sdec(G). A graph G is VR-equational (i.e. is the
canonical solution of a finite system of equations over so-called VR operations)
iff it is the image of the standard binary tree B = ({0, 1}∗, lsonB, rsonB) under
an MS transduction (Proposition 2.2 of [2]). If G is VR-equational, and if an ω-
order of VG is MS definable, then by Proposition 2, Sdec(G) is also the image of
B under an MS transduction, hence is VR-equational. (Since no ω-order on B is
MS definable, the second assumption cannot be deleted). Conversely, if Sdec(G)
is VR-equational, so is G.

Question 1. Is the former assertion true without the hypothesis that an ω-order
of VG is MS definable?

It is possible that something weaker than an ω-order (e.g., a partial order of
some kind) is sufficient for Theorems 1 and 2 to hold.

The article [2] studies in detail automatic structures (also considered in [16] ;
they contain the VR-equational graphs, characterized also as prefix-recognizable
graphs). These structures have domains defined as regular languages and re-
lations defined by multihead synchronized automata. The tree B ordered by
inorder is an automatic structure. So is the universal tree UT (Q,Q−, Q+) with
domain defined as (LQ.LQ∗)∗LQ where LQ = (0 ∪ 11)∗10 represents B and
LQ∗ = (0 ∪ 1)(0 ∪ 11)∗10 represents the linear order Q− + Q+.

If in the structure Sdec(G) we replace lsonW and rsonW by ldesW and rdesW

such that ldesW (x, y) holds iff x ≤T u where lsonW (u, y) holds, and similarly
for rdesW , then we obtain a binary structure Fdec(G) (that is no longer sparse)
from which G can be constructed by an FO transduction. It follows that G is
automatic if Fdec(G) is, because the image of an automatic structure under an
FO transduction is automatic ([2] Proposition 4.3).

Question 2. For which graphs G is it true that the binary structure Fdec(G) is
automatic?

338 Bruno Courcelle and Christian Delhommé

References

1. K. Barthelmann, When can an equational simple graph be generated by hyperedge
replacement? Mathematical Foundations of Computer Science, Lec. Notes Comput.
Sci. 960 (1998) 543-552.

2. A. Blumensath, E. Grädel, Finite presentations of infinite structures: Automata
and interpretations, Theory of Computing Systems 37 (2004) 641-674.

3. D. Caucal, On the regular structure of prefix rewriting. Theoretical Computer Sci-
ence 106 (1992) 61 - 86.

4. B. Courcelle, Fundamental properties of infinite trees, Theoretical Computer Sci-
ence 25 (1983) 95-169.

5. B. Courcelle, Recursive applicative program schemes, in Handbook of Theoretical
Computer Science vol. B, J. Van Leeuwen ed., Elsevier, 1990, pp.459-492.

6. B. Courcelle, Monadic second-order graph transductions: A survey. Theoretical
Computer Science, 126 (1994)53–75.

7. B. Courcelle, The expression of graph properties and graph transformations in
monadic second-order logic. In G. Rozenberg, editor, Handbook of graph grammars
and computing by graph transformations, Vol. 1: Foundations, World Scientific,
1997, pp. 313–400.

8. B. Courcelle, The monadic second-order logic of graphs X: Linear orderings, The-
oretical Computer Science 160 (1996) 87-143.

9. B. Courcelle, The monadic second-order logic of graphs XIV: Uniformly sparse
graphs and edge set quantifications. Theoretical Computer Science 299 (2003) 1-
36.

10. B. Courcelle, The monadic second-order logic of graphs XV: On a Conjecture by
D. Seese, to appear in Journal of Applied Logic, see:
http://www.labri.fr/˜courcell/ActSci.html

11. B. Courcelle, C. Delhommé, The modular decomposition of countable graphs, 2005,
see: http://www.labri.fr/ ˜courcell/ActSci.html.

12. A. Ehrenfeucht, T. Harju, G. Rozenberg, Decomposition of infinite labeled 2-
structures, Lec. Notes Comput. Sci. 812 (1994) 145-158.

13. A. Ehrenfeucht, T. Harju, G. Rozenberg, The theory of 2-structures. A framework
for decomposition and transformation of graphs, World Scientific Publishing Co.,
River Edge, New-Jersey,1999.

14. R. Fräıssé, Theory of relations, Studies in logic vol. 118, North-Holland, 1986 (Sec-
ond edition, Elsevier, 2000).

15. D. Kelly, Comparability graphs, in Graphs and order, I. Rival ed., D. Reidel Pub.
Co., 1985, pp. 3-40.

16. B. Khoussainov, A. Nerode, Automatic presentations of structures, in Logic and
Computational Complexity, Lec. Notes Comput. Sci. 960 (1995) 367-392.

17. R. Möhring, R. Radermacher, Substitution decomposition of discrete structures
and connections with combinatorial optimization, Annals Discrete Maths 19 (1984)
257-356.

	The Modular Decomposition of Countable Graphs: Constructions in Monadic Second-Order Logic
	1 Introduction
	2 Robust Modules and Modular Decomposition
	3 Universal -Trees
	4 Representing Modular Decompositions by Low Degree Relational Structures
	5 Concluding Remarks and Questions
	References

