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Abstract

New results on the recognizability of sets of finite graphs, hypergraphs
and relational structures are presented. The general framework of this
research which associates tightly algebraic notions (equational and recog-
nizable sets) and Monadic Second-Order logic (for defining sets and trans-
formations of graphs, hypergraphs and relational structures) is reviewed.
The lecture [3] is based on two submitted but nevertheless available ar-
ticles [1,4] ; the present text is an informal overview. The numerous
definitions and results can be found in the two articles.

1 Introduction

The description of sets of finite words (called languages) and of their transfor-
mations (called transductions) was the original goal of the Theory of Formal
Languages. This theory now extends its scope to infinite words, to finite and
infinite trees (modelling finite and infinite algebraic terms), and more recently,
to finite and infinite graphs, hypergraphs and related structures like partial or-
ders and traces. Unless otherwise specified, we will use “graph” as a generic
term covering directed and undirected, labelled and unlabelled graphs and hy-
pergraphs. All these objects are conveniently handled as relational structures,
i.e., as logical structures with no function symbol except possibly nullary ones.

In addition to classical tools like grammars, automata and transducers, First-
Order and Monadic Second-Order logic have proved to be useful to describe sets
of words and trees. For dealing with graphs, logic is also essential, not only for
defining sets of graphs but also for defining graph transformations. However,
the variety of types of graphs, and consequently of operations on them (that
generalize the concatenation of words), makes it necessary to use also some
unifying concepts provided by Universal Algebra.
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The basic notion of a context-free language can be characterized in terms of
least solutions of equation systems (equivalent to context-free grammars). That
of a regular language can be characterized in terms of congruences with finitely
many classes (equivalent to finite deterministic automata). These algebraic
definitions are interesting in that they apply to every algebra. They are thus
appropriate for dealing with various types of sets of graphs, but they are useful
for other reasons. Context-free sets of graphs can be defined as equational sets,
i.e. as components of least solutions of systems of recursive set equations, in a
much easier way than in terms of graph rewriting sequences. Since there is no
good notion of graph automaton except in very particular cases, the notion of a
finite congruence is the only way to obtain a workable generalization of regularity
to sets of graphs : a recognizable set is a set which is saturated for a congruence
with finitely many classes of each sort (we use many-sorted algebras).

An equational set of graphs can be specified in a readable way by an equation
system. But specifying a recognizable set of graphs by a congruence is no more
convenient than specifying in this way a regular language, because even in simple
cases, congruences tend to have many classes. Monadic Second-Order logic is
here especially useful as a specification language. Since a graph is nothing
but a relational structure, every closed formula, either first-order or second-
order specifies a set of graphs, namely the set of its finite models. (We only
consider finite objects in this survey). Furthermore most graph properties can
be expressed easily by logical formulas. And every set of graphs characterized
by a Monadic Second-Order formula, i.e. a formula where quantified variables
denote individual elements (typically vertices, but also edges) or sets thereof is
recognizable. In particular, basic classes of graphs like trees, connected graphs,
planar graphs are monadic second-order definable.

Hence Monadic Second-Order logic (MS logic in short) is an appropriate
language for specifying sets of graphs. It can be seen as an alternative to the
non-existing notion of graph automaton. Furthermore, it can be used to specify
graph transformations, called MS transductions that are as useful for studying
sets of graphs as are rational transductions for languages. Applications to the
construction of linear algorithms for hard (NP complete) problems restricted to
certain equational sets of graphs substanciate the claim of usefulness of Monadic
Second-Order logic.

