

Monadic second-order logic for graphs.

Algorithmic and language theoretical applications
Part 1

Bruno Courcelle

Université Bordeaux 1, LaBRI, and Institut Universitaire de France

Reference : Graph structure and monadic second-order logic,

book to be published by Cambridge University Press, readable on :

http://www.labri.fr/perso/courcell/ActSci.html

 2

History : Confluence of 4 independent research directions, now intimately

related :

1. Fixed-Parameter Tractable algorithms for parameters reflecting hierarchical

structurings : tree-width, clique-width. This research started with case studies for

series-parallel graphs, cographs, partial k-trees.

2. Extension to graphs of the main concepts of Formal Language Theory :
grammars, recognizability, transductions, decidability questions

3. Excluded minors and related notions of forbidden configurations (matroid minors,

« vertex-minors »).

4. Decidability of Monadic Second-Order logic on classes of finite graphs.

 3

 An overview chart

Graph "Context-free"

operations sets of graphs

Fixed parameter tractable

algorithms Language theory

 for graphs

 Recognizable

 sets of graphs

Monadic 2nd-order Monadic 2nd -order

logic transductions

 4

 Key concepts of Language Theory and their extensions

Languages Graphs

Algebraic structure :
monoid (X*,*,ε)

Algebras based on graph operations : ⊕, ⊗, //
quantifier-free definable operations

Algebras : HR, VR
Context-free languages :

Equational subsets of (X*,*,ε)
Equational sets of the

algebras HR, VR
Regular languages :
Finite automata ≡

Finite congruences ≡
Regular expressions ≡

Recognizable sets
of the algebras HR, VR

defined by finite congruences

≡ Monadic Second-order
definable sets of words or terms

∪
Monadic Second-order definable sets of graphs

Rational and other types of
transductions

Monadic Second-order transductions

 5

Summary
1. Context-free sets defined by equation systems (blue = Language Theor. issues)

2. Two graph algebras. Tree-width and clique-width. (red = new notions)

3. Recognizability : an algebraic notion.

4. Monadic second-order sentences define recognizable sets.

5. Fixed-parameter tractable algorithms (green = algorithms)

6. Monadic second-order transductions.

7. Robustness results : preservation of classes under direct and inverse monadic

 second-order transductions. Short proofs in graph theory. (black= graph theory)

8. Logic and graph structure theory : Graph classes on which monadic

 second-order logic is decidable

9.Open questions

 6

1. Equational sets (generalization of context-free languages)

Equation systems = Context-Free (Graph) Grammars

in an algebraic setting

In the case of words, the set of context-free rules

X → a X Y ; X → b ; Y → c Y Y X ; Y → a

is equivalent to the system of two equations:

 X = a X Y ∪ { b }

 Y = c Y Y X ∪ { a }

where X is the language generated by X (idem for Y and Y).

 7

In arbitrary algebras (in graph algebras) we consider equation systems like:

 X = f(k(X), Y) ∪ { b }

 Y = f(Y , f(g(Y), m(X))) ∪ { a }

where :

 f is a binary operation,

g, k, m are unary operations on graphs,

a, b denote basic objects (graphs up to isomorphism).

An equational set is a component of the least solution of such an

equation system. This is well-defined in any algebra.

 8

 The general algebraic setting

F : a finite set of operation symbols with (fixed) arities, called a signature

M = < M, (fM)f ∈ F > : an F-algebra.

P(M) its power-set algebra with domain P(M) and operations extended to

sets : fP(M)(A,B) = { fM(a,b) / a ∈ A, b ∈ B }.

