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Overview 
 

 

  Algorithmic  meta-theorems  provide existence proofs of relatively  

efficient (FPT or XP) graph  algorithms  from  logical descriptions  of 

(difficult)  problems.  We  give  usable  and  tested constructions based  

on: 

   - problem  descriptions  in extensions of  MSO  (Monadic   

    Second-Order) logic,  

   - hierarchical  decompositions  of  graphs, 

   - automata  with  infinitely many states.  
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 Our  graph  parameter  is  clique-width, because : 

  - it is easier to handle than (the very popular) tree-width for 

constructing automata, and more powerful : bounded tree-width implies 

bounded clique-width, 

  -  it is defined in terms of elementary graph operations, hence is 

easier than the equivalent notion of  rank-width,  

  -   it  works  equally  easily on directed graphs. 

       

 The  system AUTOGRAPH (by I.Durand) and  the  corresponding  

theory [B.C.&I.D.: Automata for the verification of monadic second-order graph 

properties, J. Applied Logic, 10 (2012) 368-409]  are based on clique-width. 
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  Theorem : For each k, every  MSO graph property  P  can be 

checked  by a finite  automaton  that recognizes terms  over the  finite  

set  of operations  that generates  the  graphs  of clique-width at most k. 
 

  This  automaton  is computable (i.e., “one can compute” its set of 

states and its transition table) in theory but not in practice because it is 

much too large as soon as k > 3.  To  overcome this difficulty, we have 

introduced fly-automata (in French “automates programmés”) whose states 

and transitions are described and not tabulated. Only the transitions 

necessary  for an input term are computed, “on the fly”.  
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  As  states are not listed, a  fly-automaton can use an infinite set of 

states and so, it can recognize  sets  of words, terms or graphs that are 

not monadic second-order definable :  the language anbn , the set of 

regular graphs (all vertices of same degree). 

 

  It can also compute values: the number of p-colorings or of 

“acyclic” p-colorings of a graph. 

 

  We construct fly-automata  in  uniform ways from  logical des-

criptions of  problems.  We  develop  a  theory  of (some aspects of)  

dynamic  programming. 
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Definition (skip ?)  :  Monadic  Second-Order  Logic  
 

 First-order  logic  extended  with  (quantified)  variables  
denoting subsets  of  the  domains. 

 
 

 MSO  (expressible)  properties :   transitive closure,  properties  of paths,  

  connectedness, planarity   (via Kuratowski),   p-colorability. 

Examples  of  formulas  for     G  =  ( VG , edgG(.,.) ), undirected 
 

G  is  3-colorable  : 
 
∃X,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  

    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 
      } ) 
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G  is  not  connected : 

∃Z ( ∃x ∈ Z  ∧  ∃y ∉ Z  ∧  (∀u,v (u ∈ Z  ∧  edg(u,v) ⇒ v ∈ Z)  ) 

 

 Transitive  and  reflexive  closure  :   TC(R, x, y) :   
 
 ∀ Z { “Z is R-closed”  ∧  x ∈ Z  ⇒ y ∈ Z  } 
 

       where   “Z is R-closed”    is defined  by :   
  ∀u,v (u ∈ Z  ∧  R(u,v) ⇒ v ∈ Z)  
 
The  relation  R  can  be  defined   by  a   formula  as  in : 
 

∀x,y (x ∈ Y  ∧  y ∈ Y ⇒   TC(“u ∈ Y  ∧ v ∈ Y ∧ edg(u,v)”, x, y) 
 

expressing  that   G[Y ]  is connected    ( Y  is  free  in  R). 
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Application :  Planarity  is  MSO-expressible  (no minor  K5  or  K3,3). 
 

 

 

Non-MSO-expressible  properties  
 

 - G  is  isomorphic  to  Kp,p  for  some  p   (p  is not  fixed; needs  equipotence  

of  two sets, hence  quantification  over  binary relations  to  find  if  there is  a  

bijection). 
 
 

 - G  has  a  nontrivial  automorphism,  or is regular (has  all vertices  of  

same degree). 
 

