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General  objectives  
 

Use of  monadic  second-order  logic (MS logic)  for 
expressing graph properties  and graph  constructions. 

 
Graph  decompositions : tree decomposition, modular 

decomposition, clique-width  and  rank  decompositions. 
 
Motivations and  applications : 
 

1.  Context-free  Graph  Grammars  
2. Algorithmic applications   (Fixed Parameter Tractability) 
3.  Decidability of logical theories   
4.  Graph Theory, structural descriptions  
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Graph  theoretical  constructions  
 
Graph    its  modular  decomposition   
 
Circle  graph    its "split"  decomposition  from which  all  its 
representations  by  sets of  intersecting chords  can be defined. 
 
Today's lecture :  Self-intersecting  curves  in the  plane  represented  
by  their Gauss words    some  canonical  structure  from  which all  
curves  with same Gauss  word  can be  defined. 
 
Relational  structures :   
 
Combinatorial  objects  described  by (finite) relational  structures  
over finite signatures, their  properties  and related  constructions  
expressed  in  MS logic.



 4 

Monadic Second-Order Logic 
 
 
MSOL  =  First-order  logic  over  subsets  of the domain 
 
 
Graph  G  = < V, edg(.,.) > = < Vertices, adjacency relation > 
 
 
Logical  expression  of  graph  properties : 
 
 Non connectivity  :   ∃ X ( ∃ u. u ∈ X ∧ ∃ v. v ∉ X  

                                                ∧ [∀ u,v. edg(u,v) ⇒ ( u ∈ X  ⇔  v ∈ X )])  

 
Typical  Properties  :   k-colorability  ( fixed k ) 
      to  be  a  tree  
      planarity  ( by  Kuratowski's  characterization ) 
 
but cannot  express  :  equal  cardinality  of  two sets ;  bijections. 
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Why  Monadic Second-Order Logic is  interesting  ?  
 
Context-free  Graph  Grammars :  
 

   MS logic    Recognizable sets of graphs 
          Transductions    (no automata) 
 

Algorithmic applications : 
 

MS logic   Fixed Parameter Tractable  problems 
    for tree-width and clique-width 
 

         Query evaluation techniques 
      implementation of graphs ;  

linear delay evaluation 
 

Decidability of logical theories : 
 

Decidability of MS2 logic for a set of graphs implies bounded tree-width, 
Decidability of C2MS logic  for a set of graphs implies bounded clique-width, 
Decidability of MS logic  for a set of matroids implies  bounded branch-width. 
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Combinatorial  objects  as  relational  structures 
 
Graphs  : G  = < V, edg(.,.) > = < Vertices, adjacency relation > 
 
Plane  graphs  also  called   combinatorial  maps  
   M = < D, α, σ>  

D = darts = half-edges  
   α  associates the 2 darts of a same edge 
   σ  defines  the  next dart around a same vertex in the  

considered drawing, according to a  fixed  orientation of the surface. 
 
Self-intersecting  curves  =  4-regular  planar  maps 
 
Double occurrence words  : W  = < P, next(.,.), same-letter(.,.) >  
P =  occurrences,  next = next  occurrence,  
same-letter(x,y)  ⇔   x  and  y  are  occurrences  of same letter. 
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Monadic 2nd  order   transductions   (or  "interpretations") 
 
 Transformation  τ  of  logical  structures such that  : 
 
   S   ⎜              T  =  τ (S)         

 
where   T  is  defined by   monadic 2nd  order   formulas 
inside  the  structure:  S ⊕ S  ⊕ ... ⊕ S  

    (fixed  number  of  disjoint  "marked"  copies  of  S) 
   in terms  of "parameters"  i.e.  subsets  X1, …,Xp 
    of  the  domain  of  S 
  
Proposition  :  The  composition  of  two monadic 2nd  order transductions  

 is   a  monadic 2nd  order   transduction. 
 

The  inverse  image  of  a monadic 2nd  order definable set under 
a monadic 2nd  order  transduction  is monadic 2nd  order definable 
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Examples  of  Monadic  2nd  order  transductions  
 
The  mappings  from  a graph  to  : 
 the  forest  of  its  biconnected  components 
 the  directed  acyclic  graph  of its  strongly  connected  
components 
 all  its  spanning  trees  
 all  its  minors 
   (by  using  the  incidence  structure  <V∪E, inc(.,.)>) 
 
 
Planar  graph  drawing  =  combinatorial  map                graph 
 
Intersecting  chords  =  double  occurrence  word           circle  graph 
 
Curve on the  plane   =   4-regular  map                          Gauss  word 
 
MS  transductions  :  easy                  harder                    
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Gauss  word  :  abcdbcdeea   representing  the  curves  
 

 
Relational  structure  for the  double  occurrence  word  
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Proposition : Gauss words  can  be  characterized  by  a  formula  of  
MS  logic. 
 

Proofs : Direct  expression of  the  characterization  by Rosensthiel.  
 Another  proof  

Orient  a self-intersecting curve.  Each occurrence  of  a  letter   in the  Gauss  
word  gets  a sign +  or -  depending of the  direction of the  crossing. For  the  left 
curve, we  get  a+b-c+a-b+c-,  a   signed  Gauss  word. 

From  a signed  double  occurrence  word, one  gets  a  unique  map (planar or 
not).  For example  a+b+c-a-b-c+  gives  nonplanar map  to the right. 

Given  a  double  occurrence  word,  an  MS  formula  can be written  expressing  : 
There is a choice  of signs  such that  

 the associated  map  is planar.          • 
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Questions :  1)  Can  one  describe  all  curves  with  given  
Gauss  word ? 
 
2)  Can  one  construct  them  by  an  MS  transduction ? 
 
