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Overview 

 

  Enumeration problem 1 : listing  graphs : for example, the forbidden 

minors for some minor closed class. 

 

  Enumeration problem 2 : listing configurations in a given graph : for 

example, its p-colorings or its maximal induced planar subgraphs. 

 

  We only consider problems of type 2 for configurations defined in 

monadic second-order (MSO) logic  and  graphs of bounded tree-width 

or  bounded clique-width. Graphs are defined by algebraic terms and 

processed by automata on these terms. 
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  Our  graph  parameter  is  clique-width and  the terms  denoting 

graphs are those  from which clique-width is defined  because : 

  - it is easier to handle than (the very popular) tree-width for 

constructing automata, and more powerful : bounded tree-width implies 

bounded clique-width, 

  -  it is defined in terms of elementary graph operations, hence is 

easier than the equivalent notion of  rank-width,  

  -   it  works  equally  well on directed graphs. 

  -   it can handle edge quantification via incidence graphs. 
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 The  system AUTOGRAPH (by Irène  Durand) and  the  corresponding  

theory [B.C.&I.D.: Automata for the verification of monadic second-order graph 

properties, J. Applied Logic, 10 (2012) 368-409]  are based on clique-width. 
   

 

 Theorem [B.C.]: For every k, every MSO graph property  P  can be 

checked  by a finite  automaton. This automaton recognizes the terms 

that: (1) are written over  the  finite  set  of operations  that generate  the  

graphs  of clique-width at most k, and (2) define a graph satisfying  P.  
 

 However, these automata  are much too large to be tabulated. 

 Remedy:  We  use fly-automata (in French “automates programmés”) 

whose states and transitions are described and not tabulated. Only the 

transitions necessary for an input term are computed, “on the fly”.  
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  As  states are not listed, a  fly-automaton can use an infinite set of 

states. It can recognize sets of words or terms that are not monadic 

second-order definable :  the language anbn, the set of terms of arbitrary 

clique-width that define regular graphs (all vertices of same degree). 

  It can also compute values: the number of p-colorings or of 

“acyclic” p-colorings of a graph (the graph induced by any two color 

classes is acyclic). 

  We can construct fly-automata  in  uniform ways from  logical 

formulas. In this way, we  develop  a  theory  of (some aspects of)  

dynamic  programming.  
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Review of   definitions 

Definition 1 :  Monadic  Second-Order  Logic  
 

 First-order  logic  extended  with  (quantified)  variables  
denoting subsets  of  the  domains. 

 

 MSO  (expressible)  properties :   transitive closure,  properties  of paths,  

  connectedness, planarity   (via Kuratowski),   p-colorability. 

Examples  of  formulas  for     G  =  ( VG , edgG(.,.) ), undirected 
 

G  is  3-colorable  : 
 
∃X,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  

    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 
      } ) 
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G  is  not  connected : 

∃Z ( ∃x ∈ Z  ∧  ∃y ∉ Z  ∧  (∀u,v (u ∈ Z  ∧  edg(u,v) ⇒ v ∈ Z)  ) 

 

 Transitive  and  reflexive  closure  :   TC(R, x, y) :   
 
 ∀ Z { “Z is R-closed”  ∧  x ∈ Z  ⇒ y ∈ Z  } 
 

       where   “Z is R-closed”    is defined  by :   
  ∀u,v (u ∈ Z  ∧  R(u,v) ⇒ v ∈ Z)  
 
The  relation  R  can  be  defined   by  a   formula  as  in : 
 

∀x,y (x ∈ Y  ∧  y ∈ Y ⇒   TC(“u ∈ Y  ∧ v ∈ Y ∧ edg(u,v)”, x, y) 
 

expressing  that   G[Y ]  is connected    ( Y  is  free  in  R). 
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Application :  Planarity  is  MSO-expressible  (no minor  K5  or  K3,3). 
 

 

Non-MSO-expressible  properties  
 

 - G  is  isomorphic  to  Kp,p  for  some  p   (p  is not  fixed; needs  equipotence  

of  two sets, hence  quantification  over  binary relations  to  find  if  there is  a  

bijection). 
 
