

1

Enumeration algorithms

based on fly-automata

Bruno Courcelle

(joint work with Irène Durand)

Bordeaux University, LaBRI (CNRS laboratory)

2

Overview

 Enumeration problem 1 : listing graphs : for example, the forbidden

minors for some minor closed class.

 Enumeration problem 2 : listing configurations in a given graph : for

example, its p-colorings or its maximal induced planar subgraphs.

 We only consider problems of type 2 for configurations defined in

monadic second-order (MSO) logic and graphs of bounded tree-width

or bounded clique-width. Graphs are defined by algebraic terms and

processed by automata on these terms.

3

 Our graph parameter is clique-width and the terms denoting

graphs are those from which clique-width is defined because :

 - it is easier to handle than (the very popular) tree-width for

constructing automata, and more powerful : bounded tree-width implies

bounded clique-width,

 - it is defined in terms of elementary graph operations, hence is

easier than the equivalent notion of rank-width,

 - it works equally well on directed graphs.

 - it can handle edge quantification via incidence graphs.

4

 The system AUTOGRAPH (by Irène Durand) and the corresponding

theory [B.C.&I.D.: Automata for the verification of monadic second-order graph

properties, J. Applied Logic, 10 (2012) 368-409] are based on clique-width.

 Theorem [B.C.]: For every k, every MSO graph property P can be

checked by a finite automaton. This automaton recognizes the terms

that: (1) are written over the finite set of operations that generate the

graphs of clique-width at most k, and (2) define a graph satisfying P.

 However, these automata are much too large to be tabulated.

 Remedy: We use fly-automata (in French “automates programmés”)

whose states and transitions are described and not tabulated. Only the

transitions necessary for an input term are computed, “on the fly”.

5

 As states are not listed, a fly-automaton can use an infinite set of

states. It can recognize sets of words or terms that are not monadic

second-order definable : the language anbn, the set of terms of arbitrary

clique-width that define regular graphs (all vertices of same degree).

 It can also compute values: the number of p-colorings or of

“acyclic” p-colorings of a graph (the graph induced by any two color

classes is acyclic).

 We can construct fly-automata in uniform ways from logical

formulas. In this way, we develop a theory of (some aspects of)

dynamic programming.

6

Review of definitions

Definition 1 : Monadic Second-Order Logic

 First-order logic extended with (quantified) variables
denoting subsets of the domains.

 MSO (expressible) properties : transitive closure, properties of paths,

 connectedness, planarity (via Kuratowski), p-colorability.

Examples of formulas for G = (VG , edgG(.,.)), undirected

G is 3-colorable :

∃X,Y (X ∩ Y = ∅ ∧
 ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧

 (u ∉ X ∪ Y ⇒ v ∈ X ∪ Y)]
 })

7

G is not connected :

∃Z (∃x ∈ Z ∧ ∃y ∉ Z ∧ (∀u,v (u ∈ Z ∧ edg(u,v) ⇒ v ∈ Z))

 Transitive and reflexive closure : TC(R, x, y) :

 ∀ Z { “Z is R-closed” ∧ x ∈ Z ⇒ y ∈ Z }

 where “Z is R-closed” is defined by :
 ∀u,v (u ∈ Z ∧ R(u,v) ⇒ v ∈ Z)

The relation R can be defined by a formula as in :

∀x,y (x ∈ Y ∧ y ∈ Y ⇒ TC(“u ∈ Y ∧ v ∈ Y ∧ edg(u,v)”, x, y)

expressing that G[Y] is connected (Y is free in R).

8

Application : Planarity is MSO-expressible (no minor K5 or K3,3).

Non-MSO-expressible properties

 - G is isomorphic to Kp,p for some p (p is not fixed; needs equipotence

of two sets, hence quantification over binary relations to find if there is a

bijection).

 - G has a nontrivial automorphism, or is regular (has all vertices of

same degree).

 Reference : B.C. & J. Engelfriet : Graph structure and monadic second-

order logic, Cambridge University Press, 2012

9

Definition 2 : Clique-width

 Defined from graph operations. Graphs are simple, directed or not, and

labelled by a , b , c, A vertex labelled by a is called an a-vertex.

One binary operation: disjoint union : ⊕

Unary operations: edge addition denoted by Adda,b

Adda,b (G) is G augmented

with undirected edges between every

a-vertex and every b-vertex.

The number of added edges depends

on the argument graph. H = Adda,b (G) ; only 5 new edges added

10

 Directed edges can be defined similarly.

