
 

1 

 

 

 

Computations  of  graph  polynomials 
 

by  fly-automata 
 

Bruno  Courcelle   

(joint work  in progress  with  Irène  Durand) 
 

Bordeaux  University, LaBRI (CNRS  laboratory) 
 
 



 

2 

 
 

Overview 

 

  We give algorithms based on MSO (Monadic Second-Order) 

logic and automata that will help to compute MSO-definable 

polynomials  for  graphs  of  bounded  tree-width  or  clique-width. 
 

  We use infinite automata, called fly-automata, that compute 

their transitions. Their inputs are finite algebraic  terms denoting 

graphs.  



 

3 

  

  The functions to  compute are, typically, for  ϕ  MSO: 
  

 #(X,Y).ϕ(X,Y) :=  number of pairs (X,Y) that satisfy  
            ϕ(X,Y) in graph G, 
 

 Sp(X,Y).ϕ(X,Y) :=  set of pairs ( X , Y) for (X,Y) satisfying 
             ϕ(X,Y) in graph G, 
 MSp(X,Y).ϕ(X,Y) := multiset  of pairs ( X , Y)  
     for (X,Y) satisfying  ϕ(X,Y)  in  graph G,  (1) 
 

 Max(X).ϕ(X) :=  max cardinality of X that satisfies  ϕ(X) in G. 
 

 Sat(X,Y).ϕ(X,Y) :=  set of pairs (X,Y) that satisfy ϕ(X,Y) in G. 
 
(1) : Cf.  counting   generalized   colorings (Kotek, Makowsky, Zilber). 



 

4 

 

   

 FPT algorithms are known for  the  first  4  cases  and  FPT  

ones  in   the  size  of  the  result  for  the last one (Grohe et al.). 

 
 Contradicting a common statement, automata can be used for 

that : we give a theoretical framework and report about imple-

mentation. 



 

5 

 
Relevance  to  graph  polynomials 

 

 All classical graph polynomials are, in some sense, MSO-

definable   (Makowsky).  

 

Examples :   Matching  polynomial  
 
 M(G,u):= Σ m(G,k). u k  

  m(G,k) is the number of  k-matchings  in  G   (sets of  k pairwise 

    disjoint  edges)   =  #(X). ϕk(X),  where  ϕk(X) says that X is  

  a set of  k  pairwise  disjoint  edges (FO-definable for each k). 

 



 

6 

  Sokal's  multivariate  polynomial, subsumes Tutte's. 
 
 Z(G,u,xE):= Σ u k(A). xA 
   summation is over all sets of edges A = {a1,..., ap}, 
   xai  is  an undeterminate  indexed by edge  ai, 
   xA := xa1 ... xap  (commutative product) 
   k(A) := number of connected components of G[A].   

 We have   {k(A)} = Sp(X). ϕ(X,A)   where 
  ϕ(X,A) says that X has 1 vertex in each con. comp. of G[A]. 
 
 The chromatic polynomial of G  is   Z(G,u, xe := -1 ) 
 
 For Tutte’s polynomial  T(G,u,v),  we have  
 

(u-1)k(G).(v-1)n . T(G,u,v)  =  Z(G,(u-1)(v-1), xe := v-1 ) 
 



 

7 

 
 Tutte’s polynomial 
 
  T(G,u,v) := Σ t i,j . u i. v j 
  t i,j is the number of spanning trees of internal activity  i and 
external activity  j, relative to a linear order on edges (from each term 
defining G, we have such an order).  

  An MSO formula  ϕ(X,Y,Z), where X,Y are sets of edges, is 
such that, if  
  MSp(X,Y,Z).ϕ(X,Y,Z)  = …  + p.(k,i,j) + … 
then : 
   T(G,u,v)  = ... +   p.u i v j  + ... 
 ϕ(X,Y,Z) says that X is a spanning tree T and Y, resp. Z  are  the 
internally, resp. externally  active edges of  G wrt T. (This  counting  
works because Y and  Z  are  uniquely  determined  from  X.) 
   



 

8 

    
 Multivariate  interlace  polynomial (B.C., 2008) 
 

  C(G,u,v, xV, yV) :=  Σ  xA. yB .uf(A,B) .vg(A,B) 
 

  GΛB := G  where  the  loops at the vertices in B are toggled, 

  f(A,B) := rk(GΛB[A∪B])  and   g(A,B) := A∪B- f(A,B), 

  rk(H):= rank over GF(2) of the adjacency matrix of graph H. 
 