 Reference : B.C. & J. Engelfriet :  Graph  structure  and monadic second-

order  logic,  Cambridge University Press, 2012 
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Definition  (skip ?) :  Clique-width 
 

It  is  defined from graph operations.  Graphs are simple, directed  or  not, and  

labelled  by  a , b , c, ... .   A  vertex  labelled by  a  is  called  an   a-vertex. 
 

One  binary  operation:   disjoint  union    :   ⊕⊕⊕⊕    

    

Unary  operations:  edge  addition  denoted  by  Adda,b 

 

Adda,b (G)  is  G  augmented   

with  undirected edges  between  every  

a-vertex and  every  b-vertex. 

The  number  of added edges  depends   

on  the  argument graph.              H = Adda,b (G) ; only 5  new edges added 
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 Directed edges can be defined similarly.  

Vertex  relabellings : 

Relaba         b(G)  is  G  with  every  a-vertex   is  made  into  a  b-vertex 

 

Basic graphs   :   those  with  a  single  vertex  a, labelled by a. 

 

Definition: A  graph  G  has  clique-width    (denoted by cwd(G))  <  k  

 ⇔  G=G(t)  is  defined  by a  term   t  using    <   k    labels.  

 

 

Example : Cliques   have  

clique-width  2. 

Kn  is   defined  by  tn  where  tn+1  =    

Relabb        a(    Adda,b  (tn ⊕⊕⊕⊕ b) )  
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The parsing problem: construction of terms, i.e. of decompositions. 

 

  Automata  take terms as inputs, not graphs : the parsing must be 

done before. (Graph  automata  do  not  exist  in  any  satisfactory way). 
   

  Deciding  if  cwd(G) < k   (for input (G,k) ) is  NP-complete (same 

for tree-width).  

  There are  FPT  approximation algorithms, taking time f(k).n3, that 

output  the following for given k and  graph  G with n vertices:     

   (i) either  the answer that  cwd(G)  > k, 

   (ii) or  a  term  witnessing  that  cwd(G)  < g(k). 

 Every  FPT  algorithm  taking  terms as inputs can be converted into an  

FPT algorithm taking graphs as inputs. (It parses and then checks). 
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   However, graphs  arising  from concrete problems are not random.  

They usually  have  “natural” hierarchical  decompositions from which 

terms of small  tree-width or clique-width are not hard to construct. 

 

  This situation arises in compilation (flow-graphs of structured 

programs), in linguistics  and in chemistry. It is thus interesting to 

develop specific parsing  algorithms for graph classes relevant to 

particular applications.   
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The  MSO  meta-theorem  through finite  automata: 

the  basic  scheme 

       k            ϕ    (logical  formula)   

      

             Automaton Constructor  

                  Yes  

G                   Graph Analyzer                t              A(ϕ,k’))           

                  No  

       Error : cwd(G) > k               k’ = g(k) 

Steps       are  done  “once  for  all”, independently   of   G   

A(ϕ,k’):  “finite”  automaton,  running  on  terms  t  

cwd  can  be  replaced  by  tree-width  or  rank-width.  
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The  MSO  meta-theorem  through fly-automata:  a  simpler  scheme 
  

                ϕ    (MSO  formula)

                             

      

             Fly-automaton Constructor  

                  Yes  

G                   Graph Analyzer                 t                 A(ϕ)           

                  No   

 A(ϕ): infinite  fly-automaton  on  the countable  set  of all graph 

operations that define clique-width.  The  time taken  by A(ϕ)  depends on 

t (the labels that occur in this term),  not only on the size of G. 
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Automata  that  check graph  properties 

  

 We want to check a  property  P(G),  for G = G(t),  t  ∈ T(F). 

 For each labelled graph G,  we  define  a  piece  of  information  q(G)  

that encodes properties  of  G  and values attached  to G, so that we have: 

   (i) inductive  behaviour of q :  for f  ∈  F  and  graphs  G,H: 

     q(f(G,H))  =  fq (q(G), q(H))  

   for  some  computable function  fq . 

