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Labelling Schemes for solving First-Order and Monadic Second-Order Queries  
in Graphs not necessarily of bounded clique-width 

 

Aim : to  check  properties of  vertices and to compute functions  like 

distance  from  fixed  short  vertex labels. 

Short  =  of  length O(log(n)) or  O(log2(n))  bits  ; n = number of vertices 

 Wanted : for fixed class of graphs C and  function F  (includes property) two  

                algorithms : 

    Algo  A  : defines  for  G in C  a label  J(x)  for each x in V = V(G). 

    Algo  B   : computes  F(u,v,X,Y)   from  J(u), J(v), J(X), J(Y)   

   for vertices u, v, sets of vertices X,Y  in   some G in C   

 Idea : all necessary information from G is distributed  on vertices;  

         computing  F   need not process  the graph  (this has been done by A). 
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Results  
Adjacency (implicit representation)  with labels of  size  O(log(n)): 

   Bounded arboricity (includes  planar, bounded tree-width) 
   Bounded clique-width,  
   Interval graphs (unbounded clique-width and arboricity) 
 
Distance   Static : all     Θ(n)   
       trees, bdd tree-width, clique-width    Θ(log2(n))   
       planar between   O(n1/3)   and   O(n1/2)  
       interval  graphs   O(log(n)) 
 
Distance  Dynamic : obstacles (forbidden parts, specified in query) 

      to be computed  :  d(u,v,X,F), the distance of u and v in (G-F)\X 

      X : forbidden vertices,  F : forbidden edges. 

       Clique-width <  k  : O(k2.log2(n))       (CT, stacs07) 
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Connectivity labelling (dynamic)  

      Clique-width <  k  : O(k2.log(n))        (CT, stacs07) 

      Planar graphs with obstacles :  O(log(n))  (CGKT 08) 
    

General  logical  approach  
 

Monadic second-order properties (optimization or counting  functions) : 

Clique-width <  k  : O(f(k).log(n)) (O(f(k).log2(n)) )    (CV 2003) 

First-order properties and counting functions : 

Classes of graphs “nicely decomposable”,  
of  locally   bounded  tree-width  or  clique-width :  
   O(log(n)) or  O(log2(n))      (CGK 2008) 
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Tools  
 

Graph  structure properties :  unions of forests,    tree-decompositions,  

 (balanced)  clique-width   expressions,  

 decompositions in 3-connected components (for planar graphs) 

 covering by families of  subgraphs  of bounded  clique-width  

          with limited overlapping. 

 Straight-line  planar embeddings (De Fraysseix et al., Schnyder) 

 

Monadic second-order  formulas  on terms  translated into finite automata  
   (Doner, Thatcher-Wright). 

 

First-order  formulas  decomposed into  local and  “connected”  formulas  
   (Gaifman, Frick) 
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Bounded  arboricity  
 

G  is the  union  of  k  edge-disjoint  rooted  forests   F1, …, Fk 

fi   is  the  (partial)  father  function  in  forest   Fi. 

We define label  J(x) =  (x, f1(x), …, fk(x))   of size   <  (k+1). ┌ log(n) ┐ 

 

Adjacency  check : 

u   and   v  are  adjacent  if  and only if : 

u = fi(v)   or   v = fi(u)  for some i. 
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Cographs 
Built  from vertices  with   two binary  

operations :  

⊕  : disjoint union  

         ⊗ :  complete join  = disjoint union plus  

 all edges between the  two arguments 

Adjacency labels  are  words (branches) 

J(x) =  ⊗ 1 ⊕ 1 ⊗ 2 

J(y) =   ⊗ 2 ⊗ 1 ⊕ 2 ⊗ 1 ⊗ 1 

 The least common ancestor of  x and y  is labelled by ⊗, hence they 

are adjacent.  The size  of  J(u) is not  O(log(n)). By using other graph 

operations one  makes   terms   balanced   i.e., of height  O(log(n)). 
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Monadic Second-Order (MS) Logic  
=  First-order logic on power-set structures  
 
=  First-order logic extended with (quantified) variables  

denoting subsets  of the domains. 
 