We hope to convince the reader that the algebraic notions of a recognizable
and of an equational set of graphs on the one hand, and the logical notions based
on MS logic on the other build a coherent and robust framework for extending
to graphs the notions and results of Formal Language Theory. The following
table summarizes the main results. (MST means MS transduction).
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Algebraic
notions

Algebraic
characterizations

Logical
characterizations

Closure
properties

EQ Equation
systems,
val(REC(Terms))

MST(Trees) Union,
∩Rec,
Homomorphisms,
MST

REC Finite
Congruences

MS-definable
(⊂ REC)

Boolean
operations,
Inverse
homomorphisms,
Inverse MST

2 Notions from Universal Algebra

For dealing with graphs one needs to use many-sorted algebras, with countably
many sorts. A sort is here a finite set of labels (which is a subset of a fixed
countable set of labels). These labels are used to specify in a nonambigous
way “graph concatenation” operations. Since the combinatorial structure of
graphs is much more complicated than that of words, one cannot limit oneself
to concatenation operations (or graph construction operations) based on a uni-
formly bounded number of labels. (One can actually generate all finite graphs
from 6 operations with 2 sorts in a somewhat artificial way but the interesting
algorithmic results discussed below do not work for these operations. See [4].)

In a many-sorted algebra, an equational set is a set of elements of the same
sort that is a component of the least solution of a (finite) system of recursive
set equations. An example of such a system is :

{ X = f(X,Y ) ∪ {a} ; Y = g(X,Y, Y ) ∪ f(Y, Y ) ∪ {b} },

whereX and Y denote sets and f and g denote the set extensions of functions
belonging to the signature. A recognizable set is a set of elements of the same
sort, that is a union of classes for a finite congruence, i.e., a congruence such
that any two equivalent elements are of the same sort and which has finitely
many classes of each sort. (See Courcelle [2]). These two notions depend on
the signature. We refer to F -equational and to F -recognizable sets, forming the
classes EQ(F ) and REC(F ) respectively, when we need to specify the signature
F .

In some cases, the notion of a recognizable set somehow degenerates. If the
signature is “poor” (for example if it consists only of constants and a finite set
of unary operations closed under composition), then every set is recognizable.
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If on the opposite it is “too rich” then the only recognizable sets are the empty
set and the set of all elements of a same sort. This is the case of the set of
positive integers equipped with the successor and the predecessor function.

In every algebra, even having an infinite signature, the following properties
hold :

Property 1 : The class of recognizable sets is closed under union, inter-
section, difference and inverse homomorphisms. In particular, for every finite
subsignature F of the considered signature, the set of (finite) F -terms, the value
of which belongs to a recognizable set is recognizable, hence is definable by a
finite deterministic tree-automaton.

Property 2 : The class of equational sets is closed under union, homomor-
phisms, and intersection with recognizable sets ; it is closed under the operations
of the signature.

Property 3 : One can decide the emptiness of an equational set given by a
system of equations.

Property 4 : A set is equational iff it is the set of values of a recognizable
set of terms over a finite subset of the signature.

For two signatures F and K on a same setM , such that F is a subsignature
of K, we get immediately from the definitions

Property 5 : Every F -equational set isK-equational. EveryK-recognizable
set is F -recognizable.

We will say that the signatures F and K are equivalent if the corresponding
classes of equational and recognizable sets are the same. If K is F enriched with
operations that are defined by finite F -terms, then F and K are equivalent. But
there are examples of equivalent signatures not of this type. Consider the set
of words over a finite alphabet, where F consists of concatenation, empty word
and letters, and K is the same together with the mirror image operation. Then
the signatures F and K are equivalent, but the mirror image is not expressible
as a composition of operations of F .

We will be interested by the comparison of various signatures of graph op-
erations. We will see that no more than three signatures have to be considered,
each of them having many equivalent variants. This indicates the robustness of
this algebraic approach.

Algorithmic applications of recognizability can be described from the above
algebraic properties, using the fact that an MS definable set of graphs is recog-
nizable. Let us consider an equational set L given by an equation system. Let
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K be a recognizable set which is “effectively given”, for instance by means of
a homomorphism into an algebra each domain of which is finite, or by an MS
formula ϕ. By Property 2, the set L∩K is an equational set for which one can
construct an equation system. It follows from Property 3 that one can decide
the emptiness of L ∩K. By applying this to the case of an equational set of
graphs L and a set K defined as the set of finite models of a closed MS formula
ϕ, one obtains that one can decide whether there exists in L a graph satisfying
ϕ. This decision problem, called the Monadic Second-Order satisfiability prob-
lem for L is non trivial : it is undecidable L is the (non-equational) set of all
finite graphs, and even for first-order formulas ϕ.