  (ii) P(G)  can be decided from  q(G). 
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       Then  q(G(t/u))  is  computed  bottom-up  in  a  term  t,   for  each  

node  u. This  information  is  relative  to  the  graph  G(t/u)  (a  subgraph 

of  G ) defined  by  the  subterm   t/u  of  t   issued   from  u.   

  q(G(t/u))  is  a  state  of  a   finite  or  infinite  deterministic   

  bottom-up automaton. 

  

 These  automata  formalize  some  form  of  dynamic programming. 

 

 

Two  possibilities: Direct construction for a  well-understood  graph 

property  or  automatic  construction  from  an  MSO  formula. 
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Direct construction 1 : Connectedness. 

 

The state at node u is the set of  types (sets  of  labels)  of  the 

connected  components of  the  graph G(t/u).  For  k  labels (k = bound 

on clique-width),  the set  of  states  has  size  <  2 ^ (2 ^ k).   

  Proved  lower  bound  :  2 ^ (2 ^ k/2).   

�  Impossible  to  “compile”  the   automaton (i.e., to list the transitions) . 

Example  of  a  state   :  q = { {a}, {a,b}, {b,c,d}, {b,d,f } },  (a,b,c,d,f :  labels).  

Some  transitions :               

  Adda,c :    q             { {a,b,c,d}, {b,d,f } },                    

  Relaba       b: q            { {b}, {b,c,d}, {b,d,f } }   

  Transitions   for   ⊕⊕⊕⊕ :  union  of  sets  of  types. 

Note : Also  state (p,p)  if  G(t/u) has   >  2 connected components,  all  of  type p. 
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In  a  fly-automaton,  states  and   transitions  are  computed  and not  

tabulated. We  can allow  fly-automata  with  infinitely  many  states  and, 

also,  with  outputs  :   numbers, finite sets of tuples of numbers,  etc.  

 

 Example continued : For  computing  the  number  of  connected  

components,  we  use  states  such  as  : 

   q = { ({a}, 4 ), ({a,b}, 2), ( {b,c,d},2), ( {b,d,f },3) },   

   where 4, 2, 2, 3  are  the  numbers  of  connected  components  

   of  respective   types  {a}, {a,b}, {b,c,d}, {b,d,f }.  
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Direct construction 2 : Regularity  (not  MSO)                                            

A state is a  tuple  of counters  that  indicates, for each label a:                                            

  the number of a-vertices and                                                           

  the common degree of all a-vertices.                                              

The state is Error if two a-vertices have different degrees: the edge 

addition operations will add the same numbers of edges to these vertices, 

hence the considered graph cannot  be regular. 
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 Definition :  Fly-automaton    (FA)   

 

A = < F, Q, δ, Out >  

F :  finite or  countable (effective)  signature   (set of operations), 

Q :  finite or countable (effective)  set of states   (integers, pairs of integers, 

finite sets of integers: states can be encoded as finite words, integers in binary), 

Out : Q � D   (an effective domain, i.e., set of  finite words), computable. 

δ : computable  (bottom-up)  transition  function 

 

Nondeterministic  case :  δ   is  finitely  multi-valued. 
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This  automaton defines  a  computable  function : T(F) � D   

    (or  : T(F) � P(D)  if  it  is  not  deterministic) 

 

If  D = { True, False },  it  defines  a  decidable  property, equivalently, 

   a  decidable  subset  of  T(F). 

 

 

Deterministic  computation  of  a  nondeterministic  FA  :  

 bottom-up   computation  of  finite  sets  of  states  (classical  simulation 

  of the determinized automaton):  these states  are  the  useful  ones  of   

the  determinized  automaton;  these sets are  finite  because the transition 

function is finitely multivalued.  

 Fly-automata  are  “implicitly  determinized” and  they run deterministically 
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Computation  time  of  a  fly-automaton 

  

 F : all graph operations,   Fk : those using  labels 1, …, k. 

 On  term  t ∈ T(Fk)  defining  G(t)  with  n  vertices,  if  a  fly-automaton  

  takes  time  bounded by : 

  (k + n)c  �  it is a P-FA   (a   polynomial-time  FA), 

  f(k).nc  �    it is an FPT-FA, 

  a.ng(k)  �    it is an XP-FA. 