MS  properties :   transitive closure,  properties of paths, connectivity,  

 
planarity  (via Kuratowski, uses connectivity),   k-colorability. 
 
 

Examples  of  formulas  for   G =  (  VG , edgG(.,.)  ), undirected 
 

Non connectivity : 
∃X ( ∃x ∈ X  &  ∃y ∉ X  &  ∀u,v (u ∈ X  &  edg(u,v) ⇒ v ∈ X)  ) 

 
2-colorability (i.e.  G  is   bipartite) : 
∃X ( ∀u,v (u ∈ X  &  edg(u,v) ⇒ v ∉ X) &∀u,v (u ∉ X  &  edg(u,v) ⇒ v ∈ X) ) 
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Short  labels  for  MS  definable  queries  
(Courcelle and Vanicat, Discrete Applied Maths, 2003) 

 

Theorem : 1) Given k  and a  monadic  second-order  graph property P(X1,…,Xm) : 

for every graph G defined by a clique-width expression of width  k, one can 

define a label J(x) for each vertex  x  of  G  such that, from the labels  J(y)  for every y 

in sets of vertices A1, …, Am,  one can determine if   P(A1, …,Am)   is true. 

Size of J(y) :    O(log(n)) 

Preprocessing time  :  O(n.log(n)) 

Answer to query  :  O(a.log(n))      where a = ⎜A1 ∪…∪Am ⎜ 

2)   For MS optimization functions (like distance) or counting functions (number of 

tuples of vertices b1,…,bq  that satisfy P(b1,…,bq,A1,…,Am)  for given A1,…,Am), 

we  replace  log(n)  by   log2(n) 
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Basic result :  the case  of  terms     (instead of graphs). 

 

We consider  terms   t  in T(F,C)       (F : binary operations, C : constants),  

Every  MS  formula  ϕ(X1, …,Xm)  with free variables denoting sets of occurrences  of 

constants  in t  can  be translated  into a deterministic finite automaton A for the  

signature  F ∪ Cx{0,1}m   such that A  accepts  a term  t  in T(F,Cx{0,1}m)  iff  

     t   ⎜=   ϕ(A1, …, Am) 

where  t  is  t   with the  {0,1}m labels  attached to occurrences u of constants and  

 Ai  is  the  set of occurrences u  of some (c,w) in Cx{0,1}m  such that   w[i]   = 1. 

(Intuition  : u  occurrence  of   (c,0,1)  means that   u  is  in  X2  and  not  in  X1. 

The  set of terms  accepted  by A  encodes  terms and the m-tuples  of sets  of 

occurrences of constants (leaves  of  t   as a tree)   that satisfy ϕ  in  these  terms.) 
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The  method   for  ϕ(X,Y)  (m=2). 

Assuming   A  constructed   and   t  in T(F,C)  be given : 

We run A  on  t  with  each c  replaced by (c,0,0)  (i.e.,  for empty  sets X,Y), 

we mark each node with the  corresponding  states : p,q,r,s, …  

If X∪Y is not empty, we modify accordingly some leaves. The new  run  will only  

modify  the states  on the  branches  from  these  leaves  to  the root. 
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 These new states can be obtained from : 

the states on these  branches and those at distance 1  of these branches (because  

the new run is the same  on the corresponding subterms).  

 This  information  for  a branch from x  can be stored  in  a word J(x)  like : 

[f,0,p] [g,1,s] [h,0,p] [f,1,r] [g,0,q] [h,0,p]c 
of size proportional to the length of the branch ( = O(log(n)) for a balanced term with  n  leaves).  
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The case of graphs : 
For  graph  G  defined as val(t)  for a term  t  in T(F,C)  (F, C operations defining 

clique-width), then  V(G)  =  the set of occurrences  of constants  in t. 

 Every  MS  formula  ϕ(X1, …, Xm)  can  be translated  into  an equivalent MS  

formula  ψ(X1, …, Xm)  on the term : 

G   ⎜=   ϕ(A1, …, Am)      iff      t   ⎜=   ψ(A1, …, Am). 

 

 We apply to   ψ   the   previous   construction. 