 

 - G  has  a  nontrivial  automorphism,  or is regular (has  all vertices  of  

same degree). 
 

 Reference : B.C. & J. Engelfriet :  Graph  structure  and monadic second-

order  logic,  Cambridge University Press, 2012 
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Definition 2 :  Clique-width 
 

 Defined from graph operations.  Graphs are simple, directed  or  not, and  

labelled  by  a , b , c, ... .   A  vertex  labelled by  a  is  called  an   a-vertex. 
 

One  binary  operation:   disjoint  union    :   ⊕ 

 

Unary  operations:  edge  addition  denoted  by  Adda,b 

 

Adda,b (G)  is  G  augmented   

with  undirected edges  between  every  

a-vertex and  every  b-vertex. 

The  number  of added edges  depends   

on  the  argument graph.              H = Adda,b (G) ; only 5  new edges added 
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 Directed edges can be defined similarly.  

Vertex  relabellings : 

Relaba         b(G)  is  G  with  every  a-vertex   is  made  into  a  b-vertex 

 

Basic graphs   :   those  with  a  single  vertex  a, labelled by a. 

 

Definition: A  graph  G  has  clique-width  <  k  (denoted by cwd(G) )  

 ⇔  G = G(t),  defined  by a  term   t  using    <   k    labels.  

 

 

Example : Cliques   have  

clique-width  2. 

Kn  is   defined  by  tn  where  tn+1  =    

Relabb        a( Adda,b  (tn ⊕ b) )  
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The parsing problem: construction of terms, i.e., of decompositions. 

 

  As automata take terms as inputs, the parsing must be done 

before. Deciding  if  cwd(G) < k   (for input (G,k) ) is  NP-complete 

(same for tree-width).  

  There are  FPT  approximation algorithms, taking time f(k).n3, that 

output  the following,  for given k and graph  G  with n vertices:     

   (i) either  the answer that  cwd(G)  > k, 

   (ii) or  a  term  witnessing  that  cwd(G)  < g(k). 

  Every  FPT  algorithm  taking  terms  as inputs can be converted 

into an  FPT algorithm  taking  graphs  as inputs.  
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New definition  3 :  Fly-automaton    (FA)   

 

A = < F, Q, δ, Out >  

F :  finite or  countable (effective)  signature   (set of operations), 

Q :  finite or countable (effective)  set of states   (integers, pairs of integers, 

finite sets of integers: states can be encoded as finite words, integers in binary), 

Out : Q � D   (an effective domain, i.e., set of  finite words), computable. 

δ : computable  (bottom-up)  transition  function 

 

Nondeterministic  case :  δ   is  finitely  multi-valued. 
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This  automaton defines  a  computable  function : T(F) � D   

    (or  : T(F) � P(D)  if  it  is  not  deterministic) 

 

If  D = { True, False },  it  defines  a  decidable  property, equivalently, 

   a  decidable  subset  of  T(F). 

 

 

Deterministic  computation  of  a  nondeterministic  FA  :  

 bottom-up   computation  of  finite  sets  of  states  (classical  simulation 

  of the determinized automaton):  these states  are  the  useful  ones  of   

the  determinized  automaton;  these sets are  finite  because the transition 

function is finitely multivalued.  

To be defined later : Enumerating  computation  
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Example : The number of accepting runs of a nondeterministic automaton. 

Let  A = < F, Q, δ, Acc > be  finite, nondeterministic. 

Then  #A := < F, [ Q � N ], δ#, Out >  

  [ Q � N ] = the set of total functions :  Q � N 

 δ# is easy to define such that  the  state reached at position  

  u in the input term is the function  σ  such that  σ(q) is  

  the number of runs reaching q at  u. 

 Out(σ) is the sum of σ(q) for q in  Acc. 

#A  is a fly-automaton obtained by a generic construction that extends  to 

the case of an infinite fly-automaton A. 
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The algorithmic  MSO  meta-theorem  through fly-automata  
  

                ϕ    (MSO  formula)

                             

      

             Fly-automaton Constructor  

                  Yes  

G                   Graph Analyzer                 t                 A(ϕ)           

                  No   

 A(ϕ): an infinite  fly-automaton over the countable  set F of all graph 

operations that define clique-width.  The  time taken  by A(ϕ)  depends on 

t (on the number of labels that occur in this term),  not only on the size of  G. 
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Fly-automata  that  check graph  properties 
         

How  to  construct them ?  