Vertex relabellings :

Relaba b(G) is G with every a-vertex is made into a b-vertex

Basic graphs : those with a single vertex a, labelled by a.

Definition: A graph G has clique-width < k (denoted by cwd(G))

 ⇔ G = G(t), defined by a term t using < k labels.

Example : Cliques have

clique-width 2.

Kn is defined by tn where tn+1 =

Relabb a(Adda,b (tn ⊕ b))

11

The parsing problem: construction of terms, i.e., of decompositions.

 As automata take terms as inputs, the parsing must be done

before. Deciding if cwd(G) < k (for input (G,k)) is NP-complete

(same for tree-width).

 There are FPT approximation algorithms, taking time f(k).n3, that

output the following, for given k and graph G with n vertices:

 (i) either the answer that cwd(G) > k,

 (ii) or a term witnessing that cwd(G) < g(k).

 Every FPT algorithm taking terms as inputs can be converted

into an FPT algorithm taking graphs as inputs.

12

New definition 3 : Fly-automaton (FA)

A = < F, Q, δ, Out >

F : finite or countable (effective) signature (set of operations),

Q : finite or countable (effective) set of states (integers, pairs of integers,

finite sets of integers: states can be encoded as finite words, integers in binary),

Out : Q � D (an effective domain, i.e., set of finite words), computable.

δ : computable (bottom-up) transition function

Nondeterministic case : δ is finitely multi-valued.

13

This automaton defines a computable function : T(F) � D

 (or : T(F) � P(D) if it is not deterministic)

If D = { True, False }, it defines a decidable property, equivalently,

 a decidable subset of T(F).

Deterministic computation of a nondeterministic FA :

 bottom-up computation of finite sets of states (classical simulation

 of the determinized automaton): these states are the useful ones of

the determinized automaton; these sets are finite because the transition

function is finitely multivalued.

To be defined later : Enumerating computation

14

Example : The number of accepting runs of a nondeterministic automaton.

Let A = < F, Q, δ, Acc > be finite, nondeterministic.

Then #A := < F, [Q � N], δ#, Out >

 [Q � N] = the set of total functions : Q � N

 δ# is easy to define such that the state reached at position

 u in the input term is the function σ such that σ(q) is

 the number of runs reaching q at u.

 Out(σ) is the sum of σ(q) for q in Acc.

#A is a fly-automaton obtained by a generic construction that extends to

the case of an infinite fly-automaton A.

15

The algorithmic MSO meta-theorem through fly-automata

 ϕ (MSO formula)

 Fly-automaton Constructor

 Yes

G Graph Analyzer t A(ϕ)

 No

 A(ϕ): an infinite fly-automaton over the countable set F of all graph

operations that define clique-width. The time taken by A(ϕ) depends on

t (on the number of labels that occur in this term), not only on the size of G.

16

Fly-automata that check graph properties

How to construct them ?

(1) Direct construction for a well-understood graph property or

(2) Inductive construction based on the structure of an MSO formula;

 a direct construction is anyway needed for atomic formulas;

 logical connectives are handled by transformations of automata :

 products, projection (making them nondeterministic), determinization

 (for negation).

17

Direct construction : Connectedness.

The state at node u of term t is the set of types (sets of labels) of the

connected components of the graph G(t/u). For k labels (k = bound

on clique-width), the set of states has size < 2 ^ (2 ^ k).

 Proved lower bound : 2 ^ (2 ^ k/2).

� Impossible to “compile” the automaton (i.e., to list its transitions) .

Example of a state : q = { {a}, {a,b}, {b,c,d}, {b,d,f } }, (a,b,c,d,f : labels).

Some transitions :

 Adda,c : q { {a,b,c,d}, {b,d,f } },

 Relaba b: q { {b}, {b,c,d}, {b,d,f } }

 Transitions for ⊕ : union of sets of types.

Note : Also state (p,p) if G(t/u) has > 2 connected components, all of type p.

18

We can allow fly-automata with infinitely many states and, also,

with outputs : numbers, finite sets of tuples of numbers, etc.

 Example continued : For computing the number of connected

components, we use states such as :

 q = { ({a}, 4), ({a,b}, 2), ({b,c,d},2), ({b,d,f },3) },

 where 4, 2, 2, 3 are the numbers of connected components

 of respective types {a}, {a,b}, {b,c,d}, {b,d,f }.

19

Computation time of a fly-automaton

 F : all graph operations, Fk : those using labels 1, …, k.