 

 The associated  algorithm  is, respectively,  polynomial-time, FPT or 

XP for clique-width as parameter.          
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Theorem [B.C & I.D.] :  For each MSO property P, one can construct a 

single infinite  FPT-FA over F  that recognizes the terms t in T(F)  such 

that  P(G(t)) holds. 

For each k, its restriction to  the  finite  signature  Fk  is  finite. 

 

 

Consequence : The same automaton (the same model-checking program)  

can be used for graphs of any clique-width. 
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Some   experiments  using  FA    (by Irène  Durand) 

 
 Number of 3-colorings  of  the  6 x 525  grid  (of clique-width  8)  in  10 
minutes.  
 
 
 
 4-acyclic-colorability  of  the  Petersen  graph  (clique-width 6)  in  1.5   
minutes. 
 
 (3-colorable but not acyclically;  

 red  and  green  vertices  

 induce  a  cycle). 

 



 

25 

The  McGee graph 

 

is defined by a term  

with 10 labels (optimal?) 

of size 99 and depth 76. 

 

It is 3-acyclically  colourable. 

Checked in 40 minutes. 

(Even in  2 seconds by enumerating the accepting  runs,  

and  stopping  as soon as  a  success is found). 
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Constructions  of  automata  
 

(A)  For Boolean  and  first-order  constructions  of  properties 
and  functions. 

 

 P ∧  Q, P  ∨  Q,   ¬ P,  g(α1 , …,  αp)  where  g  is  poly-time 

computable  (can  be  a  relation such as a  comparison  of  numbers), 

 P[X∩∩∩∩Y] : property  of  subgraph  induced  on  X ∩ ∩ ∩ ∩ Y (set term) 

  

 First-order  (FO) quantifications : ∃ x.P(x), x =tuple of  FO  var. 

 Set  of  satisfying   assignments : Sat x.P(x)  (a  query) 

 Number  of  satisfying assignments : # x.P(x). 

 Set  of  values   α(x)  such  that  P(x) is  true. 
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Type of automata Finite P-FA FPT-FA  XP-FA 

P∧  Q,P∨ Q,   ¬ P  , P[X∩∩∩∩Y] Finite P FPT XP 

g(α1 , …,  αp),  α(X∩∩∩∩Y)  P FPT XP 

∃ x.P(x), ∀ x.P(x) Finite P FPT XP 

Sat x.P(x),  # x.P(x) P P FPT XP 

SetVal α(x) / P(x) )  P FPT XP 

 

 

 

Finite :  Finite signature and sets of states.  
 

We  have “nice preservations” of the types of  automata.  
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Main  proof ideas : (generalized) existential quantifications :  

   ∃ x.P(x), # x.P(x) , Sat x.P(x),   

   where x  is  a  p-tuple of  first-order variables. 

 

 Handling existential quantifications and sets of satisfying 

assignments needs to transform  a deterministic automaton  A for  

P(x)  into a  nondeterministic  one B (that decides  ∃ x.P(x)).  But, its  

nondeterminism  degree  is  < np , hence polynomially bounded  in the 

number  n  of vertices.   

 We get a  P-FA, an FPT-FA or an  XP-FA  if A  is  so. 

 Same idea for Sat x.P(x). For # x.P(x), we transform  B into  a  

deterministic  FA  that  counts the number of its accepting runs. 
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(B)  Monadic  second-order  constructions 
 

 

The  spectrum SpX.P(X)  of a property P(X) is  the  set  of  tuples  of  

cardinalities of  the components of  the tuples X  that satisfy  P(X). 
 

The multispectrum  MSpX.P(X)  is  the corresponding  multiset  of  

tuples  of  SpX.P(X) hence, for X = X (one component):   

 the  set  of  pairs  (m ,i)  such  that  i  > 0  is   

 the  number  of  sets  X  of  cardinality  m  that satisfy P(X).  
 