(1) Direct construction for a  well-understood  graph property  or  

(2) Inductive construction  based on the structure of an  MSO  formula; 

      a  direct  construction is anyway needed  for atomic  formulas; 

    logical connectives are handled by transformations of automata :  

    products, projection (making them nondeterministic), determinization  

    (for negation). 
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Direct  construction : Connectedness. 

 

The state at node u of term t is the set of  types (sets  of  labels)  of  the 

connected  components of  the  graph G(t/u).  For  k  labels (k = bound 

on clique-width),  the set  of  states  has  size  <  2 ^ (2 ^ k).   

  Proved  lower  bound  :  2 ^ (2 ^ k/2).   

�  Impossible  to  “compile”  the   automaton (i.e., to list its transitions) . 

Example  of  a  state   :  q = { {a}, {a,b}, {b,c,d}, {b,d,f } },  (a,b,c,d,f :  labels).  

Some  transitions :               

  Adda,c :    q             { {a,b,c,d}, {b,d,f } },                    

  Relaba       b: q            { {b}, {b,c,d}, {b,d,f } }   

  Transitions   for   ⊕ :  union  of  sets  of  types. 

Note : Also  state (p,p)  if  G(t/u) has   >  2 connected components,  all  of  type p. 



 

18 

 

We  can allow  fly-automata  with  infinitely  many  states  and, also,  

with  outputs  :   numbers, finite sets of tuples of numbers,  etc.  

 

 Example continued : For  computing  the  number  of  connected  

components,  we  use  states  such  as  : 

   q = { ({a}, 4 ), ({a,b}, 2), ( {b,c,d},2), ( {b,d,f },3) },   

   where 4, 2, 2, 3  are  the  numbers  of  connected  components  

   of  respective   types  {a}, {a,b}, {b,c,d}, {b,d,f }.  
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Computation  time  of  a  fly-automaton 
  

 F : all graph operations,   Fk : those using  labels 1, …, k. 

 On  term  t ∈ T(Fk)  defining  G(t)  with  n  vertices,  if  a  fly-automaton  

  takes  time  bounded by : 

  (k + n)c  �  it is a P-FA   (a   polynomial-time  FA), 

  f(k).nc  �    it is an FPT-FA, 

  a.ng(k)  �    it is an XP-FA. 

 

 The associated  algorithm  is, respectively,  polynomial-time, FPT or 

XP for clique-width as parameter.          
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Recognizability Theorem [B.C & I.D.] :  For each MSO property P, one 

can construct a single infinite  FPT-FA  over  F  that recognizes the terms 

 t ∈ T(F)  such that  P(G(t)) holds. 
 

 For each k, its  restriction  to  the  finite  signature  Fk  is a finite 

automaton.  

 

Consequences : (1) The same automaton (the same model-checking 

program)  can be used for graphs of any clique-width. 

 (2) Can be implemented in non-trivial cases. 
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Some   experiments  using  FA    (by Irène  Durand) 

 
 Number of 3-colorings  of  the  6 x 90  “modified” grid  of clique-width  8  
in  1 minute 9 seconds (with diagonals on the squares of the first column).  
For the similar 6 x 250 grid : < 6 minutes; for 6 x 360 : < 9 minutes. 
 
 
 4-acyclic-colorability  of  the  Petersen  graph  (clique-width 5)  in  1.5   
minutes, from a term in T(F6). 
 
 (3-colorable but not acyclically;  

 red  and  green  vertices  

 induce  a  cycle). 
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The  McGee graph   (of  clique-width 8) 

 

is defined by a term in T(F10)   

of size 99 and depth 76. 

 

This graph  is 3-acyclically  colourable. 

- checked in 40 minutes. 