 On term t ∈ T(Fk) defining G(t) with n vertices, if a fly-automaton

 takes time bounded by :

 (k + n)c � it is a P-FA (a polynomial-time FA),

 f(k).nc � it is an FPT-FA,

 a.ng(k) � it is an XP-FA.

 The associated algorithm is, respectively, polynomial-time, FPT or

XP for clique-width as parameter.

20

Recognizability Theorem [B.C & I.D.] : For each MSO property P, one

can construct a single infinite FPT-FA over F that recognizes the terms

 t ∈ T(F) such that P(G(t)) holds.

 For each k, its restriction to the finite signature Fk is a finite

automaton.

Consequences : (1) The same automaton (the same model-checking

program) can be used for graphs of any clique-width.

 (2) Can be implemented in non-trivial cases.

21

Some experiments using FA (by Irène Durand)

 Number of 3-colorings of the 6 x 90 “modified” grid of clique-width 8
in 1 minute 9 seconds (with diagonals on the squares of the first column).
For the similar 6 x 250 grid : < 6 minutes; for 6 x 360 : < 9 minutes.

 4-acyclic-colorability of the Petersen graph (clique-width 5) in 1.5
minutes, from a term in T(F6).

 (3-colorable but not acyclically;

 red and green vertices

 induce a cycle).

22

The McGee graph (of clique-width 8)

is defined by a term in T(F10)

of size 99 and depth 76.

This graph is 3-acyclically colourable.

- checked in 40 minutes.

- even in 2 seconds by enumerating the

runs, and stopping as soon as an accepting one is found.

23

Existential quantifications and nondeterminism

 Graph G(t)

 Term t

24

 V1 = {1,3,4}, V2 = {2,3}

 Term t * (V1,V2)

25

 Consider a property ∃X,Y. ϕ(X,Y) to be checked on graph G(t).

 We construct a deterministic automaton A over F[2] recognizing

the terms t * (X,Y) such that G(t * (X,Y)) != ϕ(X,Y).

 We delete the Booleans in the nullary symbols of F[2] : we obtain

a nondeterministic automaton B over F (called a projection : A � B).

 The different runs of B correspond to trying the different possible

pairs (X,Y) when looking for a satisfying one.

 B recognizes the terms t such that G(t) != ∃X,Y. ϕ(X,Y).

26

Enumeration techniques

 Enumeration of accepting states

 - stopping as soon as one is obtained

 - less space but more time for checking negation

 (failure to recognition),

 - listing the assignments X satisfying ϕ(X): we maintain

with each state, at each position, its “origin”: the partial

assignment that produced it.

 If an Error state is found in a partially constructed run, we abort its

completion.

27

Enumerators

An enumerator is a triple E = (D, reset, next) where D is an

effective (countable) set, reset and next are two programs guaranteed

to terminate. E defines a finite list List(E) of elements of D.

 List(E) may contain repetitions,

 next produces one more element or reports “end of list”,

 reset reinitializes the program next.

 Remark : Enumerators can be extended to produce infinite lists.

28

Basic enumerators : For each nullary a, Ea produces the list of states

q (not Error) arising from a (by the nondeterministic automaton B that

checks ∃X.ϕ(X) and that is obtained from the deterministic automaton

A checking ϕ(X), by deleting the sequences of Booleans w in the

nullary symbols (a,w) of the signature F[p] of A).

 Alternatively, Ea produces the list of pairs (q,w) : we keep track of

the w that produced q (its “origin”).

29

Tra nsforming and combining enumerators.

 Making a copy of E : copyu(E) indexed by u, a position of the given

term.

 Making E into nr(E), nonredundant: produces the same elements

without repetitions (nr(E) uses the list of already generated elements).

 Applying a unary function h : D � D’

 If E enumerates elements of D, then hoE produces the images by h

of the elements of List(E).

30

 Cartesian product.

 If E enumerates elements of D, E’ elements of D’, we want to list

the pairs (d,d’) where d ∈List(E) = d1, …, d’∈List(E’) = d’1, …

 Possible orders:

 “Line order” (lexico) : (d1, d’1), (d1, d’2), …, (d2, d’1), (d2, d’2), …

 “Column order” : (d1, d’1), (d2, d’1), …, (d1, d’2), (d2, d’2), …

 “Diagonal order” : (d1, d’1), (d1, d’2), (d2, d’1),

 (d1, d’3), (d2, d’2), (d3, d’1), …..