Equation system of the general form :

S = < X1 = p1, …, Xn = Xn >

X1,…,Xn are unknowns (ranging over sets)

p1,…,pn are polynomials for example :

 f(k(X1),X2) ∪ f(X2, f(g(X3), X1)) ∪ c

 9

Its solutions are the fixed-points of the (recursive) equation :

X = SP(M)(X) (1) where X = (X1,…,Xn)

SP(M)(X) : = (p1P(M)(X) ,…, pnP(M)(X))

The set P(M)n ordered by component-wise inclusion is ω-complete,

the mapping SP(M) is monotone and ω-continous, hence Equation (1)

has a least solution defined by iteration :

µX.SP(M)(X) = U i >0 SP(M)(X)i(∅, …,∅) (increasing sequence)

An equational set of M is a component of µX. SP(M)(X) for some

equation system S. Equat(M) = the equational sets of M

 10

Classical examples

Algebra Equational sets

<A* , ., ε , a,b,…,d> Context-free languages

<A* , ε , (λu∈A*.ua)a∈ A > Regular languages

T(F), terms over F, (initial F-algebra) Regular sets of terms

<Nk, + , (0,…,0), … (0,…,1,0,…,0) …> Semi-linear sets =

finite unions of sets { u + n1.v1+…+ np.vp ⎜ n1,…,np ∈ N }

for u,v1,…,vp ∈ Nk

 11

Properties of context-free languages valid at the algebraic level

1) If K and L are equational sets of M, so are K ∪ L and fP(M)(K,L).

2) The emptiness of an equational set is decidable

Proof : A system S can be solved in P(T(F)) where T(F) is the

F-algebra of terms over F.

 “Transfer” of least fixed-point by homomorphisms :

If h : M’ M then h(µX.SP(M’)(X)) = µX.SP(M)(X)

Hence µX.SP(M)(X) = valM(µ X.SP(T(F))(X)) (valM = value mapping : T(F) M)

Each component of µX.SP(T(F))(X) is a context-free language

(terms are words written in Polish prefix notation).

Emptiness can be checked.

 12

3) If M is “effectively given” and the components of µX.SP(M)(X) are all

finite sets, µX.SP(M)(X) can be computed (by straightforward iteration and stop

as soon as SP(M)(X)i(∅,…) = SP(M)(X)i+1(∅,…)).

4) Finiteness test (with some natural “size” conditions).

5) For every context-free language L over k letters : a,…,d, the set of k-

tuples (⎜u⎜a, …., ⎜u⎜ d) in Nk , for all u in L, is semi-linear (using transfer

theorem for least fixed-points; “Parikh’s Theorem”).

Here : each function f has a weight w(f) in Nk , the weight w(t) of a term t is

the sum of weights of its symbols ; if L is equational w(L) is semi-linear.

Application : The set of terms with all constants at same depth is

 not equational.

 13

2. The graph algebras HR and VR

We define two graph algebras
Equational sets of graphs, two generalizations of context-free languages.

HR operations : Origin: Hyperedge Replacement hypergraph grammars

Associated complexity measure : tree-width

Graphs have distinguished vertices called sources, (or terminals or boundary vertices)

pointed to by source labels from a finite set : {a, b, c, ..., h}.

Binary operation(s) : Parallel composition

G // H is the disjoint union of G and H and sources with same label are fused.

(If G and H are not

disjoint, one first makes

a copy of H

disjoint from G).

 14

Unary operations :

 Forget some source label

 Forgeta(G) is G without a-source: the source is no longer distinguished ;

(it is made "internal").

 Source renaming :

Rena b(G) exchanges source labels a and b

(replaces a by b if b is not the label of a source)

Nullary operations denote basic graphs : edge graphs, isolated vertices.

Terms over these operations define (or denote) graphs (with or without sources)

 15

Example : Trees

Constructed with two source labels, r (root) and n (new root).