 
 The rank of H is  Max(X). ϕ(X) for  an  MSO  formula  ϕ(X) 

written with the even cardinality set predicate Even(Y). (As graphs are 

ordered, this predicate is MSO-definable). 

 
 



 

9 

   

  Graphs are defined  by  algebraic  terms  and processed by 

automata on these terms. 
 

  Our  graph  parameter  is  clique-width ( cwd(.) ) and  the terms  

denoting graphs are those  from which clique-width is defined  because : 

  - it is easier to handle than (the very popular) tree-width ( twd(.) ) for 

constructing automata, and it is more powerful:  bounded tree-width 

implies  bounded clique-width, 

  -  it  is defined in terms of elementary graph operations, hence is 

easier  than the equivalent notion of  rank-width,  

  -   it  works  equally  well  on  directed graphs. 

 



 

10 

   
 
  -   We can handle edge quantifications via  incidence graphs:  

   If   G  =  ( VG , edgG(.,.) ) then  Inc(G) := ( VG ∪ EG , incG(.,.) )  

   where :           incG(u,e) : ⇔   u  is  an end  of  e. 
 
  MSO  formulas  over Inc(G)  can use quantifications on edge sets 

of G and express more properties.  
 

Proposition (T.Bouvier) :  twd(G) < k   ⇒   cwd(Inc(G))  <  k+3. 
       

 Hence, no exponential jump. 
 

 The  system AUTOGRAPH (by Irène  Durand) and  the  corresponding  

theory [B.C.&I.D.: Automata for the verification of monadic second-order graph 

properties, J. Applied Logic, 10 (2012) 368-409]  are based on clique-width. 



 

11 

Using   automata 
 

 Theorem [B.C.]: For every k, every MSO graph property P can be 

checked  by a  finite  automaton, which recognizes the terms that:  

  (1) are written over  the  finite  set  Fk of operations that generate 

the  graphs  of clique-width at most k, and  

  (2) define a graph satisfying  P.  
 

 However, these  automata  are  much  much  too large to be tabulated. 
 

 Our remedy:  We use fly-automata (in French “automates programmés”), 

whose states and transitions are described and not tabulated. Only the 

transitions necessary for a particular input term are computed, “on the 

fly”.  



 

12 

  As states are not listed, a  fly-automaton can use an infinite set of 

states. It can recognize sets of words or terms that are not monadic 

second-order definable :  the language anbn, the terms of arbitrary 

clique-width defining regular graphs (all vertices of same degree). 

   

  It can compute values: the number of p-colorings, or of “acyclic” p-

colorings of a graph (the graph induced by any two color classes is acyclic). 

 

  We can construct fly-automata in uniform ways from logical 

formulas. In this way, we develop a theory  of (some aspects of)  

dynamic  programming.  



 

13 

Review   of   definitions 

Definition 1 :  Monadic  Second-Order  Logic  
 

 First-order  logic  extended  with  (quantified)  variables  
denoting subsets  of  the  domains. 

 

 MSO  (expressible)  properties :   transitive closure,  properties  of paths,  

  connectedness, planarity   (via Kuratowski),   p-colorability. 

Examples  of  formulas  for     G  =  ( VG , edgG(.,.) ), undirected 
 

G  is  3-colorable  : 
 
∃X,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  

    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 
      } ) 



 

14 

 
G  is  not  connected : 

∃Z ( ∃x ∈ Z  ∧  ∃y ∉ Z  ∧  (∀u,v (u ∈ Z  ∧  edg(u,v) ⇒ v ∈ Z)  ) 

 

 Transitive  and  reflexive  closure  :   TC(R, x, y) :   
 
 ∀ Z { “Z is R-closed”  ∧  x ∈ Z  ⇒ y ∈ Z  } 
 

       where   “Z is R-closed”    is defined  by :   
  ∀u,v (u ∈ Z  ∧  R(u,v) ⇒ v ∈ Z)  
 

The  relation  R  can  be  defined   by  a   formula  as  in : 
 

∀x,y (x ∈ Y  ∧  y ∈ Y ⇒   TC(“u ∈ Y  ∧ v ∈ Y ∧ edg(u,v)”, x, y) 
 

expressing  that   G[Y ]  is connected    ( Y  is  free  in  R). 
 

