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History :  Confluence of  4  independent  research  directions,   

   now  intimately  related : 
 

1. Fixed-Parameter Tractable algorithms for parameters reflecting hierarchical 

structurings : tree-width, clique-width. This research started with case studies for 

series-parallel graphs, cographs, partial k-trees. 
 

2. Extension to graphs of the main concepts of Formal Language 

Theory : grammars, recognizability, transductions, decidability questions 
 

3. Excluded  minors and related notions of forbidden configurations  
             

4. Decidability of  Monadic  Second-Order logic  on  classes  of  finite  graphs. 
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Two  ways   of   considering  graphs       
 

1) A  graph  (finite, up  to  isomorphism)  is  an  algebraic object,  

   an  element  of  an  algebra  of  graphs  
   (Similar  to  words, elements of monoids) 

 

   2)  A  graph  is  a  logical structure ; 

   graph  properties  can  be  expressed  by  logical  formulas 
   (FO = first-order, MS = monadic second-order, SO = second-order) 
 

 Consequences:  

   a)  Language  Theory   concepts   extend   to  graphs 

   b)  Algorithmic  meta-theorems 
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 An  overview  chart  

 

Graph                   "Context-free" 

operations             sets  of  graphs 

 

Fixed   parameter  tractable 

algorithms             Language  theory 

                      for  graphs  

              Recognizable 

                                 sets of graphs        

Monadic  2nd-order           Monadic  2nd -order  

logic              transductions 
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  Key  concepts  of  Language  Theory  and  their  extensions 
 

Languages Graphs 

Algebraic structure : 
monoid  (X*,*,ε)  

Algebras based on graph operations : ⊕, ⊗, // 
quantifier-free definable operations 

Algebras :  HR,  VR 
Context-free languages : 

Equational subsets of (X*,*,ε) 
Equational  sets  of  the 

algebras   HR,  VR 
Regular languages : 
Finite  automata  ≡ 

Finite congruences   ≡ 
Regular expressions   ≡ 

Recognizable  sets  
of  the  algebras HR, VR 

 
defined by finite congruences 

≡   Monadic Second-order 
definable sets of words or terms

∪ 
Monadic Second-order definable sets of graphs 

Rational and other types of 
transductions 

Monadic Second-order transductions 
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Summary 
 

Context-free   sets   defined   by   equation  systems          

Two  graph  algebras; tree-width  and  clique-width        

Recognizability :  an  algebraic notion 

Monadic second-order  logic   

The  Recognizability Theorem  

Monadic second-order  transductions. 

Robustness  results : preservation of classes  under  direct and inverse monadic  

          second-order  transductions.  

Open questions 
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1.  Equational   sets    (generalization  of  context-free  languages) 
 

Equation  systems  =  Context-Free  (Graph)  Grammars   
in  an  algebraic  setting 

 
 

In   the  case  of   words,   the  set  of  context-free  rules  

X  → a X Y ;    X  → b  ;  Y  → c Y Y X ;   Y  → a 
 

is  equivalent  to  the system  of  two  equations: 

    X  =  a X Y     ∪    { b }  

    Y  =  c Y Y X    ∪        { a } 
 

where   X   is  the language generated  by   X      (idem for Y  and  Y). 
 

The pair of languages generated by  X and Y is the least solution of  

the system of two equations.  (Ginsburg & Rice, 1962) 
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In an arbitrary F-algebra M = < M, (fM)f ∈ F >  (F is a set of operations with arity),   

we  consider  equation  systems  like: 
 

  X  =  f( k( X  ), Y  )     ∪   { b }  

  Y  =  f( Y , f( g(Y ), m( X )))   ∪   { a } 

where : 

 f      is  a  binary  operation,   

g, k, m    are  unary operations on  graphs,   

a, b     denote  basic objects      (graphs  up  to  isomorphism).  

 

An  equational set  is  a component  of the least solution  of such  a system.   

This is well-defined  in  any  algebra  M  and  will  be  in  graph algebras. 
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Classical  examples  
Algebra          Equational   sets  
 

<A* , ., ε , a,b,…,d>                       Context-free  languages 

 

<A* , ε , (λu∈A*.ua)a∈ A >               Regular  languages 

 

T(F), terms  over F,  (initial F-algebra)   Regular  sets  of  terms  

 

<Nk, + , (0,…,0), … (0,…,1,0,…,0) …>    Semi-linear  sets  =  

finite  unions  of  sets  { u + n1.v1+…+ np.vp  ⎜ n1,…,np ∈ N } 

for  u,v1,…,vp ∈ Nk 
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Properties  of  context-free  languages  valid  at  the  algebraic  level  

1)  If  K  and  L  are  equational  sets  of  M, so are  K ∪ L  and  fP(M)(K,L). 

 

2)  The   emptiness  of  an  equational  set  is  decidable  

 

3)  If  M  is “effectively given” and  the components of  the least solution of a 

system are finite sets, these sets can be computed by  straightforward  iteration.  

