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Topics 
 

 

  Bounds on clique-width in view of  constructing 

usable  “fly”-automata  for checking  MSO properties   

(and doing other computations) by  FPT algorithms   

parameterized by  tree-width or clique-width. 
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Automata  for  MSO  model-checking. 

 

 How to implement the following algorithmic meta-theorem ? 

 

Theorem : (1) For every k, every MSO graph property  can be checked  

in linear time for graphs of clique-width at most k, given by terms 

witnessing this bound.   

 (2)  For every k, every MSO2 (= MSO with edge quantifications) graph 

property can be checked in linear time for graphs of tree-width at most k, 

(preferably  given  by  a term witnessing this bound).   
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 In both cases, a finite automaton can be constructed to recognize: 

  - the terms  written  over  the  finite  set  of  operations   

  - that  define graphs satisfying the considered property. 

 
 

 Two (well-known) difficulties: 

  Parsing input graphs (finding the terms, equivalently, the 

corresponding  decompositions): NP-complete problems; 

 

  Huge sizes of the automata: unavoidable (Frick-Grohe 2004). 
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 To remedy  the  size problem: 
 

  Irène Durand and myself have introduced fly-automata (in French 

“automates  programmés”) whose states and transitions are described and 

not tabulated.  

  A  deterministic “finite” fly-automaton with 21000 states computes 

“on the fly” only 100 states and transitions on an input term of size 100. 

 

  As  states  are not listed, a  fly-automaton can use an infinite set of 

states : a state may include counters – and thus compute values : 

e.g., the number of p-colorings, or of “acyclic” p-colorings, of a graph. 
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 The  system AUTOGRAPH by Irène Durand is based on clique-width. 

[B.C.&I.D.: Automata for the verification of monadic second-order graph properties, J. 

Applied Logic, 10 (2012) 368-409]. 

 

 Successful computations:  (1)  Number of 3-colorings  of  the   

6 x 525  grid  (of clique-width  8)  in  10 minutes.  

 

 (2)  4-acyclic-colorability  of  the  Petersen  graph  (clique-width 5)  in  
1.5   minute, from a term in T(F6). 
 
 
 (3-colorable but not acyclically;  

 red  and  green  vertices  

 induce  a  cycle). 
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 (3)  The  McGee graph   (of  clique-width 8) 

 

defined by a term in T(F10) 

of  size  99  and  height  76. 

 

It  is 3-acyclically  colourable. 

Checked in 40 minutes. 

 

(Even in  2  seconds by enumerating the accepting  

 runs,  and  stopping  as soon as  a  success is found). 
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       Various  facts  
 

 (1) What matters in a fly-automaton is not the number of states but the 

maximum size of a state in a run on the given term (this size determines 

the time taken to compute each transition). 

  

 (2)  Theorem (2) for MSO2 and bounded tree-width reduces to 

Theorem (1)  for MSO and bounded clique-width because we can replace: 

  G  �  Inc(G)  (its incidence graph) 

  MSO2  on  G   =  MSO  on  Inc(G), 

  twd(G) =  k  ⇒   cwd(Inc(G)) <  k+3   (T. Bouvier, 2014; see below). 

       No exponential jump ! 
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 (3)  We construct fly-automata  in  uniform  ways  from  logical des-

criptions  of  the problems.   

    

 (4)  Parsing is difficult in general but the graphs  arising  from concrete 

problems are not random. They usually have “natural” hierarchical  

decompositions from which terms of small  tree-width or clique-width are 

not too hard to construct. 
 

  This situation arises in compilation (flow-graphs of structured 

programs), in linguistics and in chemistry. It is thus interesting to develop 

specific parsing algorithms for graph classes relevant to particular 

applications.   
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The  MSO  meta-theorem  through  finite  automata: 

the  basic  scheme 

       k            ϕ    (logical  formula)   

      

             Automaton Constructor  

                   Yes  

G                   Graph Analyzer                t              A(ϕ,k)           

                    No  

       Error : cwd(G) > k                

Steps       are  done  “once  for  all”, independently   of   G   

A(ϕ,k):  “finite”  automaton,  running  on  terms  t  

cwd  can  be  replaced  by  tree-width  or  rank-width.  
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The  MSO  meta-theorem  through fly-automata:  a  simpler  scheme 
  

