

1

Graph algorithms based on infinite automata:

logical descriptions and usable constructions

Bruno Courcelle

(joint work with Irène Durand)

Bordeaux-1 University, LaBRI (CNRS laboratory)

2

Overview

 Algorithmic meta-theorems provide existence proofs of relatively

efficient (FPT or XP) graph algorithms from logical descriptions of

(difficult) problems. We give usable and tested constructions based

on:

 - problem descriptions in extensions of MSO (Monadic

 Second-Order) logic,

 - hierarchical decompositions of graphs,

 - automata with infinitely many states.

3

 Our graph parameter is clique-width, because :

 - it is easier to handle than (the very popular) tree-width for

constructing automata, and more powerful : bounded tree-width implies

bounded clique-width,

 - it is defined in terms of elementary graph operations, hence is

easier than the equivalent notion of rank-width,

 - it works equally easily on directed graphs.

 The system AUTOGRAPH (by I.Durand) and the corresponding

theory [B.C.&I.D.: Automata for the verification of monadic second-order graph

properties, J. Applied Logic, 10 (2012) 368-409] are based on clique-width.

4

 Theorem : For each k, every MSO graph property P can be

checked by a finite automaton that recognizes terms over the finite

set of operations that generates the graphs of clique-width at most k.

 This automaton is computable (i.e., “one can compute” its set of

states and its transition table) in theory but not in practice because it is

much too large as soon as k > 3. To overcome this difficulty, we have

introduced fly-automata (in French “automates programmés”) whose states

and transitions are described and not tabulated. Only the transitions

necessary for an input term are computed, “on the fly”.

5

 As states are not listed, a fly-automaton can use an infinite set of

states and so, it can recognize sets of words, terms or graphs that are

not monadic second-order definable : the language anbn , the set of

regular graphs (all vertices of same degree).

 It can also compute values: the number of p-colorings or of

“acyclic” p-colorings of a graph.

 We construct fly-automata in uniform ways from logical des-

criptions of problems. We develop a theory of (some aspects of)

dynamic programming.

6

Definition (skip ?) : Monadic Second-Order Logic

 First-order logic extended with (quantified) variables
denoting subsets of the domains.

 MSO (expressible) properties : transitive closure, properties of paths,

 connectedness, planarity (via Kuratowski), p-colorability.

Examples of formulas for G = (VG , edgG(.,.)), undirected

G is 3-colorable :

∃X,Y (X ∩ Y = ∅ ∧
 ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧

 (u ∉ X ∪ Y ⇒ v ∈ X ∪ Y)]
 })

7

G is not connected :

∃Z (∃x ∈ Z ∧ ∃y ∉ Z ∧ (∀u,v (u ∈ Z ∧ edg(u,v) ⇒ v ∈ Z))

 Transitive and reflexive closure : TC(R, x, y) :

 ∀ Z { “Z is R-closed” ∧ x ∈ Z ⇒ y ∈ Z }

 where “Z is R-closed” is defined by :
 ∀u,v (u ∈ Z ∧ R(u,v) ⇒ v ∈ Z)

The relation R can be defined by a formula as in :

∀x,y (x ∈ Y ∧ y ∈ Y ⇒ TC(“u ∈ Y ∧ v ∈ Y ∧ edg(u,v)”, x, y)

expressing that G[Y] is connected (Y is free in R).

8

Application : Planarity is MSO-expressible (no minor K5 or K3,3).

Non-MSO-expressible properties

 - G is isomorphic to Kp,p for some p (p is not fixed; needs equipotence

of two sets, hence quantification over binary relations to find if there is a

bijection).

 - G has a nontrivial automorphism, or is regular (has all vertices of

same degree).

 Reference : B.C. & J. Engelfriet : Graph structure and monadic second-

order logic, Cambridge University Press, 2012

9

Definition (skip ?) : Clique-width

It is defined from graph operations. Graphs are simple, directed or not, and

labelled by a , b , c, A vertex labelled by a is called an a-vertex.

One binary operation: disjoint union : ⊕⊕⊕⊕

Unary operations: edge addition denoted by Adda,b

Adda,b (G) is G augmented

with undirected edges between every

a-vertex and every b-vertex.

The number of added edges depends

on the argument graph. H = Adda,b (G) ; only 5 new edges added

10

 Directed edges can be defined similarly.