 Counting functions : at each node w of t, we store numerical information : for 

each state p, the number of assignments  of   0,1’s  to the leaves below  w  that  yield 

state  p  at  this node. This  table  has   size    #-of-states. ┌ log(n) ┐ 

 Optimization :  similar method, the table indicates the maximum value reachable 

with state p  for some  assignments  of   0,1’s. 
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Short  labels  for connectivity  check in planar graphs with  obstacles. 
(Courcelle, Gavoille, Kanté, Twigg    2008) 

 Question  is :  are  u and v  connected in  (G-F) \ X   ? 

Method  :  

 (1) We  treat   3-connected  planar graphs  and their edge subdivisions (new 

vertices inserted  on edges). 

 (2)  We treat  2-connected  planar  graphs decomposed in 3-connected blocks. 

 (3) We treat  connected planar graphs  decomposed as trees of  2-connected 

components. 

  

 For case (1) we use a geometric method. 

 For cases (2) and (3) we use a labelling  à la  Courcelle-Vanicat  for querying the  

decomposition trees, combined with labellings  of  type (1)  for 3-connected blocks. 
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3-connected  planar  graphs 

 

   

  

  

  

  

  

  

 

  A  graph  G       Its augmented  graph  G+  

          = G   with  “face-vertex  edges”  
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X  =   the  set of 4  big  blue  vertices.    Deleting   X  separates  

Its barrier  Bar(X)  is  the set  of  thick blue   x  and  y   but  not   y and z. 

edges (consists  of all  u--f--v  where  u,v   The barrier  separates  topolo- 

in X and   f  is a face-vertex )      gically  x and y  but not y and z 
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To be done : 

1) Construct a  straight-line  embedding of G+ with integer coordinates of maximum 

value O(n). This is possible since G+  is  simple because G is 2-connected. (dF, Sch) 

2) From labels  of  vertices in X, determine the coordinates of the end vertices  of the 

edges in Bar(X). 

3) Using  computational geometry algorithm, test whether  two vertices u, v  given by 

their coordinates  are  separated  in  the  plane  by  Bar(X). 

For 2) since  G+ is planar, it is the union of 3 forests. One uses an adjacency 

labelling  for  G+,  from which, for any two vertices  u,v  one can obtain the at most 

two  faces f and h  to which they are both adjacent, as values of gi(u) or gi(v) for 

some i  = 1,…,30  where  g1,…,g30  is a finite list of partial functions. (Which i’s give 

the faces incident with u and v depends on tests  of  the  form  “gj(u) = gk(v) ?” ). 

Labels :  D(x) = (C(x), C(g1(x)),…,C(g30(x))) where C(u) = integer coordinates  of u. 
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Overview  of  the  algorithm(s) : 

 

        D(X)                     D(u), D(v) 

 

G  G+, embedding  {D(x)}    Bar(X)  data      Yes  or  No 
            (decomposition)                                          structure for   u  and  v  
            geometric queries   linked in G\X ? 

                

           time O( n.log(n) )       time O( ⎜X ⎜.log(⎜X⎜) )       time  O(log( ⎜X ⎜)) 
   n vertices  

 

First  we  process  G,  then  X  for fixed G.  

Then connectivity queries  for various  u,v,  and fixed X. 
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General case :  Tool 1  :    the tree  of  2-connected  components. 
 Its nodes are  the vertices of  G  and  nodes representing 2-connected compo-

nents (A,B,C,…). Adjacency = membership of a  vertex in a 2-connected  component. 

 
Fact :  X separates u and v in the graph G if  u and v are  separated  by  X in the tree 

or if  they are separated in G  by X∩B,  where B is a problematic biconnected 

component on the path  in the tree between u and v (like A,B,E, with > 2 vertices in X). 
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  A  labelling  K of the tree can be built with Courcelle-Vanicat’s technique,  

from which : 

 

one  can  detect  if  the first case holds   

and, if it does not, those problematic 2-connected components  B  that may 

separate u and v.  

 

For each of them, the geometric method (using labelling  D) can be used. 

 

  The label  of x  is  then  (D(x), K(x)).     (Omitting technical details). 
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Tool 2: 2-connected  components decomposed in 3-connected ones 

 

 
Where is the difficulty ? 