                ϕ    (MSO  formula)

                             

      

             Fly-automaton Constructor  

                  Yes  

G                   Graph Analyzer                 t                 A(ϕ)           

                  No   

 A(ϕ): infinite fly-automaton over the countable set of all graph 

operations that define clique-width.  The  time  taken  by  A(ϕ)  depends 

on the labels that occur in  t,  not only on the size of  G or of  t. 
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Definition :  Fly-automaton    (FA)   

 

A = < F, Q, δ, Out >  

F :  finite or  countable (effective)  signature   (set of operations), 

Q :  finite or countable (effective)  set of states   (integers, pairs of integers, 

finite sets of integers: states can be encoded as finite words, integers in binary), 

Out : Q � D   (an effective domain, i.e., set of  finite words), computable. 

δ : computable  (bottom-up)  transition  function 

 

Nondeterministic  case :  δ   is  finitely  multi-valued. 
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This  automaton defines  a  computable  function : T(F) � D   

    (or  : T(F) � P(D)  if  it  is  not  deterministic) 

 

If  D = { True, False },  it  defines  a  decidable  property, equivalently, 

   a  decidable  subset  of  T(F). 

 

 

Deterministic  computation  of  a  nondeterministic  FA  :  

 bottom-up   computation  of  finite  sets  of  states  (classical  simulation 

  of  the determinized automaton):  these states  are  the  useful  ones  of   

the  determinized  automaton;  these sets are  finite  because the transition 

function is finitely multivalued.  

 Fly-automata  are  “implicitly  determinized” and  they run deterministically. 
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Examples of computations by fly-automata: 
 

- the number of connected components, 

- the number of p-colorings  

- more generally : the number of accepting runs of a nondeterministic 

automaton, 

- whether a graph is regular (not an MSO property). 
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Computation  time  of  a  fly-automaton 
  

 F : all  “clique-width” operations ,   Fk : those using  labels 1, …, k. 

 On  term  t ∈ T(Fk)  defining  G(t)  with  n  vertices,  if  a  fly-automaton  

  takes  time  bounded by : 

  (k + n)c  ⇒     it is a P-FA   (a   polynomial-time  FA), 

  f(k).nc    ⇒     it is an FPT-FA, 

  a.ng(k)    ⇒  it is an XP-FA. 

 

 The associated  algorithm  is, respectively,  polynomial-time, FPT or 

XP for clique-width as parameter.          
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Theorem [B.C & I.D.] :  For each MSO property P, one can construct a 

single (infinite) FPT-FA over  F  that recognizes the terms  t  in T(F)  such 

that  P(G(t)) holds. 

 

 For each k, its restriction to  the  finite  signature  Fk  is  finite. 

 

 

Consequence : The same automaton  (the same model-checking program)  

can  be  used  for  graphs  of  any clique-width. 
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Comparing  tree-width  and  clique-width 

and  the  corresponding  decompositions  

 

 Objectives :  to understand the properties of these parameters, 

  to  transform tree-decompositions (for which many algos exist)  

          into  clique-width  terms, 

  to  use  fly-automata  to check  MSO2  properties of graphs of 

          bounded  tree-width. 

  

 We  discuss  simple  undirected graphs.  All  results  have  easy 

extensions  to  directed  graphs  with  similar bounds. 
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 Comparing  tree-width (twd(G))  and  clique-width  (cwd(G)). 
 

 All  graphs : 

  cwd(G)  <  3.2twd(G)-1  with  ETT            (Corneil&Rotics) 

  No : cwd(G) = poly(twd(G))  

  No : twd(G)  =  f(cwd(G)).  

 ETT means Easy  Transformation of underlying Trees  
 

 Graphs  of  degree <  d : 

  cwd(G)  <  20.d.(twd(G) +1) +2    without    ETT  (yet) 

  proof  uses  “tree-partition-width”  (D. Wood, to be cleaned up). 

  twd(G)  <  3.d.cwd(G) -1   with  ETT         (Gurski&Wanke) 

 Hence : tree-width and clique-width  are  linearly  equivalent. 
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 Planar graphs :   We known that  cwd(G)  <  f(twd(G))  for some 

exponential function f. 
 