Vertex relabellings :

Relaba b(G) is G with every a-vertex is made into a b-vertex

Basic graphs : those with a single vertex a, labelled by a.

Definition: A graph G has clique-width (denoted by cwd(G)) < k

 ⇔ G=G(t) is defined by a term t using < k labels.

Example : Cliques have

clique-width 2.

Kn is defined by tn where tn+1 =

Relabb a(Adda,b (tn ⊕⊕⊕⊕ b))

11

The parsing problem: construction of terms, i.e. of decompositions.

 Automata take terms as inputs, not graphs : the parsing must be

done before. (Graph automata do not exist in any satisfactory way).

 Deciding if cwd(G) < k (for input (G,k)) is NP-complete (same

for tree-width).

 There are FPT approximation algorithms, taking time f(k).n3, that

output the following for given k and graph G with n vertices:

 (i) either the answer that cwd(G) > k,

 (ii) or a term witnessing that cwd(G) < g(k).

 Every FPT algorithm taking terms as inputs can be converted into an

FPT algorithm taking graphs as inputs. (It parses and then checks).

12

 However, graphs arising from concrete problems are not random.

They usually have “natural” hierarchical decompositions from which

terms of small tree-width or clique-width are not hard to construct.

 This situation arises in compilation (flow-graphs of structured

programs), in linguistics and in chemistry. It is thus interesting to

develop specific parsing algorithms for graph classes relevant to

particular applications.

13

The MSO meta-theorem through finite automata:

the basic scheme

 k ϕ (logical formula)

 Automaton Constructor

 Yes

G Graph Analyzer t A(ϕ,k’))

 No

 Error : cwd(G) > k k’ = g(k)

Steps are done “once for all”, independently of G

A(ϕ,k’): “finite” automaton, running on terms t

cwd can be replaced by tree-width or rank-width.

14

The MSO meta-theorem through fly-automata: a simpler scheme

 ϕ (MSO formula)

 Fly-automaton Constructor

 Yes

G Graph Analyzer t A(ϕ)

 No

 A(ϕ): infinite fly-automaton on the countable set of all graph

operations that define clique-width. The time taken by A(ϕ) depends on

t (the labels that occur in this term), not only on the size of G.

15

Automata that check graph properties

 We want to check a property P(G), for G = G(t), t ∈ T(F).

 For each labelled graph G, we define a piece of information q(G)

that encodes properties of G and values attached to G, so that we have:

 (i) inductive behaviour of q : for f ∈ F and graphs G,H:

 q(f(G,H)) = fq (q(G), q(H))

 for some computable function fq .

 (ii) P(G) can be decided from q(G).

16

 Then q(G(t/u)) is computed bottom-up in a term t, for each

node u. This information is relative to the graph G(t/u) (a subgraph

of G) defined by the subterm t/u of t issued from u.

 q(G(t/u)) is a state of a finite or infinite deterministic

 bottom-up automaton.

 These automata formalize some form of dynamic programming.

Two possibilities: Direct construction for a well-understood graph

property or automatic construction from an MSO formula.

17

Direct construction 1 : Connectedness.

The state at node u is the set of types (sets of labels) of the

connected components of the graph G(t/u). For k labels (k = bound

on clique-width), the set of states has size < 2 ^ (2 ^ k).

 Proved lower bound : 2 ^ (2 ^ k/2).

� Impossible to “compile” the automaton (i.e., to list the transitions) .

Example of a state : q = { {a}, {a,b}, {b,c,d}, {b,d,f } }, (a,b,c,d,f : labels).

Some transitions :

 Adda,c : q { {a,b,c,d}, {b,d,f } },

 Relaba b: q { {b}, {b,c,d}, {b,d,f } }

 Transitions for ⊕⊕⊕⊕ : union of sets of types.

Note : Also state (p,p) if G(t/u) has > 2 connected components, all of type p.

18

In a fly-automaton, states and transitions are computed and not

tabulated. We can allow fly-automata with infinitely many states and,

also, with outputs : numbers, finite sets of tuples of numbers, etc.

 Example continued : For computing the number of connected

components, we use states such as :

 q = { ({a}, 4), ({a,b}, 2), ({b,c,d},2), ({b,d,f },3) },

 where 4, 2, 2, 3 are the numbers of connected components

 of respective types {a}, {a,b}, {b,c,d}, {b,d,f }.