  

4)  Finiteness   test   (with  some  natural   “size”  conditions). 

 

5)  Extensions of “Parikh’s Theorem”  (counting the vertices of generated graphs). 
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2.  The  graph algebras   HR   and    VR 
 

We  define  two  graph algebras   Equational  sets  of graphs, two 
generalizations  of  context-free  languages. 
 

HR operations :  Origin: Hyperedge Replacement  hypergraph   grammars  
associated  graph  complexity  measure : tree-width 

 

Graphs have  distinguished vertices called sources, (or terminals or boundary vertices) 

pointed  to  by  source  labels  from  a  finite set  :    {a, b, c,  ..., d}. 

Binary operation(s)  : Parallel  composition 

G // H     is  the  disjoint  union of  G  and  H  and sources  with  same  label  are   fused.  

(If  G  and  H  are  not  

disjoint,  one   first  makes   

a  copy  of  H 

disjoint  from  G). 
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Unary operations   :     

 Forget   a   source   label  
     

    Forgeta(G)   is  G  without  a-source:   the  source  is  no  longer  distinguished ;  

(it  is  made  "internal"). 

       Source renaming : 
 

Rena     b(G)  exchanges  source  labels  a  and b     

(replaces  a  by  b   if  b  is not  the label of any source) 
 

Nullary operations   denote   basic graphs  : edge  graphs,  isolated  vertices. 
 

 

Terms  over  these  operations  define  (or denote)  graphs  (with or without sources) 
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Example : Trees  

Constructed  with  two  source  labels, r  (root)  and   n  (new root).  

Fusion   of   two   trees   

at  their  roots  :  

 

 

 
 

  

 

 

 

 

 

Trees   are  defined  by  :    T =  T // T  ∪  extension(T)  ∪  r  

 

Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root"  as  current  root : 

e  =  r  •_________•  n 

Renn         r  (Forgetr (G // e ))  
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Example : (Directed)  series-parallel  graphs  
  defined   as  directed  graphs   with  sources  1  and  2,   

  generated from  e = 1          2  by  the operations  //  (parallel-composition)   

and  the   series-composition   defined   from  the  basic  operations by : 

G • H =  Forget3(Ren2        3 (G) // Ren1      3 (H)) 

Example  :  

 

  1 •        G              •        H                            •  2 

        3 

 

   1   •                   • 2 

 

Their   defining   equation   is  :      S  =  S // S  ∪  S • S  ∪  e  
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Relation  to   tree-decompositions   and    tree-width 

 

 

                                                  Tree   T 

 

         Graph  G                                                                                 Tree-decomposition  

                   (T,f)   of   G  

Dotted  lines  - - - -   link  copies  of  a  same  vertex.  

Width  = max. size  of  a  box  -1.      Tree- width    =  min.  width  of   a  tree-dec. 



 16

Proposition:    A  graph  has   tree-width  ≤  k   

if  and  only  if   it  can  be  constructed   from  edges   by   using   

the  operations  // , Rena     b  and  Forgeta   with  ≤  k+1  labels  a,b,….   

 

Consequences :  

 - Representation  of  tree-decompositions  by  terms.  
 

 - Algebraic  characterization  of  tree-width. 
 

 - The  set  of  graphs  of  tree-width  at  most  k  is  equational  for  each  k. 
 

 - Every  HR  equational  set  of  graphs  has   bounded   tree-width   
(an  upper  bound  is  easy   to  obtain  from  a  system  S : just count  the  number   

of  source  labels  used  in  S). 
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From  an  algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc))            (ab  denotes  an edge from  a   to  b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                         The   tree-decomposition  associated  with  this term. 
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Negative   facts   about   HR-equational  sets  
 

  - The set  of  all  finite  graphs  is  not  HR-equational. 
 

  - Neither  is  the  set  of  all  square  grids    (planar graphs of degree 4) 
 
       - Parsing  is   NP-complete  for  certain  fixed  equation systems  

(graphs  of   cyclic  bandwidth  <  3) 
 

    But  finding  a  tree-decomposition  of  width < k   (if  it exists)  can   be  
done  in  “linear”  time   ( O(2p.n)  where n = number of vertices  and  p  =  32.k2 ) 

 

 Examples  of  HR-equational  sets: 
 

 -  Every context-free  language  but  also  the  language  {anbncn  ⎜  n  > 0 }. 
 

 -  Outerplanar  graphs (having  a planar  embedding  with  all vertices on the  infinite  
(external)  face)  and   Halin  graphs  (planar,  made  of  a  tree  with  a  cycle  linking all 
leaves). 
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The   VR   graph  algebra      
 

Origin : Vertex Replacement  graph  grammars. 

  associated complexity measure:  clique-width. 
 

 

Graphs  are  simple, directed  or  not   
    (the definitions can be extended to graphs  with  multiple  edges)  

We   use   labels  :  a , b , c,  ..., d.    