  

 New  : cwd(G)  =  O(twd(G))     with    ETT   (proof to be written) 

 

  twd(G)  <  6.cwd(G) -1   with    ETT         (G&W) 

  

 Uniformly q-sparse graphs (also  said  q-degenerated). 
 

 Question : cwd(G)  =  poly(twd(G))  ?     (we have <  f’(twd(G) )   

 

    twd(G)  <  6.q.cwd(G) -1   with    ETT         (G&W) 
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Incidence graphs, edge  quantifications  and   tree-width. 
 

 For G  =  ( VG , edgG(.,.) ),   Inc(G) := ( VG ∪ EG , incG(.,.) )  

 is  its incidence  graph:  incG(u,e)  ⇔   u  is  an end  of  e. 
 

 

 Facts :  twd(G)  =  twd(Inc(G)     (for simple loop-free graphs) 
 

 

   MSO  formulas  over Inc(G)  can use  quantifications on edges 

and express more properties. They  are  MSO2 on G. 
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Results: 1. cwd(Inc(G))  <  twd(G) +3    with    ETT   (T. Bouvier, Ph D, 2014) 

      improves  the  exponential  bound  from C&R. 
 

  2.   twd(G)  <  2.cwd(Inc(G)) -1   with    ETT     (B) 
   

  3.  No : cwd(Inc(G))  <  f(cwd(G))      

  4.  cwd(G)  <  2cwd(Inc(G))+1 -1 but not   poly(cwd(Inc(G)))  (C,B). 

 

 Because  cwd(Inc(G))  <  twd(G) + 3  avoids exponential blow-up,  

tools for “bounded clique-width” and  MSO  formulas are applicable to 

“bounded tree-width” and  MSO2 formulas.  
 

 As  twd(G)  =  O(cwd(Inc(G)),  incidence  graphs (for MSO2 model-

checking)  “only work”  for graphs  G  of  bounded tree-width. 



 

22 

 
Bipartite  graphs  of  semi-degree  < d :   
 
     all  vertices of  one side have  degree  < d. 
 
 d = 2 : they are incidence graphs. 
 
 d  > 3 : they are uniformly d-sparse graphs. 

   cwd(G)  <  f(twd(G))  for some  exponential  function f, 
   

  New : cwd(G)  =  O( twd(G)d )   (proof  to  be  written)      
   

  twd(G)  )  <   6.d.cwd(G) -1   with    ETT         (G&W) 

 
 Bipartite  graphs  occur  in many cases : in particular graph encodings 

of SAT problems. 
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Conclusion 
 

MSO / cwd  tools  are  applicable to  MSO2 / twd  model-checking, 

 

New upper-bounds for clique-width in graph classes  of  practical  

interest. 

 

Easy  Transformations of decomposition Trees in most cases. 
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Definition :  Clique-width 
 

It  is  defined from graph operations.  Graphs are simple, directed  or  not, and  

labelled  by  a , b , c, ... .   A  vertex  labelled by  a  is  called  an   a-vertex. 
 

One  binary  operation:   disjoint  union    :   ⊕ 

 

Unary  operations:  edge  addition  denoted  by  Adda,b 

 

Adda,b (G)  is  G  augmented   

with  undirected edges  between  every  

a-vertex and  every  b-vertex. 

The  number  of added edges  depends   

on  the  argument graph.              H = Adda,b (G) ; only 5  new edges added 
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 Directed edges can be defined similarly.  

Vertex  relabellings : 

Relaba         b(G)  is  G  with  every  a-vertex   is  made  into  a  b-vertex 

 

Basic graphs   :   those  with  a  single  vertex  a, labelled by a. 

 

Definition: A  graph  G  has  clique-width    (denoted by cwd(G))  <  k  

 ⇔  G=G(t)  is  defined  by a  term   t  using    <   k    labels.  

 

 

Example : Cliques   have  

clique-width  2. 

Kn  is   defined  by  tn  where  tn+1  =    

Relabb        a( Adda,b  (tn ⊕ b) )  
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