Reference : B.C. & J. Engelfriet :  Graph  structure  and monadic second-order  

logic,  Cambridge University Press, 2012 



 

15 

Definition 2 :  Clique-width 
 

 Defined from graph operations.  Graphs are simple, directed  or  not, and  

labelled  by  a , b , c, ... .   A  vertex  labelled by  a  is  called  an   a-vertex. 
 

One  binary  operation:   disjoint  union   :   ⊕ 

 

Unary  operations: (1)  edge  addition  denoted  by  Adda,b 

 

Adda,b (G)  is  G  augmented   

with  undirected edges  between  every  

a-vertex and  every  b-vertex. 

The  number  of added edges  depends   

on  the  argument graph.              H = Adda,b (G) ; only 5  new edges added 



 

16 

 Directed edges can be defined similarly.  

(2)  Vertex  relabellings : 

Relaba         b(G)  is  G  with  every  a-vertex   is  made  into  a  b-vertex 

 

 Nullary operations for basic graphs  with  a  single  vertex  a, labelled by a. 

 

Definition:   A  graph  G  has  clique-width  <  k  (denoted by cwd(G) )  

 ⇔  G = G(t),  defined  by  a  term   t  using    <   k    labels.  

 

 

Example : Cliques   have  

clique-width  2. 

Kn  is   defined  by  tn  where  tn+1  =    

Relabb        a( Adda,b  (tn ⊕ b) )    
   



 

17 

 New  definition  3 :  Fly-automaton    (FA)   

 

A = < F, Q, δ, Out >  

F :  finite or  countable (effective)  signature   (set of operations), 

Q :  finite or countable (effective)  set of states   (integers, pairs of integers, 

finite sets of integers: states are encoded by finite words, integers are in binary), 

Out : Q � D , computable  (D : effective domain,a  recursive set of words), 

δ : computable  (bottom-up)  transition  function. 

 

Nondeterministic  case :  δ   is  finitely  multi-valued. 



 

18 

 

This  automaton defines  a  computable  function : T(F) � D   

    (or  : T(F) � P(D)  if  it  is  not  deterministic) 

 

If  D = { True, False },  it  defines  a  decidable  property, equivalently, 

   a  decidable  subset  of  T(F). 

 

 

Deterministic  computation  of  a  nondeterministic  FA  :  

 bottom-up   computation  of  finite  sets  of  states  (classical  simulation 

  of the determinized automaton):  these states  are  the  useful  ones  of   

the  determinized  automaton;  these sets are  finite  because  the 

transition  function is finitely multivalued.  

To be defined later : Enumerating  computation. 



 

19 

  

Example : The number of accepting runs of a nondeterministic automaton. 

Let  A = < F, Q, δ, Acc > be  finite, nondeterministic. 

Then  #A := < F, [ Q � N ], δ#, Out >  

  [ Q � N ] = the set of total functions :  Q � N 

 δ# is easy to define such that  the  state reached at position  

  u in the input term is the function  σ  such that  σ(q) is  

  the number of runs reaching q at  u. 

 Out(σ) is the sum of σ(q) for q in  Acc. 

 #A  is a fly-automaton obtained by a generic construction that extends  

to the case of infinite fly-automata. 



 

20 

The  algorithmic  MSO  meta-theorem  through  fly-automata  
  

                ϕ    (MSO  formula)

                             
      

             Fly-automaton Constructor  

                  Yes  

G                   Graph Analyzer                 t                 A(ϕ)           

                  No   

 A(ϕ) is an infinite fly-automaton over the countable set F of all graph 

operations that define clique-width.  The  time taken by A(ϕ) depends on 

the number of labels that occur in t ),  not only on  the size  of  G  or  t. 



 

21 

Fly-automata  that  check graph  properties 
         

How  to  construct them ?  
 

(1) Direct construction for a  well-understood  graph property  or  

(2) Inductive construction  based on the structure of an  MSO  formula; 

      a  direct  construction is anyway  needed  for atomic  formulas; 

    logical connectives are handled by transformations  of automata :  

    products, projection (making them nondeterministic), determinization  

    (for negation). 

   

    



 

22 

Example of a direct  construction : Connectedness. 