Each  vertex  has  one  and  only  one  label ;   several  vertices  may  

have  same  label              (whereas  a  source  label  designates  a  unique vertex) 
 

One   binary   operation:   disjoint  union    :   ⊕ 
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Unary   operations:  Edge-addition  denoted   by   Adda,b 
 

Adda,b(G)   is  G  augmented  with  edges  between  every   a-port  and every  b-

port (undirected case)  or  from  every  a-port  to  every  b-port   (directed case).  

 

 

      H = Adda,b(G) ; only  5  edges added  

The   number  of  added  edges  depends  on  the  argument graph. 
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Vertex  relabellings :  
Relaba       b(G)  is  G with every vertex  labelled by a  relabelled into b 

 

Basic graphs   are  those  with  a  single  vertex. 

 

Definition: A  graph  G  has  clique-width ≤  k ⇔ it can be constructed from basic 

graphs  with  the  operations ⊕, Adda,b  and  Relaba       b  by using  k labels. 

       

  Its  clique-width  cwd(G)  is  the   smallest  such  k 
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 Example  1  : Cliques  have  clique-width  2.  

 
 

Kn  is   defined  by  tn  where  tn+1  =   Relabb      a( Adda,b(tn ⊕ b)) 
 

Cliques  are  defined  by  the   equation : 

K =  Relabb        a( Adda,b(K ⊕ b))  ∪  a  
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Example  2  :  Cographs  are  generated  by  ⊕   and  ⊗  (the  complete  join) 

defined  by :    G ⊗ H    =  Relabb      a( Adda,b (G ⊕ Relaba      b(H))) 

               = G ⊕ H  with  all   undirected  edges  between  G  and  H. 
 

They  are  defined  by  the equation :    C  =  C ⊕ C     ∪   C ⊗  C   ∪  *  
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Proposition : (1) Bounded  tree-width   implies   bounded   clique-width  

(cwd(G) < 22twd(G)+1  for   G   directed), but   not   conversely.  
 

(2) Unlike tree-width, clique-width is  sensible  to  edge directions : Cliques 

have  clique-width  2,  tournaments  have  unbounded  clique-width. 
 

Classes  of  unbounded tree-width  and  bounded  clique-width: 
 

 Cographs (2), Distance hereditary graphs (3),  

 Graphs  without  {P5 , 1⊗P4}  (5),   or  {1⊕P4 , 1⊗P4} (16)   

as   induced   subgraphs.  
 
Classes  of unbounded clique-width : 

 Planar graphs of degree 3,   Tournaments,    Interval graphs,  

 Graphs   without   induced   P5.                  (Pn = path  with  n  vertices)
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Summary  :  Two  algebras   of   (finite)  graphs   HR  and  VR    
 Two  notions  of  “context-free  sets”  :  the equational  sets  of  algebras  HR  
and VR,  (and   below, two  notions  of  recognizable  sets,  based  on congruences). 
 

   1)  Comparison  of  the  two  classes : 
 

 Equat(HR)  ⊆  Equat(VR)   
 

    =    sets  in  Equat(VR)  whose  graphs  are  without   
     some  fixed  Kn,n   as  subgraph. 
 

2) Why not using  a  third  algebra ?    
      Equat(HR)  and Equat(VR)  are  robust  in the following sense : 

 

  *  Iogical  characterizations  independent  of   the  initial definitions, 
*  stability  under  certain  logically  defined   transductions,   
*  generation  from   trees.    
    

    For  other  algebras, we  would  loose  these  properties. 
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3) Some  properties  following   from the  algebraic  setting : 

- Closure  under  operations 
   - Emptiness  and  finiteness are decidable  
   - Derivation  trees 
   - Denotation  of  the  generated  graphs  by  terms, 
   - Upper  bounds  to  tree-width  and  clique-width. 
 
   4)  Others   do  not  hold  as  we  could  wish : 
 

- The set  of  all  finite  (even  planar)  graphs  is  neither   
       HR-  nor  VR-equational. 

   -   Parsing  is  NP-complete   (even  for  some fixed  equation 
       systems) 
 
Applications (to be developped) :   
     

    Succint  descriptions  of  infinite  sets  of  finite graphs. 
     

    Drawing graphs in relation with the grammatical structure. 
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3.   Recognizable  sets  : an   algebraic   definition 
 

M = < M, (fM)f ∈ F >  :   an  F-algebra   where   F  is  a  finite  signature. 

Definition :  L  ⊆ M   is   (M-)recognizable  if  it  is  a  union  of  equivalence 

classes  for  a  finite  congruence   ≈   on   M. 

Congruence   =  equivalence  relation  such  that : 

m ≈ m’   and     p ≈ p’     ⇒     fM(m,p) ≈ fM(m’,p’).   

 Finite   means    ≈   has  finitely  many  classes. 