The  main  picture  : 
 
Curves  =  4-regular  map  =  medial  map            map 
 
 
Gauss  words   =   straight  walks     =   Diagonal  walks  
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Diagonal  walks  

Diagonal  walks  (they  form   cycles)       intersecting  curves 

and  conversely  
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Medial  map  
 

Diagonal  walks of  a  map  =  straight  walks  of  the  associated  medial  map 

Medial  map  is  preserved  under  duality :   
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Local  duality   

H//K* -1   is  a  local  dual  of  H//K  ( *  =  dual, -1  =  symmetry) 

Proposition : Diagonal  walks  are  invariant  on  local  duality 

Dw(H//K* -1) = {..cd.., ..ca.., ..db.., ..}, Dw(H//K*) = {..cd.., ..cb.., ..da.., …}  
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Theorem :  Two  maps  M and N  with  edges  in  bijection  have  

the same sets  of  diagonal  walks (w.r.t. this bijection)  iff  one  is  

obtained  from  the  other  by finitely  many  uses  of  duality, 

symmetry  and  local  duality,  denoted  M  ≅  N. 
 

Corollary  :  All  curves  with  same  Gauss  multiword as a  given 

one  C  are  obtained  from  the medial  maps  of  the  maps  N  

≅  M, where M  is  any  of the two dual maps  associated  with C. 
 

Corollary (known) :  A  Gauss  multiword  defines  a  unique set of  

closed  curves  up  to  homeomorphism  iff  the  corresponding  

4-regular  graph   is  2-connected.  
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Proof  technique : The unicity result : From  a  double  occurrence  

multiword M, one gets  a 4-regular  graph +  pairings of  opposite  edges  at 

each vertex  :  this  is a  weak map W, less  informative  than  a  map.  The 

pairings of opposite edges can be  encoded  by  additional  edges,  giving a  

graph  H(W). The planar embeddings  of H(W)  are the planar embeddings of  

W. If the  graph G of M is 2-connected, H(W)  is 3-connected, hence  has at 

most  one  planar embedding.  So has  G,  and  M  defines curves in unique 

way. 

    From  W                to            H(W) 
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Proof of main theorem :  
If  M  and  N  are  planar  maps  with   Dw(M)=Dw(N)  

then M  or  M-1 is  locally  dual  to  N. 
 

By induction  on  the  number  of 2-connected  components. 

    We  use  gluings   of   pointed  maps : 

 In blue : pointed  map (N,e).   M1 = (M,d) // (N,e),  M2 = (M,d) // (N,e). 

Lemma 1 :  If  M = P // Q  and  Dw(M) = Dw(N),  

then N = R // S  with  Dw(R) = Dw(P), Dw(S) = Dw(Q). 
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Hence  by  induction  :  R  or  R-1 is locally  dual  ( ~ ) to P,  

S   or   S-1 is locally  dual  to Q. 

If  R ~ P,   S  ~  Q  then  N = R // S  ~  P // Q = M. 

If R-1  ~ P,  S-1 ~  Q  then  N-1  = (R // S)-1 = R-1 // S-1   ~   P // Q = M. 

Last case :  If R ~ P,  S-1 ~  Q   then   Dw(R // S) = Dw(R // S-1). 

Lemma 2 : This  implies  that  either   R or S   is symmetric. 

This  gives   N  or  N-1  locally  equivalent  to  M, as  above. 

Symmetric  pointed  map  (R,d)  (dart  d  is  thick  red) : R isom. R-1 

 

      

  •  •  •  •  • 
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Formalization  in  MS logic  
 

Insertions  of  2-connected maps A,B,C,… at  positions  defined  by  darts :  

M=C[c1↑((B,b) // (A,a)),c2↑(D,d),c3↑(E,e),c4↑(F[f2↑(H,h)],f1)] 

Local duality of M:  replacements of components X by X* -1. If  C is 2-connected: 

C[c1↑M,c2↑N,c3↑ P]* -1= C * -1[c1↑M* -1,c2↑N* -1,c3↑ P* -1] 
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1) For a map M=<D,α,σ>, one  can express by MS  formula ϕ(X)  : 

X ⊆ D  is  the  set  of  darts  of a  2-connected component C of M 

2) The  transformation  of  C into C* -1  "inside M", giving locally dual 

M'=<D,α,σ'>,  can be expressed  in  logic in terms  of   X  since  : 

σ'(d) = α(σ(d))  if   σ(d) ∈ X 

σ'(d) = σ(d)  if   σ(d) ∉ X 

Hence,  the  maps  locally  dual  to  M  can be obtained by this 

transformation  applied  to sets  X  that are  the  unions of the 

sets  of darts  of  2-connected  components  of M. 
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 Some  open questions : 

1) Can one describe  in a similar way  curves  and  sets of 

curves  with  multiple  intersections ?  Can one describe  knot  

diagrams? 

2) Gauss  multiwords  for curves  on orientable  surfaces can  be 

characterized  in MS  logic,  because the corresponding maps  are 

characterized  by  finite  sets of excluded  maps  for  minor ordering of 

maps. Can we  have  a structural  description ?  When  does  

a double  occurrence  word  characterize  a  unique  curve  

on a surface  ? 

3) What  are  the  "forbidden"  double occ. words for surfaces ? 
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Overview  of  this  method  which  applies  to other  cases 
Geometrical  configurations          
(coded by relational  structures)        

C1        forgets  information 

C2                    Graph  G 

…. 

How can one reconstruct   C1, C2, …  from  G   ? 

C1, C2, …..                                             Graph  G 

 MS transduction                         MS transduction 
   (with "all" < )             (with "some" <) 

       Decomposition of G : 

  tree of  basic blocks B with unique CB 

 B    CB :  Monadic  2nd order  transduction  using  the   unicity 