 

 The state at position u in term t is the set of  types (sets  of  labels)  of  

the connected  components of  the  graph G(t/u).  For  k  labels (k = 

bound on clique-width),  the set  of  states  has  size  <  2 ^ 2k.   

  Proved  lower  bound  :  2 ^ 2k/2. 

�  Impossible  to  compile  the   automaton (to  list  its transitions) . 

Example  of  a  state   :  q = { {a}, {a,b}, {b,c,d}, {b,d,f } },  (a,b,c,d,f :  labels).  

 Some  transitions :               

  Adda,c :    q             { {a,b,c,d}, {b,d,f } },                    

  Relaba       b: q            { {b}, {b,c,d}, {b,d,f } }   

  Transitions   for   ⊕ :  union  of  sets  of  types. 

Note : Also  state (p,p)  if  G(t/u) has   >  2 connected components,  all  of  type p. 



 

23 

 

We  can allow  fly-automata  with  infinitely  many  states  and, also,  

with  outputs  :   numbers, finite sets of tuples of numbers,  etc.  

 

 

 Example continued : For  computing  the  number  of  connected  

components,  we  use  states  such  as  : 

   q = { ({a}, 4 ), ({a,b}, 2), ( {b,c,d},2), ( {b,d,f },3) },   

   where 4, 2, 2, 3  are  the  numbers  of  connected  components  

   of  respective   types  {a}, {a,b}, {b,c,d}, {b,d,f }.  



 

24 

 

Computation  time  of  a  fly-automaton 
  

 F : all  (cwd) graph operations,   Fk : those using  labels 1, …, k. 

 On  term  t ∈ T(Fk)  defining  G(t)  with  n  vertices,  if  a  fly-automaton  

  takes  time  bounded by : 

  (k + n)c  �  it is a P-FA   (a  polynomial-time  FA), 

  f(k).nc  �    it is an FPT-FA, 

  a.ng(k)  �    it is an XP-FA. 
 

 The associated  algorithm  is, respectively,  polynomial-time, FPT or 

XP for clique-width as parameter.          

 



 

25 

Recognizability Theorem [B.C & I.D.] :  For each MSO property P, one 

can construct  a  single  infinite  FPT-FA  over  F (the operations that 

generate all graphs)  that recognizes the terms t ∈ T(F)  such that  P(G(t)) 

holds. 
 

 For each k, its restriction to the finite signature  Fk (the operations that 

generate graphs of cwd < k)  is a finite automaton.  
 

 

Consequences : (1) The same automaton (the same  model-checking 

program)  can be used for all graphs (of any clique-width). 
 

 (2) It can be implemented in non-trivial cases. 
 



 

26 

 
Some  experiments  using  FA    (by Irène  Durand) 

 
 Number of 3-colorings  of  the  6 x 90  “modified” grid  of clique-width  8  

in  1 min. 9 sec. (modified with diagonals on the squares of the first 

column).  

 For the similar 6 x 250 grid : < 6 min. ; for 6 x 360 : < 9 min. 

 
 4-acyclic-colorability  of  the  Petersen  graph  (clique-width 5)   

 in  1.5  min., from a term in T(F6). 

 (3-colorable but not acyclically; red   

 and  green  vertices induce  a  cycle). 

 
 



 

27 

 
Existential  quantifications   and    nondeterminism 

 

 

 

 

 

 

 

             

                         Graph  G(t)    

 

 

 

 

 

     

    Term   t     over   F 



 

28 

 

  

 

 

 

 

               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

   Term   t * (V1,V2)  over F[2]   ([2] because of  2 Booleans).  
 



 

29 

 Consider  a  property ∃X,Y. ϕ(X,Y)  to be checked  on  graph  G(t). 
 
 We  construct  a deterministic  automaton  A  over  F[2]  recognizing 

the terms  t * (X,Y)   such  that  G(t * (X,Y) )  !=  ϕ(X,Y). 
 
 We  delete  the  Booleans  in the nullary symbols of F[2]  : we obtain 

a nondeterministic automaton B over  F  (called  a projection : A � B). 

 The different runs of  B correspond to trying the different possible 

pairs (X,Y)  when looking for a satisfying one.  

 B  recognizes the terms t   such  that  G(t )  !=  ∃X,Y. ϕ(X,Y). 
 