Equivalently, L = h-1(D)   for  a   homomorphism  h :  M → A,  where  

A  is  a  finite   F-algebra  and D ⊆  A.         (A : syntactic monoid for languages) 

   

Rec(M)  =  the  recognizable  subsets  of  M.  This  notion   is  relative  to  the 

algebra   M  (not  only  to   the  underlying  set   M). 
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Classical  examples  

Algebra          Recognizable    sets  
 

<A* , ., ε , a,b,…,d>                       Regular  languages 
             (syntactic  monoid) 
 

<A* , ε , (λu∈A*.ua)a∈ A >               Regular  languages 
             (Myhill-Nerode)  
 

T(F), terms over F, (initial F-algebra)    Regular  sets  of  terms  
 

<Nk, + , (0,…,0), … (0,…,1,0,…,0) …>    Finite  unions  of   Cartesian 

    products  of   k  sets  { u + n.v  ⎜ n  ∈ N }       for  u,v ∈ N 
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Skipping a difficulty:   the   algebras   HR   and  VR  have  infinite  

signatures 

oOo 

Two  notions of  recognizable sets of graphs,  for algebras HR  and  VR  

 
Comparison  of the two classes :      Rec(VR)  ⊆  Rec(HR)   
 
We have seen :        Equat(HR)  ⊆  Equat(VR)   
 
 

Intuition  :  VR  has  more  powerful  operations  than  HR. 

  

 However,  we have equalities  for  sets  of  planar graphs or of graphs  

 of  bounded  degree, or more generally,  of  graphs  without   

  some  fixed  Kn,n   as  subgraph. 
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Properties  of  recognizable  sets  that  follow  from the  algebraic setting : 
 

  -  Closure  under  ∪, ∩   and   -  (difference), 

-  under inverse homomorphisms  and  inverse  unary derived operations. 

 

-  Filtering  Theorem : The  intersection  of  an  equational  set  and  

a  recognizable  one  is   equational   with  effective  constructions. 

   Generalizes:  “the intersection  of  a  context-free  and  a   regular  
       language is context-free”. 
 
 
   Example :   2-colorable   series-parallel  graphs, see below. 
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Properties  that  do  not  hold  as  we  could  wish  or  expect: 
 

-  Emptiness  is  not  decidable  (because  of  infinite  signatures). 
 

  -  Rec  and  Equat  are  incomparable  (for HR  and  VR).    

 

  -  Every  set  of   square  grids  is  HR- and  VR-recognizable.  

   Hence, there  are  uncountably  many  recognizable  sets    

   and  no  characterization  by  finite automata   or  

    logical  formulas. 

(To  be contrasted  with  the  cases  of words  and  terms).
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Inductive  proofs  and  computations 
 

Based  on  equations  like the one that defines  series-parallel graphs : 

S  =  S // S   ∪  S  • S  ∪  e 

Examples :  “Proof  that  all  series-parallel  graphs  are  connected”, 

 “Proof   that  all  series-parallel  graphs  are  planar”, 

 “Number  of  directed  paths  from  Entry  to  Exit  in a  given  

  series-parallel graph”. 
 

Sometimes, auxiliary  properties  and / or  functions  are  necessary. 
 

Recognizability   means  “finitely  many  auxiliary  properties suffice” 
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Inductive  computation  :   

  Test  of  2-colorability   for  series-parallel  graphs 

Not  all  series-parallel  graphs are  2-colorable  (see  K3)  
 

G, H    2-colorable does not imply that  G//H  is  2-colorable  (because  K3=P3//e). 
 

One can check  2-colorability  with  2  auxiliary  properties : 
 

        Same(G)  =  G is 2-colorable with sources of the same color, 
           Diff(G)    =  G is 2-colorable with sources  of different colors 
 
by  using  the  rules :  
 
    Diff(e)  =  True  ;  Same(e)  = False 
 

Same(G//H)  ⇔  Same(G) ∧ Same(H) 
Diff(G//H)  ⇔   Diff(G) ∧  Diff(H) 
 
Same(G•H)  ⇔  (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H)) 
Diff(G•H)   ⇔  (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧  Same(H)) 
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Application  1  : Linear  algorithm 
 

For every  term t, we can compute, by running a finite deterministic bottom-up 
automaton  on   t,  the  pair  of   Boolean  values   (Same(Val(t)) ,  Diff(Val(t)) ).   

 

 We  get  the answer  for  G  = Val(t)   (the graph  that  is  the  value  of  t )  regarding 
2-colorability. 
 

Example : σ  at node u means that  Same(Val(t /u)) is true,  σ   that it is false,   
δ  that  Diff (Val(t /u))  is true, etc… Computation is done  bottom-up  with the  rules  of   
previous page. 
            