 

 

 

 

For such graphs, x and y are incident with an unbounded number of 

faces, hence one cannot specify all of them with a fixed number of functions, 

and one cannot  find the coordinates  of all edges  in  Bar({x,y}). 
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Method  : we replace  the barrier by a reduced barrier :  if x  and y are 

incident with at least 3 faces, f1,…,fk  we put in RBar({x,y})  only  x— f1  and  

y— f1.  

 

Problem : The reduced barrier RBar(X)  will miss  some cases  where  

the  given vertices are  separated  by the “full”  Bar(X).  

 

These cases  will be detected  on  the decomposition  tree   in 3-

connected  components, by a  labelling  of  this tree  with  using  Courcelle 

and Vanicat’s method  and several  additional  nice  tricks. 
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Extension   1 :  deleting  edges  and  adding  new links  
 

X  :  deleted vertices, 

F   : deleted edges, handled   as  degree 2  vertices  in  a subdivided  

graph 

H   :  new  links  between pairs of vertices. 

 

Query :  Are  u and  v connected  by a path in ( (G – F) \  X ) + H ? 
The  data structure  is  built   for   X   and   F  

Query takes time  O(⎜X  ⎜. ⎜H  ⎜2)
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Extension  2 :  Graph covers with limited overlaps ; combining 

schemes 
 

 

 

 

 

 

 

Connected  blocks with      Skeleton graph 

O(log(n)) labelling          bipartite, degree  <  d 

           O(log(n)) labelling 
 

The two labelling schemes can be combined  into a single O(log(n)) one.
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First-order formulas  in graphs of unbounded clique-width 

(Courcelle, Gavoille, Kanté,  2008) 
 

First-order formulas  with  set  arguments (unquantified set variables). 

 Motivation  (networks with failures,  graphs with obstacles) : 

 A  formula  ϕ(x1,…,xm,X)  can express that   G \ X   ⎜=  ψ(x1,…,xm).  

 Definitions  and  notation  

  N(G,t, a1,…,am)  =  all vertices at distance  <  t  of  some  ai. 

  t-local  property  with  tuple  B  of  set  arguments (treated as colors): 

   P(a1,…,am,B)   true in G   if  and  only  if    

P(a1,…,am,B’)  true in G[ N(G,t,a1,…,am)],  

where  B'i  = Bi ∩ N(G,t,a1,…,am) 

  Remark : Distances   do   not   depend   on    B  (colors) 
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  t-connected  property :  t-local  and  

  P(a1,…,am,B)   true  in  G   implies   d(ai,aj) <  2t+1   
 

        Basic t-local  “sentences”  with  free  set  variables : 

  ∃x1,…,xm (∧ i ψ(xi,X) ∧  ∧i,j   d(ai,aj) >  2t+1) where  ψ  is  t-local 
 
 Theorem   [(1) Gaifman 1982, (2) Frick 2004] : 

(1) Every  FO formula ϕ(x1,…,xm,X)  is effectively  equivalent to a 
Boolean combination  of  t-local  and basic  t-local  formulas. 

(2) Every  t-local formula  is effectively equivalent to  a Boolean 
  combinations  of   formulas  of the form  

     ∧ k ψk(ui,X) ∧  ∧i,j  d(ui, uj) >  2t+1 
   where  each ψk  is t-connected, the  ui‘s are  tuples of free  
   variables  and  d(ui, uj) >  2t+1  means   d(v,v’) >  2t+1  
   for each  v in  ui  and v’ in uj. 
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Nicely  decomposable classes of graphs  C  : 

 

For  every r,  there exists  d and integer function g, and one can construct in 

polynomial time for every graph G in C a family of sets  W, called a cover, 

such that : 

(1)  V(G) is the  union of the sets in W  and  furthermore : 

    for every vertex u, N(G,r,u) ⊆  U  for  some  U ∈ W. 

(2)  The intersection graph of the cover has degree < d, 

(3)  For all  U1,…,Uk  in W ,   cwd(G[U1 ∪… ∪Uk]) < g(k). 