For a p-tuple X, a  multispectrum is  a  function  [ 0,n ]p � [ 0,2 p.n ];  

it  can  be  encoded  in  size  O(n p.log(2 p.n) ) = O(n p+1). 
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Type of  automaton A  for P(X)     Finite P-FA FPT-FA XP-FA 

∃X.P(X), ∀X.P(X) Finite P FPT XP 

MSp X.P(X), Sp X.P(X), # X.P(X), 

MaxCard X.P(X)   

P P FPT XP 

 

P-FA means : A  is  P-FA and  B (the associated nondeterministic FA)  has  a  

polynomially  bounded  nondeterminism  degree. Similar  for  FPT and 

XP (with FPT- or XP-bounded nondeterminism degree). There are 

more  contraints  for  the preservation of  types of automata than for 

FO constructions. 

Note: the automata are constructed in the same way  in all cases; the 

nondeterminism  degree  concerns  only  the  computation time.  



 

31 

Some non-MSO examples :  (1)  Equitable  p-coloring  : 

 ∃X1,…,Xp (Partition(X1,…,Xp) ∧ Stable[X1] ∧...∧ Stable[Xp]  

      ∧  X1=…=Xi-1>  Xi =…=Xp> X1-1).    

 It  is  FPT  (for fixed p). 

 

(2)  Partition into 2 regular graphs :  

 ∃X (Reg[X] ∧ Reg[Xc] ) 
 

 Reg[X] means that the subgraph induced on X is regular;  

 Xc is the complement of X.  It  is  XP. 
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(3) Counting  p-colorings  with particular  properties, e.g.,  acyclic or 

equitable.  

(4) Minimizing  the  use  of  a  particular color: this gives a “distance  

to  p-colorability” for a graph that p+1-colorable but not  

  p-colorable. 

 

In general, we can handle properties and functions of the forms 

  ∃X.P(X), MSp X.P(X), Sp X.P(X), # X.P(X)  

where P(X) is a Boolean combination of  properties  for which we 

have constructed fly-automata (Reg, NoCycle, Stable, etc…).  
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The  system  AUTOGRAPH (by I. Durand) 

 

 

 Fly-automata  for  basic graph properties : 

   Clique, Stable (no edge), Link(X,Y), NoCycle,  

   Connectedness, Regularity, Partition(X, Y, Z), etc… 

 and  functions : 

   #Link(X,Y)  (number of edges between X and Y), 

   Maximum degree.  
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 Procedures  for combining fly-automata (combinations of descriptions) 
    

   product :  for  P ∧  Q, P ∨ Q, g(α1 , …,  αp)  
 

   A  � A/X : for  P → P[X], (P in induced  subgraph on X) and 

   A  � A/(X ∩ Y) ∪ (Y ∩ Z)
c
    for relativization  to  set  terms. 

 

   image  automaton:  A � h(A) : in  the transitions of  A, each  

   function symbol  f  is replaced  by h(f) ;  makes h(A)  

   nondeterministic :  for  P(X) � ∃X.P(X)  
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Procedures  to  build automata  that compute functions: 
    

   #X.P(X) : the  number of  tuples  X  that satisfy P(X) in  

     the  input  term  (hence, in the associated  graph). 

   SpX.P(X) :  the set of  tuples of cardinalities of the  

      components of the X that  satisfy P(X). 

   MSpX.P(X) : the  corresponding multiset. 

   SetValX.α(X)/P(X) :  the set of values of α(X)  

      for  the  tuples  X   that  satisfy  P(X). 

  For each case, a procedure transforms FA  for  P(X)  and  α(X) 

  into FA that compute the associated functions. (These transformations  

  do  not  depend  on P(X)  and  α(X).)  
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Conclusion 
 

  In most cases,  we  get  XP  (or  FPT ones) algorithms, that can be 

obtained  independently. 
 

  These algorithms are based on fly-automata, that  can be quickly 

constructed  from  logical  descriptions �  flexibility.  
 

  These constructions are implemented. Tests have been made for 

colorability and connectedness problems. 
 

  Thank you for suggesting interesting problems that could fit in 

this framework. 

 