19

Direct construction 2 : Regularity (not MSO)

A state is a tuple of counters that indicates, for each label a:

 the number of a-vertices and

 the common degree of all a-vertices.

The state is Error if two a-vertices have different degrees: the edge

addition operations will add the same numbers of edges to these vertices,

hence the considered graph cannot be regular.

20

 Definition : Fly-automaton (FA)

A = < F, Q, δ, Out >

F : finite or countable (effective) signature (set of operations),

Q : finite or countable (effective) set of states (integers, pairs of integers,

finite sets of integers: states can be encoded as finite words, integers in binary),

Out : Q � D (an effective domain, i.e., set of finite words), computable.

δ : computable (bottom-up) transition function

Nondeterministic case : δ is finitely multi-valued.

21

This automaton defines a computable function : T(F) � D

 (or : T(F) � P(D) if it is not deterministic)

If D = { True, False }, it defines a decidable property, equivalently,

 a decidable subset of T(F).

Deterministic computation of a nondeterministic FA :

 bottom-up computation of finite sets of states (classical simulation

 of the determinized automaton): these states are the useful ones of

the determinized automaton; these sets are finite because the transition

function is finitely multivalued.

 Fly-automata are “implicitly determinized” and they run deterministically

22

Computation time of a fly-automaton

 F : all graph operations, Fk : those using labels 1, …, k.

 On term t ∈ T(Fk) defining G(t) with n vertices, if a fly-automaton

 takes time bounded by :

 (k + n)c � it is a P-FA (a polynomial-time FA),

 f(k).nc � it is an FPT-FA,

 a.ng(k) � it is an XP-FA.

 The associated algorithm is, respectively, polynomial-time, FPT or

XP for clique-width as parameter.

23

Theorem [B.C & I.D.] : For each MSO property P, one can construct a

single infinite FPT-FA over F that recognizes the terms t in T(F) such

that P(G(t)) holds.

For each k, its restriction to the finite signature Fk is finite.

Consequence : The same automaton (the same model-checking program)

can be used for graphs of any clique-width.

24

Some experiments using FA (by Irène Durand)

 Number of 3-colorings of the 6 x 525 grid (of clique-width 8) in 10
minutes.

 4-acyclic-colorability of the Petersen graph (clique-width 6) in 1.5
minutes.

 (3-colorable but not acyclically;

 red and green vertices

 induce a cycle).

25

The McGee graph

is defined by a term

with 10 labels (optimal?)

of size 99 and depth 76.

It is 3-acyclically colourable.

Checked in 40 minutes.

(Even in 2 seconds by enumerating the accepting runs,

and stopping as soon as a success is found).

26

Constructions of automata

(A) For Boolean and first-order constructions of properties
and functions.

 P ∧ Q, P ∨ Q, ¬ P, g(α1 , …, αp) where g is poly-time

computable (can be a relation such as a comparison of numbers),

 P[X∩∩∩∩Y] : property of subgraph induced on X ∩ ∩ ∩ ∩ Y (set term)

 First-order (FO) quantifications : ∃ x.P(x), x =tuple of FO var.

 Set of satisfying assignments : Sat x.P(x) (a query)

 Number of satisfying assignments : # x.P(x).

 Set of values α(x) such that P(x) is true.

27

Type of automata Finite P-FA FPT-FA XP-FA

P∧ Q,P∨ Q, ¬ P , P[X∩∩∩∩Y] Finite P FPT XP

g(α1 , …, αp), α(X∩∩∩∩Y) P FPT XP

∃ x.P(x), ∀ x.P(x) Finite P FPT XP

Sat x.P(x), # x.P(x) P P FPT XP

SetVal α(x) / P(x)) P FPT XP

Finite : Finite signature and sets of states.

We have “nice preservations” of the types of automata.

28

Main proof ideas : (generalized) existential quantifications :

 ∃ x.P(x), # x.P(x) , Sat x.P(x),

 where x is a p-tuple of first-order variables.

 Handling existential quantifications and sets of satisfying

assignments needs to transform a deterministic automaton A for

P(x) into a nondeterministic one B (that decides ∃ x.P(x)). But, its

nondeterminism degree is < np , hence polynomially bounded in the

number n of vertices.