 
 
 
 
 
 
 
 
 
 
 The  graph   is   not   2-colorable. 
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Application 2  :  Equation  system  for  2-colorable  series-parallel  graphs 
 
Sσ,δ  =  the set  of  series-parallel  graphs  that  satisfy   Same (σ)  and  Diff  (δ) 
Sσ,δ  =   the set  of   those  that  satisfy  Same  and  not   Diff , etc  … 
 
From the equation :  S  =  S // S  ∪  S • S  ∪  e ,  we  get  the equation  system : 
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In   equation 
 
 
 

Sσ,δ    is  in  all  terms  of  the  righthand  side :  it  defines  (least solution)   
the  empty  set.  This  proves  (a  small  theorem) : 
 

Fact : No  series-parallel  graph  satisfies  Same  and   Diff. 
 

We can simplify the system {(a), (b), (c), (d)}    into : 

 

 

 

 

 

By replacing  Sσ,δ  by  Tσ, Sσ,δ by Tδ, by  using commutativity  of  //, we get   the  

system (for  the  2-colorable  

series-parallel  graphs) 
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Recognizability  and  inductive  sets  of  properties  
 

Definition : A  set  P  of  properties  on  an  F-algebra  M  is  F-inductive   if,  for  
every  p ∈ P  and   f ∈ F, there exists  a  Boolean  formula  B  such  that  : 
 

p(fM(a,b) )  =  B […,q(a),…,q'(b),….]   for  all  a  and  b  in  M 
   

     q, q' ∈ P ,  q(a),…, q(b)  ∈  {True, False}. 
 

Proposition :  A  subset  L of  M  is  recognizable  if  and  only if  it  is  the 

set  of elements  that  satisfy a property belonging to a  finite  inductive  set  

P  of properties  
 

  Inductive  sets  formalize  the  notion  of  “auxiliary  properties”   

  in  proofs  by  induction. 
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Inductive  sets  of   properties  and  automata  on  terms 

 

The simultaneous computation of  m inductive properties can  be  

implemented by a finite deterministic  bottom-up automaton  with  2m  states 

running  on  terms  t.  
 

This computation  takes time O( ⎜t  ⎜):  this  fact  is  the key  to  fixed-

parameter  tractable  algorithms. 
 

Remark : Membership  of  an element  m  of   M  in  a  recognizable  set  L  

can   be  tested  by  such  an  automaton  on   any   term   t   in  T(F)  defining  m   
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4.   Monadic Second-Order (MS) Logic  
 

A  logical  language  that  specifies  inductive  properties  and  functions:  
 

First-order  logic  extended  with  (quantified)  variables denoting subsets  
of  the  domains. 
 
Examples  of   formulas   for     G  =  ( VG , edgG(.,.) ), undirected 
 

G  is  3-colorable  : 
 
∃X,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  
    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 
      } ) 
 
Colors:  X  1,   Y  2,   VG - X ∪ Y   3 
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G  (undirected)  is  not  connected : 
 
∃X ( ∃x ∈ X  ∧  ∃y ∉ X  ∧  (∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∈ X)  ) 
 

oOo 
 

 
Transitive  and  reflexive  closure  :   TC(R, x, y) :   

 
 ∀ X { “X is R-closed”  ∧  x ∈ X  ⇒ y ∈ X  } 
 

       where   “X is R-closed”    is defined  by :   
                   ∀u,v (u ∈ X  ∧  R(u,v) ⇒ v ∈ X) 

 
The  relation  R  can  be  defined   by  a   formula  as  in  : 
 
∀x,y (x ∈ Y  ∧  y ∈ Y ⇒   TC(“u ∈ Y  ∧ v ∈ Y ∧ edg(u,v)”, x, y) 
 
expressing  that   G[Y ]  is connected    (note  that  Y  is  free  in  R). 
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Application :   
 
G   contains  (fixed)   H  as  a  minor   where   VH = {1,…,p} :  
 
there  exist  disjoint  sets  of vertices  X1,…, Xp  in  G   such   that   

each   G[Xi]  is   connected  and,  whenever  if  i -- j  in  H,  there  is  an  

edge  between   Xi   and   Xj. 

 
Consequence :  planarity  is  MS-expressible  (no minor  K5  or  K3,3). 
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Provably  non-expressible  properties  
 
 
Properties  based  on  checking  that  two  sets  have   

  same  cardinality or on bijections. 

 
Examples :       All vertices of a graph have same degree. 
 
 A graph has a nontrivial automorphism. 
 
 A  word has  the  form  anbn   :  the  easiest  context-free  language   

   that  is  not  regular. 
 

 A word  w = abbab  is  represented by the relational structure  

< {1,2,3,4,5}, next(.,.) , Pa(.),Pb(.) >  where  next(1,2), next(2,3), …, 

Pa(1), Pb(2), Pb(3), Pa(4), Pb(5). 



 43

Edge  set  quantifications  increase   the  expressive  power   
 

Incidence  graph  of  G  undirected,  Inc(G)  =  ( VG ∪ EG, incG(.,.).) 
 
incG(v,e)   ⇔   v  is  a  vertex  of  edge   e. 
 