 

30 

  By  an  induction  on  ϕ,  we  construct  for  each  ϕ(X1,…,Xn)   a  

FA  A(ϕ(X1,…,Xn))  that  recognizes: 

L(ϕ(X1,…,Xn)) : =  { t * (V1,…,Vn) ∈ T(F(n) )  /  ( G( t ), V1,…,Vn )   =  ϕ } 

Quantifications:  Formulas   are   written   without   ∀  

  L(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( L ( ϕ(X1, ..., Xn+1)  ) 

  A(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( A ( ϕ(X1, ..., Xn+1)  ) 

 

where   pr  is  the  projection   that  eliminates   the  last  Boolean;         

�    a   non-deterministic  automaton B = pr( A ( ϕ(X1, ..., Xn+1)  ). 

 



 

31 

Determinized  runs  of  B  defined  by deterministic  FAs  C 

 

   For ∃X.P(X):  the state  of  C  at position  u  is  

    { state q of  B /  some run reaches q  at position u } 

 For  # X.P(X) : the state  of  C  at position  u  is  

   { (q,m) / m = the number of runs that reach q at u } 

   equivalently, the corresponding multiset of states q, cf. ∃X.P(X) 

 For  SpX.P(X)  : the state  of  C  at position  u  is  

  { (q,S) / S = the set of tuples of cardinalities of  

  the “components  of X below u” that yield  q  at  u }. 

For  MSpX.P(X) :  S is the  corresponding  multiset.     



 

32 

 For  MinCard X.P(X) : the state  of  C  at position  u  is  

  { (q, s) / s = the minimum cardinality of   “X  below u”  that  

         yields  q  at  u }. 
 

  SatX.P(X) :=  the set of all  tuples X that  satisfy  P(X),  

    the state of C at position u  is  

    { (q, S) / S = the set of all tuples below u that yield q }  



 

33 

 A  common  presentation for all this cases: 

  We call the component s in a  state (q,s) is an attribute of q.  

  An attribute s of q  at u collects certain information about all the 

runs that yield q at u. Computations of attributes correspond to variants of 

the basic determinization: they use, according to the cases : 

  Set  union      (for basic determinization) 

  Union  of  multisets, (for counting runs) 

  Selection of minimal number or minimal set (e.g. for inclusion), 

  A + B  where  A and B are sets of numbers, 

  etc…  

  Distributive algebras  offer a formal setting  (see B.C., I.Durand, 

Theoret. Comput. Sci 619 (2016) ). 

 



 

34 

  Optimizations :  How to avoid intermediate computations  

       that do not contribute to the final result. 

 Theorem (Flum and Grohe) : One can compute SatX.P(X) in time  

f(k).(n+ size of the result) where cwd(G) < k and n is the size of the term. 

 The bottom-up inductive computation must “know” that certain states 

will not belong to any accepting run on the considered term. 

 Method : 3 pass algorithm 

  1 : determinized bottom-up run keeping pointers showing how 

states are obtained from others, 

  2 : top-down run starting from the accepting states at the root and 

marking the useful states, 

  3 : bottom-up computation of attributes  only for the useful states. 



 

35 

 



 

36 

 

 This 3-pass algorithm is applicable for all our computations of 

attributes. 

 Example : Checking that a graph has a  unique 3-coloring. 

  1st  method : expressing that in MSO : possible but cumbersome. 

  2nd  method : computing the total number of 3-colorings: we want 

result 6 (assume the graph is not 2-colorable) : OK but lengthy. 

  3rd method : “optimized” counting with reporting Failure if a useful 

intermediate result shows that more than 6 coloring will be found. 

  

 This is applicable to : ∃! X.P(X)  for  every  MSO property  P. 

 



 

37 

Enumeration  techniques 
 

 Enumeration  of  accepting states  

  - stopping as soon as one is obtained 

  - less  space  but more time for checking negation  

         (failure to recognition), 

  - listing the assignments X satisfying  ϕ(X):  we maintain 

with each state, at each position,  its “origin”:  the partial 

assignment that produced it. 

 If an Error state is found in a partially constructed run, we  abort its 

completion.   

 

 



 

38 

Enumerators   
 

An enumerator is  a  triple E = (D, reset, next) where D is an 

effective (countable) set, reset and next are two programs guaranteed 

to terminate.    E defines a  finite list  List(E) of elements of D.   

 List(E) may contain repetitions, 

 next  produces one more element or reports “end  of  list”, 

 reset  reinitializes  the program next. 