By using the second assertion of Property 1 one can decide in linear time if
an F -term (where F is finite subsignature of the considered global signature) has
for value an object belonging to the recognizable setK defined by an MS formula
ϕ It follows that if a graph G in L is given by a term over the finitely many
operations that occur in the defining system for L (say a derivation tree of G
relative to the context-free graph grammar represented by the equation system)
then one can decide in time proportional to the size of this term whether G
satisfies the MS formula ϕ. This applies to NP complete problems expressible
by MS formulas, like 3-vertex colorability.

3 Graph operations

The use of algebraic notions is based the definition of the operations on graphs
that form the signature. There are actually two main (non-equivalent) signa-
tures of interest, that we call HR and VR because the corresponding equational
sets have been defined independently and previousy by “Hyperedge Replace-
ment” Context-free Graph Grammars and, respectively, by context-free graph
grammars based on “Vertex Replacement”. (See the book edited by G. Rozen-
berg on graph grammars [7]). They are robust in the sense that many variants of
the definitions yield the same equational sets. Furthermore, the corresponding
classes of equational sets are closed under MS transductions. This is analogue to
the closure of the class of context-free languages under rational transductions.

The HR operations deal with graphs and hypergraphs having distinguished
vertices called sources designated by labels. (There is only one source for each
label.) The HR operations are the parallel composition of two graphs or hy-
pergraphs (one takes the disjoint union of the two and one fuses the sources
with same labels), operations that change the labels of sources, and operations
that “forget” sources (forgetting the a-source means that the vertex designated
by a is no longer distinguished, but is made “ordinary”). Basic graphs or hy-
pergraphs are those with a single edge or hyperedge (possibly with loops), and
isolated vertices.
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The VR operations deal with graphs (not with hypergraphs) with labelled
vertices. Each vertex has one and only one label but several vertices may have
the same label. The VR operations are the disjoint union of two labelled graphs,
some operations that modify labels in a uniform way (every vertex labelled by p
is relabelled by q) and operations that add edges between every vertex labelled
by p and every vertex labelled by q, for fixed vertex labels p and q. (These last
operations produce graphs having complete bipartite subgraphs Kn,m (with n+
m vertices) where n is the number of p-labelled vertices and m is the number of
q-labelled vertices. Since n andm are not bounded, such graphs have unbounded
tree-width and the VR operations cannot be replaced by compositions of HR-
operations.) The basic graphs are those with a single vertex.

In both cases, every graph (or hypergraph in the case of HR) can be gen-
erated by these operations by using one label for each vertex. By bounding
the allowed number of labels, one obtains particular classes of graphs and hy-
pergraphs forming two infinite hierarchies. We obtain also the families of HR-
equational, VR-equational, HR-recognizable and VR-recognizable sets of graphs
and hypergraphs. They correspond to the families of context-free and regular
languages, but we have two notions in the case of graphs.

There are other significant differences with the case of words. The set of
all words on a fixed finite alphabet is context-free, whereas the set of all finite
graphs (say, of simple undirected unlabelled graphs to get a precise statement) is
neither HR-equational nor VR-equational. This is due to the necessity of using
infinitely many operations to generate all graphs (whereas the unique operation
of concatenation suffices to generate all words). Since an equation system is by
definition finite, none can define all graphs. From this observation, it follows
that a set of graphs may be non-HR-equational for two reasons : either because
it has unbounded tree-width (this the case of the set of finite planar graphs)
or because it has an “irregular” internal structure (this is the case of the set
of strings, the length of which is a prime number). Note however that classical
non-context-free languages like anbncn are equational as sets of vertex labelled
graphs.

Classes of recognizable sets of graphs (here we discuss labelled, directed
or undirected graphs, not hypergraphs) are associated with the signatures HR
and VR. Again, due to the infiniteness of the signatures, some properties of
recognizable sets of words do not extend to graphs. In particular there are
uncountably many recognizable sets (every set of square grids is HR-recognizable
as well as VR-recognizable ; see [4]).