Monadic  second-order   formulas   written  with  inc   can  use  quantifications   

on  sets  of  edges  :  they  define   MS2 –expressible  graph  properties. 

 
 The  existence  of  a  perfect  matching  or  a  Hamiltonian  circuit  is  

 MS2 -expressible   but   not   MS-expressible. 

 
Definition :  A  set  L  of  finite  graphs  is  MS-definable  (MS2 –definable)  if  

L  =  { G   finite  /    G  ⎜=  ϕ  }  ( L  =  { G   finite  /    Inc(G)  ⎜=  ϕ  }  )  for  a  fixed  

MS   sentence  (a  formula  without   free  variables)   ϕ.  
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5.  The  Recognizability  Theorem  
 

(1) A  language (set  of  words  or  finite terms) is  recognizable   
(by congruence  or  automaton)  ⇔   it  is  MS  definable   

               (Doner, Thatcher &  Wright, 1968 - 1970). 
 

(2) A set of finite graphs of clique-width <k  is  VR-recognizable      
⇔  the set of terms that define these graphs  is recognizable  

           ⇐  it  is  MS-definable  
 

(3) A set of finite graphs of tree-width <k  is  HR-recognizable      
⇔  the set of terms that define these graphs  is recognizable  

           ⇐  it  is  MS2-ddefinable  
 

Proofs:  (2) and (3) : Several proofs can be given. The automata on terms are 

huge.  The best is  not to “compile” them but to compute the necessary 

transitions when needed. (“Fly-automata”).  
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Proof  with  the  “Feferman-Vaught  paradigm”   
 

Main  idea : the  validity  of   an  MS  formula  in  the  disjoint  union  of   

two  relational  structures   can  be  deduced  from   those  of   finitely  

many  auxiliary  formulas  of  no  larger   quantifier-height  in  each  of   the   

two  structures.     

 

This   is   inductivity  / recognizability. 
 

For  each  h , the  equivalence  relation  such  that  : 

 G ≈ H  ⇔  the  same  sentences  of  quantifier-height  <h  hold in G and H   

is  congruence;  this  proves the recognizability of any  set  of  graphs 

defined  by  a  sentence  of  quantifier-height  < h 
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Algorithmic  consequences   of  the  Recognizability  Theorem  
 

MS  formulas             MS2  formulas    
                        using   edge  quantifications 

 

 

G = ( VG , edgG(.,.).)     Inc(G) =  ( VG ∪ EG, incG(.,.) ) 

        for  G  undirected :  incG(e,v)   ⇔    

v  is  a  vertex  (in VG )  of edge  e  (EG) 
 
O(f(k).n3) for clique-width <k  O(g(k).n) for tree-width  <  k  

 finding  a  VR-term  defining  the  finding  a  tree-decomposition (an HR -term)  

 graph is  possible  in  cubic  time  is possible  in  linear time  (Bodlaender) 
  (Hlineny, Oum & Seymour)              
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Language  Theoretical  consequences 
  

One  can  filter out  from  HR-  or  VR-equational  sets  the  graphs  which  do  

not  satisfy  a  given  MS2-  or  MS-property  and  one  obtains  HR- or  VR-

equational  sets. 
 

Generalizes :  the intersection  of  a  context-free  language  and  a  regular   

language  is   context-free. 
 

Consequences  for the  decidability  of  logical  theories 
 

 The  MS2-theory  of  the  set  of  graphs of  tree-width  < k  is  decidable. 

      (is  a  given  sentence  true  in  all  graphs of  tree-width  < k  ?) 

 The  MS-theory of  the  set  of  graphs of  clique-width  < k  is decidable. 



 48

6.  Monadic   second-order  transductions 
  

Let  C  and  D  be two  classes of graphs  with  labels on edges 

and vertices, represented by relational structures. (Can be classes of 

terms  or  words.)   An   MS-transduction   is   a   partial   function   

τ  : C  X “data”   D       specified   by   MS  formulas. 

    
Basic case : τ  : C   D ;  G =  τ (H)   is  defined  “inside”  H   

by  MS  formulas.  
 
Examples :  The  edge –complement.  
    edg(x,y) in H  is  defined as   x ≠ y  ∧ ¬ edg(x,y)  in  G 

    
The  transitive  closure of  a  directed  graph. 
   
The  reversal  of  a  word. 
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Next  case :   G =  τ (H, “data”) ;  the  “data”  is  a  tuple  X1, …,Xp   of  
subsets  of the  domain  of  H ; these  sets  are  called  the  parameters. 
  Parameters   X1, …,Xp  are  constrained   to   satisfy  an  MS   property. 

 

Examples :  (G, {u})  ⎜               the  connected  component  containing  u. 
 
 

(G,X,Y,Z)  ⎜            the  minor  of  G  having   vertex  set  X,   
        resulting  from  the  contraction  of   the  edges   
        of  Y  and  the  deletion of  the  edges  and  vertices 
        of   Z. (This  transduction  is    MS2,2 ; see below.) 