- even in  2 seconds  by enumerating  the  

runs,  and  stopping  as soon as an accepting one is found. 
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Existential  quantifications   and    nondeterminism 
 

 

 

 

 

 

 

             

                         Graph  G(t)    

 

 

 

 

 

     

     

     Term   t     
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               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

   Term   t * (V1,V2)        
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 Consider  a  property ∃X,Y. ϕ(X,Y)  to be checked on  graph  G(t). 
 
 We  construct  a deterministic  automaton  A  over  F[2]  recognizing 

the terms  t * (X,Y)   such  that  G(t * (X,Y) )  !=  ϕ(X,Y). 
 
 We  delete  the Booleans  in the nullary symbols of F[2]  : we obtain 

a nondeterministic automaton B over  F  (called  a projection : A � B). 

 The different runs of  B correspond to trying the different possible 

pairs (X,Y)  when looking for a satisfying one.  

 B  recognizes the terms t   such  that  G(t )  !=  ∃X,Y. ϕ(X,Y). 
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Enumeration  techniques 
 
 Enumeration  of  accepting states  

  - stopping as soon as one is obtained 

  - less  space  but more time for checking negation  

         (failure to recognition), 

  - listing the assignments X satisfying  ϕ(X):  we maintain 

with each state, at each position,  its “origin”:  the partial 

assignment that produced it. 

 If an Error state is found in a partially constructed run, we  abort its 

completion.   
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Enumerators   
 

An enumerator is  a  triple E = (D, reset, next) where D is an 

effective (countable) set, reset and next are two programs guaranteed 

to terminate.    E defines a  finite list  List(E) of elements of D.   

 List(E) may contain repetitions, 

 next  produces one more element or reports “end  of  list”, 

 reset  reinitializes  the program next. 

 

 Remark : Enumerators can be extended to produce infinite lists. 
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Basic enumerators : For each nullary a, Ea produces the list  of states 

q (not Error) arising from a (by the nondeterministic automaton B that 

checks ∃X.ϕ(X) and that is obtained from the deterministic automaton 

A checking ϕ(X), by deleting the sequences of  Booleans w  in  the  

nullary symbols  (a,w)  of the signature F[p]  of A). 

 Alternatively, Ea produces the list of pairs (q,w) : we keep track of 

the  w  that  produced  q  (its “origin”). 
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Tra nsforming  and  combining  enumerators. 

 

 Making a copy of E : copyu(E)  indexed by u, a position of the given 

term.  

 

 Making E into nr(E), nonredundant: produces the same elements 

without repetitions  (nr(E) uses the list of already generated elements). 

 

 Applying a unary function  h : D � D’ 
 

 If E enumerates elements of D, then hoE produces the images by h 

of the elements of List(E).  
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 Cartesian product. 

 

 If E enumerates elements of D, E’ elements of D’, we want to list  

the pairs (d,d’) where   d ∈List(E) = d1, …,   d’∈List(E’) = d’1, …  

 Possible orders: 

  “Line order” (lexico) : (d1, d’1), (d1, d’2), …, (d2, d’1), (d2, d’2), … 

  “Column order” : (d1, d’1), (d2, d’1), …, (d1, d’2), (d2, d’2), … 

  “Diagonal order” : (d1, d’1),   (d1, d’2), (d2, d’1),  

       (d1, d’3), (d2, d’2), (d3, d’1), …..  

 E xLine E’,  E xCol E’,  E xDiag E’    realize these enumerations. 
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 Given a term t and an automaton A that checks ϕ(X), one builds a 

(big) enumerator Et by combining basic ones with Cartesian 

compositions, ho(.) and  possibly nr(.).  

 If t=f(s), then Et  = ho(Es) where h is based on transitions for f. 

 If t=f(s,s’), then Et  = ho(Es x Es’) where h is similar. 

 

 Running Et by calling its next component iteratively produces the 

desired list (unless the system lacks of memory). 
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      Weighted  enumeration. 
 

 Each element  d of  D  has a weight (a size) s(d). 

 An s-enumerator E produces a list d1, d2, …  such that  

s(d1)< s(d2)< s(d3) < … . 

 For Cartesian product, if E   s-enumerates elements of D  and 

E’ s’-enumerates those of D’, we want an s”-enumerator of the pairs 

(d,d’) where   s”(d,d’) := s(d) + s’(d’).   