There exist two complexity measures on graphs, called tree-width and clique-
width defined respectively as the minimum number of labels necessary to con-
struct the considered graphs or hypergraphs with HR and VR operations. A
set of graphs has bounded tree-width (resp. bounded clique-width) iff it is a
subset of an HR-equational (resp. of a VR-equational) set. Tree-width has been
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introduced independently of graph grammars by Robertson and Seymour, and
this parameter is essential in the theory of parametrized complexity developed by
Downey and Fellows [5]. Clique-width is also useful for constructing polynomial
algorithms for hard problems for particular classes of graphs.

Up to now we have only presented two signatures HR and VR. The first one
concerns graphs stricto sensu as well as hypergraphs, whereas the second con-
cerns only graphs or slightly more generally, binary relational structures (i.e.,
structures with relations of arity 1 and 2). We will now consider general rela-
tional structure, which correspond exactly to directed, ranked, hyperedge-labelled
hypergraphs, simply called hypergraphs in the sequel. The arity of a hypergraph
is the maximal arity of the (relation) symbols labelling its hyperedges.

For dealing with them, we introduce a many-sorted signature STR. We fix a
set of relation symbols with countably many relations of each arity. Every finite
subset Σ of this set is a sort and the corresponding domain is the set STR(Σ)
of finite Σ-structures. The operations are the disjoint union and all the unary
operations that transform a structure into another one by means of quantifier-
free conditions. The transformations performed by these operations can delete
elements (for example, in a graph one may want to remove all vertices incident
to no edge or loop), and/or redefine relations (for example, for defining the
edge-complement of a graph). The unary VR operations are of this latter form.
The HR operations also, if we denote “sources” by nullary function symbols.
Technical details are omitted here.

Although there exist infinitely many quantifier-free formulas written with fi-
nitely many variables and relation symbols, there are only finitely many quantifier-
free formula up to logical equivalence, and this equivalence is decidable. It fol-
lows that there are only finitely many quantifier-free operations STR(Σ) −→
STR(Γ) where Σ and Γ are finite sets of relations. We obtain the inclusions of
signatures :

HRg ⊆ VR ⊆ STR

where HRg denotes the restriction of HR to graphs obtained by taking graphs
and not hypergraphs as basic objects. Then follow the inclusions :

EQ(HRg) ⊆ EQ(VR) ⊆ EQ(STR)

and the reverse inclusions for the corresponding classes of recognizable sets
of graphs by Property 5.

The inclusion EQ(HRg) ⊆ EQ(VR) is proper : the set of all cliques is
VR-equational (easy to see ; cliques have clique-width 2) but not HR-equational
because cliques have unbounded tree-width. If a set of graphs is VR-equational
but is “without large complete bipartite subgraphs” which means that for some
large enough n, no graph in L has a subgraph isomorphic to Kn,n then it is
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HR-equational. The intuition about this result is the following : the operation
in the VR signature which is not expressible in terms of HR operations is that
which adds to a graph edges forming a complete bipartite subgraph. If L has no
graph containing large Kn,n’s, this means that this operation is not used in a
crucial way hence that each of its occurrence can be replaced by a composition
of HR-operations.

A result proved in [4] establishes a similar result for recognizable sets of
graphs. First the inclusion REC(VR) ⊆ REC(HR) is proper because every
set of cliques is HR-recognizable, but the set of cliques of size n such that n
belongs to a set of positive integers which is not recognizable (like the set of
prime numbers), is not VR-recognizable. Second, we have :

Theorem 1 [4] : If set of graphs without large complete bipartite subgraphs
is HR-recognizable, then it is VR-recognizable.

Hence the same combinatorial condition collapses simultaneously the two
proper inclusion of EQ(HR) in EQ(VR) and of REC(VR) in REC(HR). How-
ever, the proofs of the two results are different.

We now discuss the inclusion of VR in STR. We have the following :

Theorem 2 [4] : A set of graphs is VR-equational iff it is STR-equational,
and it is VR-recognizable iff it is STR-recognizable.

The first result is a direct consequence of characterizations of VR-equational
and STR-equational sets in terms MS transductions in Theorem 7 below. The
second one is proved in [4]. We only explain here the meanings of these results.