Fusion of two trees

at their roots :

Trees are defined by equation : T = T // T ∪ extension(T) ∪ r

Extension of a tree by parallel composition

with a new edge, forgetting the old root,

making the "new root" as current root :

e = r •_________• n

Renn r (Forgetr (G // e))

 16

Example : Series-parallel graphs
 defined as directed graphs with sources 1 and 2,

 generated from e = 1 2 by the operations // (parallel-composition)

and the series-composition defined from the basic operations by :

G • H = Forget3(Ren2 3 (G) // Ren1 3 (H))

Example :

 1 • G • H • 2

 3

 1 • • 2

Their defining equation is : S = S // S ∪ S • S ∪ e

 17

Relation to tree-decompositions and tree-width

 Tree T

 Graph G Tree-decomposition

 (T,f) of G

Dotted lines - - - - link copies of the same vertex.

Width = Max. size of a box -1. Tree- width = Min. width of a tree-dec.

 18

Proposition: A graph has tree-width ≤ k

if and only if it can be constructed from edges by using

the operations // , Rena b and Forgeta with ≤ k+1 labels a,b,….

Consequences :

 Representation of tree-decompositions by terms

 Algebraic characterization of tree-width.

 The set of graphs of tree-width at most k is equational for each k.

 Every HR equational set of graphs has bounded tree-width
(an upper bound is easy to obtain from a system S : just count the number

of source labels used in S).

 19

From an algebraic expression to a tree-decomposition

Example : cd // Rena c (ab // Forgetb(ab // bc)) (Constant ab denotes an edge from a to b)

 The tree-decomposition associated with this term.

 20

Negative facts : what does not hold as we could wish

 The set of all finite graphs is not HR-equational.

 Not even is the set of all square grids (planar graphs of degree 4)

 Parsing is NP-complete for certain fixed equation systems
 (graphs of circular bandwidth < 2)

 But finding a tree-decomposition of width < k (if it exists) can be

done in “linear” time (O(2p.n) where n = number of vertices and p = 32.k2)

 Examples of HR-equational equational sets.

 Every context-free language. The non-context-free language {anbncn ⎜ n> 0}.
 (A word is a directed path with edges labelled by letters.)

 Outerplanar graphs (having a planar embedding with all vertices on the infinite
(external) face) and

Halin graphs (planar, made of a tree with a cycle linking all leaves).

 21

The VR graph algebra

Origin : Vertex Replacement graph grammars.

Associated complexity measure: clique-width.

Graphs are simple, directed or not.

We use labels : a , b , c, ..., h.

Each vertex has one and only one label ; several vertices may

have same label (a source name designates a unique vertex)

One binary operation: disjoint union : ⊕

 22

Unary operations: Edge addition denoted by Add-edga,b

Add-edga,b(G) is G augmented with edges between every a-port and every

b-port (undirected case) or from every a-port to every b-port (directed case).

 H = Add-edga,b(G) ; only 5 edges added

The number of added edges depends on the argument graph.

 23

Vertex relabellings :

Relaba b(G) is G with every vertex labelled by a relabelled into b

Basic graphs are those with a single vertex a

Definition: A graph G has clique-width ≤ k ⇔ it can be constructed from basic

graphs with the operations ⊕, Add-edga,b and Relaba b by using k labels.

 Its clique-width cwd(G) is the smallest such k.

Clique-width has no combinatorial characterization (like tree-width) but is defined in terms

of few very simple graph operations, giving easy inductive proofs.

Equivalent notion: rank-width (Oum and Seymour) with better structural and algorithmic

properties (characterization by excluded vertex-minors, exact cubic decomposition algorithm).

 24

 Example 1 : Cliques have clique-width 2.

Kn is defined by tn where tn+1 = Relabb a(Add-edga,b(tn ⊕ b))

Cliques are defined by the equation :

K = Relabb a(Add-edga,b(K ⊕ b)) ∪ a

 25

Example 2 : Cographs

They are generated by ⊕ and ⊗ (the complete join) defined by :

G ⊗ H = Relabb a(Add-edga,b (G ⊕ Relaba b(H)))

 = G ⊕ H with “all possible” undirected edges between G and H.