 

 Remark : Enumerators can be extended to produce infinite lists. 



 

39 

 

Basic enumerators : For each nullary a, Ea produces the list  of states 

q (not Error) arising from a (by the nondeterministic automaton B that 

checks ∃X.ϕ(X) and that is obtained from the deterministic automaton 

A checking ϕ(X), by deleting the sequences of  Booleans w  in  the  

nullary symbols  (a,w)  of the signature F[p]  of A). 

 Alternatively, Ea produces the list of pairs (q,w) : we keep track of 

the  w  that  produced  q  (its “origin”). 

 



 

40 

Tra nsforming  and  combining  enumerators. 

 

 Making a copy of E : copyu(E)  indexed by u, a position of the given 

term.  

 

 Making E into nr(E), nonredundant: produces the same elements 

without repetitions  (nr(E) uses the list of already generated elements). 

 

 Applying a unary function  h : D � D’ 
 

 If E enumerates elements of D, then hoE produces the images by h 

of the elements of List(E).  



 

41 

 Cartesian product. 

 

 If E enumerates elements of D, E’ elements of D’, we want to list  

the pairs (d,d’) where   d ∈List(E) = d1, …,   d’∈List(E’) = d’1, …  

 Possible orders: 

  “Line order” (lexico) : (d1, d’1), (d1, d’2), …, (d2, d’1), (d2, d’2), … 

  “Column order” : (d1, d’1), (d2, d’1), …, (d1, d’2), (d2, d’2), … 

  “Diagonal order” : (d1, d’1),   (d1, d’2), (d2, d’1),  

       (d1, d’3), (d2, d’2), (d3, d’1), …..  

 E xLine E’,  E xCol E’,  E xDiag E’    realize these enumerations. 

   



 

42 

 Given a term t and an automaton A that checks ϕ(X), one builds a 

(big) enumerator Et by combining basic ones with Cartesian 

compositions, ho(.) and  possibly nr(.).  

 If t=f(s), then Et  = ho(Es) where h is based on transitions for f. 

 If t=f(s,s’), then Et  = ho(Es x Es’) where h is similar. 

 

 Running Et by calling its next component iteratively produces the 

desired list (unless the system lacks of memory). 



 

43 

           The  system  AUTOGRAPH (by I. Durand) 

 

 (1)  Fly-automata  for  basic graph properties : 

   Clique, Stable (no edge), Link(X,Y), NoCycle,  

   Connectedness, Regularity, Partition(X, Y, Z), etc… 

 and  functions : 

   #Link(X,Y)= number of edges between X and Y, 

   Maximum degree.  

 Procedures  for combining fly-automata, corresponding to logical  

   constructions : ∧  , ∨ , negation, ∃X. ϕ(X). 

     



 

44 

Procedures  to  build automata  that compute functions: 
    

   #X.ϕ(X) : the  number of  tuples  X  that satisfy ϕ(X) in  

     the  input  term  (hence, in the associated  graph),  

   SpX.ϕ(X) :  the spectrum = the set of  tuples of cardinalities  

     of the components of the X that satisfy ϕ(X), etc… 

     Enumeration: construction of an enumerator from a term and  

   a fly-automaton.  

    

     These  constructions  are “uniform” with  respect   to  the  input 

automata.  



 

45 

Some  tests 
 

 Checking  colorability of grids 6 x M  of clique-width 8. 

 

M 2-col. det 2-col. enum 3-col. det 3-col. enum 

7 0.03 s 6 s 10 s 6 s 

8 0.03 s 9 s Fails 9 s 

20 0.2  s 3 min Fails 3 min 

  

Counting 2-colorings : for M = 200, in 2 seconds (2). 

Counting 3-colorings : for M= 5, in 3 seconds ( 6 204 438). 

Fails for M = 6. 

Works for M = 360 for modified grids. 



 

46 

 

 

Enumerating 3-colorings : 

 

M = 20 :  Construction of enumerator in 3 minutes 

Then, first result in 0.5 second. 

 

 

 

 
 

 

 



 

47 

                                         Conclusion 
 

  These algorithms are based on fly-automata, that can be quickly 

constructed  from  logical  descriptions (and basic automata) 

   �  flexibility.  
 

  The system AUTOGRAPH implements these constructions. Tests 

have been made  for colorability  and connectedness problems. 
 

  

 