 E xLine E’, E xCol E’, E xDiag E’ realize these enumerations.

31

 Given a term t and an automaton A that checks ϕ(X), one builds a

(big) enumerator Et by combining basic ones with Cartesian

compositions, ho(.) and possibly nr(.).

 If t=f(s), then Et = ho(Es) where h is based on transitions for f.

 If t=f(s,s’), then Et = ho(Es x Es’) where h is similar.

 Running Et by calling its next component iteratively produces the

desired list (unless the system lacks of memory).

32

 Weighted enumeration.

 Each element d of D has a weight (a size) s(d).

 An s-enumerator E produces a list d1, d2, … such that

s(d1)< s(d2)< s(d3) < … .

 For Cartesian product, if E s-enumerates elements of D and

E’ s’-enumerates those of D’, we want an s”-enumerator of the pairs

(d,d’) where s”(d,d’) := s(d) + s’(d’).

 A modification of the diagonal construction can do that.

 Application : Enumeration of the tuples X that satisfy ϕ(X) by

increasing order of size, where the size is the sum of cardinalities of

the sets composing X.

33

 The system AUTOGRAPH (by I. Durand)

 (1) Fly-automata for basic graph properties :

 Clique, Stable (no edge), Link(X,Y), NoCycle,

 Connectedness, Regularity, Partition(X, Y, Z), etc…

 and functions :

 #Link(X,Y)= number of edges between X and Y,

 Maximum degree.

 Procedures for combining fly-automata, corresponding to logical

 constructions : ∧ , ∨ , negation, ∃X. ϕ(X).

34

Procedures to build automata that compute functions:

 #X.ϕ(X) : the number of tuples X that satisfy ϕ(X) in

 the input term (hence, in the associated graph),

 SpX.ϕ(X) : the spectrum = the set of tuples of cardinalities

 of the components of the X that satisfy ϕ(X), etc…

 Enumeration: construction of an enumerator from a term and

 a fly-automaton.

 These constructions are “uniform” with respect to the input

automata.

35

Some tests

 Checking colorability of grids 6 x M of clique-width 8.

M 2-col. det 2-col. enum 3-col. det 3-col. enum

7 0.03 s 6 s 10 s 6 s

8 0.03 s 9 s Fails 9 s

20 0.2 s 3 min Fails 3 min

Counting 2-colorings : for M = 200, in 2 seconds (2).

Counting 3-colorings : for M= 5, in 3 seconds (6 204 438).

Fails for M = 6.

Works for M = 360 for modified grids.

36

Enumerating 3-colorings :

M = 20 : Construction of enumerator in 3 minutes

Then, first result in 0.5 second.

37

 Edge quantifications and tree-width

 If G = (VG , edgG(.,.)), then Inc(G) := (VG ∪ EG , incG(.,.)) is its

incidence graph: incG(u,e) ⇔ u is an end of e.

 MSO formulas over Inc(G) can use quantifications on edges and
thus, express more properties.

Proposition (T.Bouvier) : tree-width(G) < k ⇒ cwd(Inc(G)) < k+3.

 k+3 improves a previous exponential upper bound. Hence tools for
“bounded clique-width” and MSO formulas are applicable to “bounded
tree-width” and MSO formulas using edge quantifications.

As tree-width(G) = O(cwd(Inc(G)), incidence graphs “only work” for
bounded tree-width

38

 Another construction based on automata

Theorem [B.C]: Given ϕ(X) and a term t of width k, after a preprocessing

taking time O(n.log(n)), one can enumerate with linear delay the tuples X

that satisfy ϕ in G(t) (having n vertices).

 See : Linear delay enumeration and MSO logic, DAM 157 (2009)

 We build from t and A a directed acyclic graph D(t,A) that embeds all

runs of B on t. We enumerate with linear delay the accepting runs from

D(t,A). The runs contains the tuples they come from, so we can get them.

39

 To have linear delay in the sizes of the output tuples, we eliminate the

parts of D(t,A) whose runs come from empty tuples, because traversing

these parts takes time that does not correspond to an increase of the

produced tuples.

 We use a term t of height O(log(n)), that is not necessarily optimal for

width.

 This method has not been implemented.

40

 Conclusion

 These algorithms are based on fly-automata, that can be quickly

constructed from logical descriptions (and basic automata)

 � flexibility.

 The system AUTOGRAPH implements these constructions. Tests

have been made for colorability and connectedness problems.

 Thank you for suggesting interesting problems that could fit in

this framework.