 
     In   the   second  example, the condition is  that  no  two 

vertices  of  X  should  be  linked  by  a  path   of   edges  in  Y 

    
τ (H) : =   the  set  of  all  G  =  τ (H, X1, …,Xp)    

          for  all  “good”  tuples  of  parameters. 
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General case :    G   is   defined   as   above     inside  
H ⊕ H ⊕ ... ⊕ H :   disjoint   copies  of   H   with  "marked"   

                 equalities   of  copied   elements  
 
      1,2      2,3 
   *   *   * 
 
   *   *   * 
 
   *   *   * 
 
 
   *   *   * 
 
     H ⊕ H ⊕ H 
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The   fundamental   property   of   MS   transductions  

 

  If                  G   ⎜             τ (G) 
  then       τ #(ψ)           ⎜  ψ 
 

Every  MS   formula  ψ  has  an  effectively  computable   
backwards   translation  τ #(ψ), an MS formula  such that : 

 

G   ⎜=  τ #(ψ)    if   and  only  if    τ (G)   ⎜=  ψ 
 
 The verification of  ψ  in  the object  graph τ(G)  reduces  to  the  verification  
of  τ #(ψ)   in  the  given  graph  G  ( G  contain all the  necessary  information  to  
describe τ(G); the MS properties of τ(G) are expressible   in  G  by  MS  formulas).
  
 

Theorem :  The  composition  of   two   MS-transductions  is  an   

               MS-transduction.  
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Example 1  (without parameters) : The  square  mapping  δ   on  words :  u  ⎜→   uu 
 
For    u  =    aac,   we  have   G  =  •  →  • → •    

                  a      a      c      
     
  G ⊕ G    •  →  • → •              •  →  • → •      (marking edges omitted) 

     a       a     c             a        a     c  
     p1     p1    p1           p2      p2    p2 

 
  δ(G)   •  →  • → •  →  • → • →  •  

     a        a      c        a      a        c  
 
 In  δ(G),   we  redefine  next  (i.e.,   →  )   as   follows : 
 

next(x,y) :  ⇔   (p1 (x) ∧ p1 (y) ∧ next(x,y)  )  v   ( p2 (x) ∧ p2 (y) ∧ next(x,y) ) 

    V  ( p1 (x) ∧ p2 (y) ∧ "x  has   no  successor"  ∧   "y  has  no  predecessor") 

 
 We   also   remove   the   "marker"  predicates   p1, p2. 
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Example  2 :      From  a   term   to   a   cograph 

Terms  are  written  with  ⊕  (disjoint union),  ⊗  (complete join)  and  constants  

x,y,z, …  denoting 

vertices  x,y,z …. 
 

 

 

 

 

  

 Vertices  =  {x,y,z,u,v,w } =  occurrences  of  constants  in  the   term. 

 Two  vertices  are  adjacent  if  and  only  if   their  least  common  ancestor    is  

 labelled   by  ⊗     (like  y  and  z , or  u   and   w). 

 These  conditions  can  be  expressed  by  MS  formulas  on  the  labelled  tree. 
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Edge   quantification  and   edge  description 
  

 There  are  2  representations  for  an  input  graph and  2  for  the  

output:  type 1 :  G =  (VG, edgG)   and  type  2 :  Inc(G) = (VG U EG, inG). 

    

 Hence   4   types  of  graph  transductions,   denoted   by  : 

MS1,1   (or  MS  to simplify),  MS1,2,   MS2,1   and  MS2,2 
 

      MSi,o   means  i = type  of  input, o  = type  of  output. 

 

I only  use   below  MS    and  MS2,2 
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Main   Results       (will   be   made   more  precise) :  

 

(1)  MS-transductions  preserve   bounded   clique-width   and   the 

(corresponding)   class  of   VR-equational   sets. 

 

(2)  MS2,2-transductions   preserve   bounded   tree-width  and  the 

(corresponding)  class  of  HR-equational   sets. 

 

Meaning :   Robustness   of   the  two  graph  hierarchies  based  on  

clique-width  and  tree-width. 
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 MS - transductions  and  MS2,2 - transductions  are  incomparable    
  

 Why ?  For  expressing  graph  properties,  MS2  logic   is  more  powerful   

than   MS1  logic    (the  “ordinary”  MS  logic). 

   For  building  graphs   with   MS2,2 - transductions, we  have  more  

possibilities  of  using  the  input  graph, but  we   want  more   for  the output :  to  

specify  each   edge  as  a   copy  of  some  vertex  or  some  edge  of  the  input  

graph. 