To generate graphs by means of VR-operations, one uses only structures
over the following relation symbols : a single binary relation edg representing
edges linking vertices, and an unbounded number of unary auxiliary relations
for representing vertex labels. These auxiliary relations need not occur in the
generated graphs. They are only useful at intermediate stages of the generation
process to establish edges. Among the quantifier-free unary operations used in
STR, are operations that may delete relations. This means that if one uses
the operations of STR to generate graphs, some intermediate generated objects
may be hypergraphs (represented by non-binary relational structures). One
might think that because of this richer signature, the family EQ(STR) would
contain sets of graphs not in EQ(VR), but this not the case. The signature
VR is “strong enough” to yield the same equational sets as the apparently more
powerful signature STR, which uses domains (sets of hypergraphs) not in the VR
algebra of graphs. Hence in order to generate graphs represented by relational
structures with one relation of arity 2, the auxiliary relations may be limited
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to arity 1. A similar statement can be given for recognizable sets : to establish
that a set of graphs is STR-recognizable, it is enough to produce a congruence
for the VR-operations, without having to extend it to a congruence on all the
domains STR(Σ) for all Σ’s.

The above discussion showing that for generating graphs, one need not use
auxiliary relations of arity more than 1 can be repeated for each maximal arity :
for generating hypergraphs with hyperedges with at most n distinct vertices, one
need not auxiliary hyperedges of arity more than n−1. This is formally defined
and proved in [1]. Letting STRn denote the restriction of STR to relations
(and the corresponding domains and operations) of arity at most n we get the
following statement :

Theorem 3 [1] : A set of hypergraphs of arity at most n is STRn-equational
iff it is STR-equational. It is STRn-recognizable iff it is STR-recognizable.

Hence, with respect to sets of hypergraphs of maximal arity n, the full
signature STR is equivalent to STRn, its restriction to structures of arity at
most n. Stronger formulations and their proofs can be found in [1].

4 Monadic Second-Order logic and graph prop-
erties

Sets of graphs can be specified either recursively, in terms of base graphs and
application of operations : this is what yields an equation system.Sets of graphs
are also frequently specified by characteristic properties. Considering a graph
as a logical structure with relations representing adjacency or incidence makes
it possible to formalize its properties by logical formulas.

First-Order logic can only express local properties like bounds on the degrees
of vertices, hence is here of limited interest. But Monadic Second-Order logic,
(MS logic in short) i.e., the extension of First-Order logic with variables denot-
ing subsets of the domains of the considered structures is quite powerful. It can
express both coloring properties (for instance that a graph is 3-vertex colorable,
an NP complete property), and path properties (like connectivity, existence of
cycles, planarity via Kuratowski’s theorem). But a property based on the exis-
tence of bijections, like the existence in a graph of a nontrivial automorphism,
is provably not MS expressible.

A fundamental theorem says that :

Theorem 4 : Every MS definable set of graphs is VR-recognizable. More
generally, every MS-definable set of relational structures is STR-recognizable.
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The algorithmic applications of recognizability reviewed in the first section
are based on this result. One can actually improve Theorem 4 and its algorith-
mic consequences as follows. If instead of representing a graph by a relational
structure, the domain of which is the set of vertices and which has a binary
relation representing the edges, we use its incidence graph, i.e., the relational
structure the domain of which consists of vertices and edges, and equipped with
an incidence relation, then, MS logic becomes more expressive because one can
denote sets of edges by set variables. The same can be done for hypergraphs,
and we denote by MS2 the use of MS logic with this representation of graphs
or hypergraphs. That a graph has a Hamiltonian circuit is MS2 expressible but
provably not MS expressible. Then we get the following result :

Theorem 5 : Every MS2 definable set of graphs or hypergraphs is HR-
recognizable.

If we compare Theorems 4 and 5 in the perspective of their algorithmic ap-
plications, we can see that Theorem 5 concerns more properties, namely the
MS2 definable properties instead of the more restricted MS definable ones, but
less families of graphs, namely those of bounded tree-width (generated by fi-
nite subsignatures of HR) instead of bounded clique-width (generated by finite
subsignatures of VR).