 

Examples : Bounded degree, planar, graphs covered by blocks of bounded 

clique-width  and bounded overlap, excludes a minor,  others ??? 
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Labels for local  queries  ϕ( x1,…,xm,Y) 
 

It is enough to  consider  formulas  that  are  Boolean  combinations  of : 

(a) d(xi,xj) < 2t+1    (and their negations) 

(b) ψk[N(G,r, xi)]( xi1,…,xip,Y),  ψk   t-connected, 

for r = m(2t+1) 
 

We build a cover  W  for this r, with parameters (d,g).  

It has at most  n.d  sets.  

In each  U  of  W, we construct  a CV-labelling  JU  for checking 

formulas (a), (b).   We   let   for  each  vertex  x : 

L(x) = (x, {(U, JU(x)) / N(G,r, x) ⊆ U}, {(U, JU(x)) / x ∈ U, N(G,r, x) ⊆  U}). 
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How to use   L(a1),…,L(am),  L(B1),…,L(Bq)   ? 
 

(1) For each pair ai,aj , we determine if d(ai,aj) < 2t+1 : this is true iff 

there exists U in W  with  N(G,r,ai) ⊆ U, aj ∈ U, and  d(ai,aj) < 2t+1  in  G[U].  

From L(ai),L(aj), we can find possible U  and  check  distance using JU. 

 

(2) From  Frick’s decomposition,  we  can determine those formulas 

ψk[N(G,r, ai)](ai1,…,aip,B ∩ N(G,r, ai)) to check. Such a formula holds iff 

there exists U in W  such that N(G,r,ai) ⊆ U and  ψk[U](ai1,…,aip,B∩U) 

holds. 

From labels, one can determine the sets  B ∩ U  and  check  the  truth.  

 Remark : We need  only  cwd(G[U]) < g(1)  for   all   U   in  W. 
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First-order  queries  with set arguments. 
From Gaifman’s Theorem, we  need  check  “sentences” (with set arguments) : 

  ∃x1,…,xm (∧ i ψ(xi,X) ∧  ∧i,j   d(ai,aj) >  2t+1)      where  ψ  is  t-local. 

We build   W   a  (2t+1,d,g) cover 

Define : K(U) = {a   /  N(G,2t+1,a)  ⊆  U} 

γ : a distance-2  coloring  of  the   

intersection graph of  W 
using  fixed number  of colors (depends on d) 

W(i,j) = union of blocks of  colors i and j 

G(i,j) = G[ W(i,j)] = disjoint  union  of  unions 

of pairs of blocks , hence  cwd(G(i,j)) < g(2). 
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For each  graph G(i,j)  we construct a labelling    (tool from Courcelle-Vanicat) 

for  checking the  formulas : 

∃x,y (d(x,y) >  2t+1 ∧ ψ(x,B) ∧ψ(y,B) ∧ “δ(x)= i” ∧ “δ(y)= j”) 

where   δ(x)= i   iff   a ∈ K(U) , γ(U) = i, and i is smallest of this form.  

 Hence, δ  is a coloring  of G  derived  from  W  and  γ  that we add to the 

graph  before computing  the labelling. 

 A key fact is that  d(a,b) >  2t+1  in  G   iff   d(a,b) >  2t+1  in  G(i,j),    

if  δ(a)= i and  δ(b)= j. 

 If   m>2 , we use for  γ  a  distance-m  labelling  of the intersection graph 

and the bound  g(m)  instead of  g(2)  for  the  cwd(G(i1,…,im))’s. 
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The labelling  L(a) of  a   consists of  :   a, δ(a), and 

  -  the  labels of  a  relative  to the (finitely many)  graphs  G(i1,…,im), 

  containing  it ,  for the  sentences  to  test, 

- the truth  values of  the  sentences  to  check  in  

the graphs G(i1,…,im), in case the set arguments are all empty.  
  

How  to  use   L(B1),…,L(Bq)   ? 