 
 Transitive   closure   is   MS  (=  MS1,1)  but     not   MS2,2  
 
 Edge  subdivision   is   MS2,2    but      not   MS 
 
Proofs :  Easy  since,  if   H   is  transformed  into  G  by  an  MS-transduction   : 
 

        ⎜ DG ⎜   <   k.  ⎜ DH ⎜       for  fixed  k 
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7.   Robustness   results :  Preservation  of  widths 
 
For   every   class  of  graphs  C  : 
 

 1)     C   has  bounded  tree-width   ⇔    C   ⊆  τ(Trees)  for  some     
MS2,2 – transduction   τ   (the  proof  is  constructive  in  both  directions) 
 
Corollary: If  C  has  tree-width  <  k  and  τ  is  an   MS2,2 – transduction,  
     then  τ (C)  has  tree-width  <  fτ(k) 
    

Hence:  MS2,2-transductions preserve  bounded tree-width. 
 
 Very similarly:       

  2)   C  has  bounded  clique-width  ⇔   C   ⊆  τ(Trees)  for  some     
MS – transduction  τ     (the proof  is  constructive ) 
 
Similar corollary:  MS-transductions  preserve  bounded clique-width. 
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Gives  easy  proofs  (but  no  good  bounds)  of  facts  like : 
 
  1)  If   C  has  bounded tree-width,  its  line  graphs  have  bounded  clique-width. 
 
  2)  If  C  (directed graphs)  has  bounded tree-width  or  clique-width, the   

transitive  closures  of  its  graphs  have  bounded  clique-width. 
 

  3)  If  C  (directed graphs)  has  bounded  clique-width, the  transitive  reductions  

of  its  graphs  have  bounded  clique-width.  
  (Not  trivial  because  clique-width  is  not  monotone  for  subgraph  inclusion).  
 

  4)  The   set   of  chordal  graphs  has  unbounded  clique-width   
 because   an  MS transduction  can  define  arbitrary   graphs   

 from  chordal  graphs,  and  graphs  have   

 unbounded  clique-width. This   transduction   deletes   

 each  red  vertex  w  and  the  edge  u—v   where u, v are  

 adjacent   to   w. 
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5)  Circle  graphs 
 
  
 
 
 
 
 
 
   Chord  diagram   Δ     Circle  graph G(Δ)  
 
Theorem:   Graphs  Δ  have  bounded tree-width  ⇔  G(Δ)  have  bounded 

clique-width.  

 1)   MS - transduction   from   G(Δ)    to   Δ ; 

 2)   use  “split  decomposition” (Cunningham)  and  an   MS-transduction   from   

  prime   circle  graphs  to  their  unique  chord  diagrams. 
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   Logical   characterizations  of  equational  sets 

 
 C   is  HR-equational   ⇔    C   =  τ(Trees)  for  some     

 MS2,2 -transduction   τ       (for  bounded  tree-width  we have  ⊆ ). 

           
   

 C  is  VR-equational  ⇔   C  =  τ(Trees)  for  some     

 MS  - transduction  τ         (for  bounded  clique-width  we have  ⊆ ). 

 

Consequences  :  Closure   of   equational  sets  under  the  

 corresponding  transductions.    
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Robustness   results  for  HR- and  VR-equational  sets  
 

Words : rational  transductions    (= inverse  rational  transductions) 
 

 
REC   

 

 
Dyck lang.     Context-free     

              (trees)  
Inverse  MS  transductions 

 
Direct  MS  transductions  

 
 

MS-def. ⊂ VR-recog. 
                               (1) 

 
Trees         VR-equational 

               ∪    (2)     
                 Cwd( < k) 

 
  VR-equational    ⇒  bounded   clique-width. 
 

   
  (1) : A. Blumensath - B.C.                    (2) : J. Engelfriet. 
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Robustness   results :  Preservation   and   generation   (2)  
 

Inverse  MS  transductions 
 

Direct   MS   transductions  
 

 
MS-def. ⊂ VR-recog. 
                               (1) 

 
Trees         VR-equational 

               ∪    (2)     
                 Cwd( < k) 

Inverse  MS2,2  transductions 
 

Direct   MS2,2   transductions  
 

 
MS2-def. ⊂ HR-recog. 
                               (1) 

 

 
Trees         HR-equational 

               ∪    (3)     
                 Twd( < k)    

    VR-equational    ⇒  bounded   clique-width. 
    HR-equational    ⇒  bounded   tree-width. 
 

   (1) : A. Blumensath - B.C.        (2) : J. Engelfriet.         (3) : B.C.- J. Engelfriet 
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8.  A   few   open  questions 
 

 1. What should be the clique-width of a hypergraph (or a relational 

structure), so  that  we  have  a polynomial  time recognition algorithm ? 

 2. Is  it  true  for a  set of relational structures that the decidability of its  

MS theory  implies  bounded  clique-width ?  

 3. When is it possible to specify  a linear order  by MS  formulas ? (No 

in general, yes for  connected graphs of degree < k).  

 4. Can one define by an MS transduction applied to a graph G of tree-

width < k,  a tree-decomposition of G of width  < k ? (Possible for k < 3). 

 5. Betweenness and circular order are represented by ternary 

relations. Is the consistency for betweenness or circular order of a set of 

triples  MS-expressible?   
 