5 Monadic Second-Order Transductions

Transformations of words and trees are based on finite automata, equipped with
output functions (sequential machines, tree-transducers), or on rational expres-
sions and homomorphisms (rational transductions between languages). Since
for graphs we have neither automata nor rational expressions, we must base
graph transformations on another model. Monadic Second-Order logic offers
the appropriate alternative.

An MS transduction : STR(Σ) −→ STR(Γ) is a partial multivalued func-
tion specified by a finite sequence of MS formulas, using (possibly) set variables
called parameters, and forming its definition scheme. A structure S in STR(Σ)
is transformed into a structure T in STR(Γ) as follows : one select values for the
parameters that satisfy a formula, the first one in the definition scheme. Then
one builds a structure S0 consisting k disjoint “marked” copies of S (k is fixed in
the definition scheme). The output structure T is defined inside S0 by restricting
the domain and by defining its Γ−relations from the Σ−relations in S0 and the
“marks”. These restrictions and definitions are done by MS formulas depend-
ing on the parameters. The transformation is multivalued because in general
several choices of parameters can be made. An MS transduction defined by a
parameterless definition scheme is a partial function. An important difference
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with rational transductions is the fact that the inverse of an MS transduction
is not always an MS transduction whereas that of a rational transduction is a
rational transduction. With respect to the equational and recognizable sets, MS
transductions behave like homomorphisms as we will see.

The fundamental property of MS transductions is, with the above notation:

Theorem 6 : The monadic second-order properties of the output structure
T can be expressed by monadic second-order formulas in the input structure S
in terms of the parameters used to define T from S.

It follows that the composition of two MS transductions is an MS transduc-
tion (a result much more important than the closure on inverse). It follows also
that if a set of structures has a decidable monadic second-order satisfiability
problem, then so has its image under an MS transduction.

The mapping from a term in T (HR) (the set of finite HR-terms), T (V R) or
T (STR) to the corresponding graph or hypergraph is an MS transduction. It
follows that an equational set of graphs is the image under an MS transduction
of a recognizable set of terms, equivalently (we omit details) of the set of finite
binary trees. This result have a very important converse :

Theorem 7 : If a set of graphs (resp. a set of hypergraphs) (resp. the set
of incidence graphs of a set L of hypergraphs) is the image of the set of finite
binary trees under an MS transduction, then this set is VR-equational (resp. is
STR-equational) (resp. is HR-equational).

This theorem is somewhat similar to the one saying that the context-free
languages are the images under rational transductions of the Dyck language,
which is actually a coding of trees by words. An important consequence is the
following :

Theorem 8 : The image of a VR-equational set (resp. of an STR-equational
set) (resp. of an HR-equational set) under an MS transduction of appropriate
type is VR-equational (resp. STR-equational) (resp. HR-equational).

"Appropriate" means that it produces graphs from graphs in the first case,
and that it transforms hypergraphs through their incidence graphs in the third
case. Hence, with respect to equational sets, MS transductions behave like
homomorphisms. They do the same with respect to recognizable sets since we
have :

Theorem 9 [1] : The inverse image of an STR-recognizable set under an
MS transduction is STR-recognizable.

This result is not very surprizing, because we know already from Theorem
6 that the inverse image of an MS definable set is MS definable, which yields
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Theorem 9 for those particular recognizable sets that are MS definable. However
it shows how algebraic and logical notions are tightly linked.

6 Open questions and research directions
We only mention a few questions related to the notions discussed in this overview.

1. Which quantifier-free operations on relational structures preserve recog-
nizability ?

2. Can one define a complexity measure on relational structures generalizing
clique-width and that is linked to the signature STR or rather, to a subsignature
equivalent to it like STRn ?

3. How can one enrich the signature STR into a larger signature equivalent
to it ?

Concerning question 1 : Not all quantifier-free operations preserve recog-
nizability : the operation that deletes a relation R of arity at least 2 does
not. Concerning question 2, clique-width is a complexity measure linked to VR,
which is a subsignature of STR equivalent to it for graphs. Answers to question
3 can be found in [1] but they do not close the question.
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