 We get a P-FA, an FPT-FA or an XP-FA if A is so.

 Same idea for Sat x.P(x). For # x.P(x), we transform B into a

deterministic FA that counts the number of its accepting runs.

29

(B) Monadic second-order constructions

The spectrum SpX.P(X) of a property P(X) is the set of tuples of

cardinalities of the components of the tuples X that satisfy P(X).

The multispectrum MSpX.P(X) is the corresponding multiset of

tuples of SpX.P(X) hence, for X = X (one component):

 the set of pairs (m ,i) such that i > 0 is

 the number of sets X of cardinality m that satisfy P(X).

For a p-tuple X, a multispectrum is a function [0,n]p � [0,2 p.n];

it can be encoded in size O(n p.log(2 p.n)) = O(n p+1).

30

Type of automaton A for P(X) Finite P-FA FPT-FA XP-FA

∃X.P(X), ∀X.P(X) Finite P FPT XP

MSp X.P(X), Sp X.P(X), # X.P(X),

MaxCard X.P(X)

P P FPT XP

P-FA means : A is P-FA and B (the associated nondeterministic FA) has a

polynomially bounded nondeterminism degree. Similar for FPT and

XP (with FPT- or XP-bounded nondeterminism degree). There are

more contraints for the preservation of types of automata than for

FO constructions.

Note: the automata are constructed in the same way in all cases; the

nondeterminism degree concerns only the computation time.

31

Some non-MSO examples : (1) Equitable p-coloring :

 ∃X1,…,Xp (Partition(X1,…,Xp) ∧ Stable[X1] ∧...∧ Stable[Xp]

 ∧ X1=…=Xi-1> Xi =…=Xp> X1-1).

 It is FPT (for fixed p).

(2) Partition into 2 regular graphs :

 ∃X (Reg[X] ∧ Reg[Xc])

 Reg[X] means that the subgraph induced on X is regular;

 Xc is the complement of X. It is XP.

32

(3) Counting p-colorings with particular properties, e.g., acyclic or

equitable.

(4) Minimizing the use of a particular color: this gives a “distance

to p-colorability” for a graph that p+1-colorable but not

 p-colorable.

In general, we can handle properties and functions of the forms

 ∃X.P(X), MSp X.P(X), Sp X.P(X), # X.P(X)

where P(X) is a Boolean combination of properties for which we

have constructed fly-automata (Reg, NoCycle, Stable, etc…).

33

The system AUTOGRAPH (by I. Durand)

 Fly-automata for basic graph properties :

 Clique, Stable (no edge), Link(X,Y), NoCycle,

 Connectedness, Regularity, Partition(X, Y, Z), etc…

 and functions :

 #Link(X,Y) (number of edges between X and Y),

 Maximum degree.

34

 Procedures for combining fly-automata (combinations of descriptions)

 product : for P ∧ Q, P ∨ Q, g(α1 , …, αp)

 A � A/X : for P → P[X], (P in induced subgraph on X) and

 A � A/(X ∩ Y) ∪ (Y ∩ Z)
c
 for relativization to set terms.

 image automaton: A � h(A) : in the transitions of A, each

 function symbol f is replaced by h(f) ; makes h(A)

 nondeterministic : for P(X) � ∃X.P(X)

35

Procedures to build automata that compute functions:

 #X.P(X) : the number of tuples X that satisfy P(X) in

 the input term (hence, in the associated graph).

 SpX.P(X) : the set of tuples of cardinalities of the

 components of the X that satisfy P(X).

 MSpX.P(X) : the corresponding multiset.

 SetValX.α(X)/P(X) : the set of values of α(X)

 for the tuples X that satisfy P(X).

 For each case, a procedure transforms FA for P(X) and α(X)

 into FA that compute the associated functions. (These transformations

 do not depend on P(X) and α(X).)

36

Conclusion

 In most cases, we get XP (or FPT ones) algorithms, that can be

obtained independently.

 These algorithms are based on fly-automata, that can be quickly

constructed from logical descriptions � flexibility.

 These constructions are implemented. Tests have been made for

colorability and connectedness problems.

 Thank you for suggesting interesting problems that could fit in

this framework.