1.  One  determines  the  graphs  G(i1,…,im)  that  do not meet any set 

B1,…,Bq. For them, one  gets the desired truth value, from the label of any 

element of  B1,…,Bq . If one is true we can stop.  
 3.   For all other graphs G(i1,…,im), we compute the restriction of B to 

them, and using the labels, we determine  the validity of the considered 

“sentence”  in G(i1,…,im). If one answer is positive, we stop. 
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Conclusion 
 

Extensions  and  open questions : 
 

 Graphs  on  nonplanar  surfaces 

 Counting queries 

 Enumeration (better than counting) 

 Understanding  “nicely decomposable  classes”  

 Larger  labels  against  less  conditions on graphs 

 How  hard is it to update  the  structure  if  one  adds  vertices and/or 

edges ? (deletions are handled  by  set  arguments  included  in queries). 

 Reachability  in directed  planar  graphs with obstacles. 
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Graph   operations  defining  Clique-width 

 

Clique-width has no  combinatorial  characterization  but is defined in terms of  

few very simple  graph operations  (giving  easy  inductive proofs). 

Equivalent notion: rank-width (Oum and Seymour) with better structural and 

algorithmic properties. 
 

Graphs are simple, directed or not.   

k   labels  :  a , b , c,  ..., h.   Each vertex has one and only  one label ;  

a  label  p  may label several vertices, called  the   p-ports. 

 

One  binary operation:   disjoint  union    :   ⊕ 
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Unary  operations:  Edge addition denoted  by  Add-edga,b 
 

Add-edga,b(G)   is  G augmented with (un)directed edges  from every   a-

port   to every  b-port. 

 

 

      H = Add-edga,b(G) ; only 5  new edges added  

The  number  of added edges  depends  on  the  argument graph. 
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Vertex  relabellings :  
Relaba       b(G)  is  G  with every vertex  labelled by  a   relabelled into b 

 

Basic graphs   are those with a single vertex. 

 

Definition: A  graph  G has  clique-width ≤ k  ⇔  it can be constructed from 

basic graphs  with the  operations ⊕, Add-edga,b  and  Relaba      b  with  k 

labels.    Its  clique-width  cwd(G)  is the   smallest  such  k. 

 

  

Proposition : (1) If  a  set of  simple graphs  has  bounded  tree-width, it has  

bounded  clique-width, but  not  vice-versa. 
 

(2) Unlike tree-width, clique-width is  sensible to edge directions: Cliques 

have clique-width  2, tournaments have unbounded clique-width. 
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Classes of unbounded tree-width and bounded clique-width. 
 

 Cliques (2),  

 Complete bipartite graphs (2),  

 Distance hereditary graphs (3),  

 Graphs without P5 and 1⊗P4 (5), or 1⊕P4 and 1⊗P4 (16) as induced 
subgraphs.  (many similar results for exclusion of induced  subgraphs  with 4 and 5 
vertices).  
 

 

Classes of unbounded clique-width : 
 Planar graphs of degree 3,  

 Tournaments,  

 Interval graphs,  

 Graphs  without induced  P5. 
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Example : Cliques have clique-width 2.  

 
 

Kn  is   defined   by tn where  tn+1  =   Relabb      a( Add-edga,b(tn ⊕ b)) 
 

Another  example :  Cographs  are generated  by  ⊕  and  ⊗  defined by : 

G ⊗ H  =  Relabb      a( Add-edga,b (G ⊕ Relaba      b(H)) 

            = G ⊕ H  with  “all edges”  between  G  and  H. 



 39

 

Proposition :  (a) Deciding  “Clique-width < 3” is a polynomial problem. (Habib et al.) 
 

(b) The complexity (polynomial or NP-complete) of  “Clique-width = 4” is unknown. 
 

(c ) It is  NP-complete  to  decide  for given k and G  if  cwd(G) < k. (Fellows et al.) 
 

(d) There exists  a cubic approximation algorithm  that for given k and G  answers 

(correctly) :  

either  that cwd(G) >k, 

  or  produces  a  clique-width  term using  22k+1 labels. (Hlineny and Oum 2007) 
 

 This  yields  Fixed Parameter Cubic  algorithms  for many hard problems (MS  

property, (ex. 3-colorability), MS optimization function, (ex. distance), MS counting  

function, (ex. #  of paths). 

        

 