 A  modification of the diagonal construction can do that. 

 Application :  Enumeration of the tuples  X that satisfy ϕ(X) by 

increasing order of size, where the size is the sum of cardinalities of 

the sets composing   X.  
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           The  system  AUTOGRAPH (by I. Durand) 

 

 (1)  Fly-automata  for  basic graph properties : 

   Clique, Stable (no edge), Link(X,Y), NoCycle,  

   Connectedness, Regularity, Partition(X, Y, Z), etc… 

 and  functions : 

   #Link(X,Y)= number of edges between X and Y, 

   Maximum degree.  

 Procedures  for combining fly-automata, corresponding to logical  

   constructions : ∧  , ∨ , negation, ∃X. ϕ(X). 
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Procedures  to  build automata  that compute functions: 
    

   #X.ϕ(X) : the  number of  tuples  X  that satisfy ϕ(X) in  

     the  input  term  (hence, in the associated  graph),  

   SpX.ϕ(X) :  the spectrum = the set of  tuples of cardinalities  

     of the components of the X that satisfy ϕ(X), etc… 

     Enumeration: construction of an enumerator from a term and  

   a fly-automaton.  

    

     These  constructions  are “uniform” with  respect   to  the  input 

automata.  
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Some  tests 
 

 Checking  colorability of grids 6 x M  of clique-width 8. 

 

M 2-col. det 2-col. enum 3-col. det 3-col. enum 

7 0.03 s 6 s 10 s 6 s 

8 0.03 s 9 s Fails 9 s 

20 0.2  s 3 min Fails 3 min 

  

Counting 2-colorings : for M = 200, in 2 seconds (2). 

Counting 3-colorings : for M= 5, in 3 seconds ( 6 204 438). 

Fails for M = 6. 

Works for M = 360 for modified grids. 
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Enumerating 3-colorings : 

 

M = 20 :  Construction of enumerator in 3 minutes 

Then, first result in 0.5 second. 
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                    Edge quantifications and tree-width 
 

 If   G  =  ( VG , edgG(.,.) ), then  Inc(G) := ( VG ∪ EG , incG(.,.) ) is  its 

incidence  graph:  incG(u,e)  ⇔   u  is  an end  of  e. 
 
 MSO  formulas  over Inc(G) can use  quantifications on edges and 
thus, express more properties.  
 

Proposition (T.Bouvier) :  tree-width(G) < k   ⇒   cwd(Inc(G))  <  k+3.  
 
    k+3 improves a previous exponential upper bound. Hence  tools for 
“bounded clique-width” and  MSO formulas are applicable to “bounded 
tree-width” and  MSO formulas using edge quantifications.  
 

As  tree-width(G)  =  O(cwd(Inc(G)),  incidence  graphs “only work” for 
bounded tree-width 
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       Another  construction  based  on  automata  
 

Theorem [B.C]: Given ϕ(X) and a term t of width k, after a preprocessing 

taking time O(n.log(n)), one can enumerate with linear delay the tuples X 

that satisfy  ϕ  in G(t)  (having n vertices). 

 See : Linear delay enumeration and MSO logic, DAM 157 (2009)  
  

 We build from t and A a directed acyclic graph D(t,A) that embeds all 

runs of B on t. We enumerate with linear delay the accepting runs from 

D(t,A). The runs contains the tuples they come from, so we can get them.  
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 To have linear delay in the sizes of the output tuples, we eliminate the 

parts of  D(t,A) whose runs come from empty tuples, because traversing 

these parts takes time that does not correspond to an increase of the 

produced tuples. 

 

 We use  a term t  of  height O(log(n)), that is not necessarily optimal for 

width. 

 

 This method has not been implemented. 
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                                         Conclusion 

 
 

  These algorithms are based on fly-automata, that can be quickly 

constructed  from  logical  descriptions (and basic automata) 

   �  flexibility.  
 

  The system AUTOGRAPH implements these constructions. Tests 

have been made  for colorability  and connectedness problems. 
 

  Thank you for suggesting interesting problems that could fit in 

this framework. 

 