Hence by the equation :

C = C ⊕ C ∪ C ⊗ C ∪ a

Fact : A simple undirected loop-free graph is a cograph if and only if it has

clique-width at most 2.

Example 3 : Distance hereditary graphs have clique-width at most 3 (and are

those of rank-width 1).

 26

 Proposition : (1) Bounded tree-width implies bounded clique-width, but not

conversely.

(2) Unlike tree-width, clique-width is sensible to edge directions : Cliques

have clique-width 2, tournaments have unbounded clique-width.

Classes of unbounded tree-width and bounded clique-width:

 Cographs (2), Distance hereditary graphs (3),

 Graphs without {P5 , 1⊗P4} (5), or {1⊕P4 , 1⊗P4} (16)
as induced subgraphs.
(many similar results for exclusion of induced subgraphs with 4 and 5 vertices).

Classes of unbounded clique-width :

 Planar graphs of degree 3, Tournaments, Interval graphs,

 Graphs without induced P5. (Pn = path with n vertices).

 27

Summary : Two algebras of (finite) graphs HR and VR
 Two notions of “context-free sets” : the equational sets of algebras HR
and VR, (and two notions of recognizable sets, based on congruences).

1) Comparison of the two classes :

 Equat(HR) ⊆ Equat(VR)

 = sets in Equat(VR) whose graphs are without
 some fixed Kn,n as subgraph.

2) Why not using a third algebra ? One could, but Equat(HR) and
Equat(VR) are robust in the following sense :

 * Iogical characterizations independent of the initial definitions,
* stability under certain logically defined transductions,
* generation from trees.

 For other algebras, we would loose these properties (proofs below).

 28

3) Properties of equational sets of graphs following from the algebraic

setting :

Closure under union, // , ⊕ and the unary operations
 Emptiness and finiteness are decidable (finite sets are computable)
 Semi-linearity Theorem (extends “Parikh’s Theorem)
 Derivation trees
 Denotation of the generated graphs by terms,
 Upper bounds to tree-width and clique-width.

 4) Properties that do not hold as we could wish :

The set of all finite (even planar) graphs is neither

HR- nor VR-equational.

 Parsing is sometimes NP-complete.

 29

Exercises

1) Prove that {anbncn ⎜ n > 0 } and the set of square words (ww) are HR-equational.

2) Construct HR equation systems for outerplanar and Halin graphs.

3) Construct an HR equation system for series-parallel graphs having an even number of
vertices.

4) Construct a VR equation system for trees having a number of nodes multiple of 3.

5) Construct a VR equation system for cographs having an even number of edges.

6) Prove that the non-context-free language {an ⎜ n=2p for some p> 0 } is HR-equational for
some appropriate algebra extending the monoid of words.

7) Complete the proof of the algebraic characterization of tree-width : transform a tree-

decomposition into a term of the HR algebra defining the same graph.

 30

3. Recognizable sets : an algebraic definition

M = < M, (fM)f ∈ F > : an F-algebra where F is a finite signature.

Definition : L ⊆ M is (M-)recognizable if it is a union of equivalence

classes for a finite congruence ≈ on M.

Congruence = equivalence relation such that :

m ≈ m’ and p ≈ p’ ⇒ fM(m,p) ≈ fM(m’,p’).

 Finite means that M / ≈ is finite, i.e., ≈ has finitely many classes.

Equivalently, L = h-1(D) for a homomorphism h : M → A, where

A is a finite F-algebra and D ⊆ A.

Rec(M) = the recognizable subsets of M . This notion is relative to the

algebra M.

 31

Classical examples

Algebra Recognizable sets

<A* , ., ε , a,b,…,d> Regular languages
 (syntactic monoid)

<A* , ε , (λu∈A*.ua)a∈ A > Regular languages
 (Myhill-Nerode)

T(F), terms over F, (initial F-algebra) Regular sets of terms
On terms, h is the run of a finite deterministic bottom-up automaton

<Nk, + , (0,…,0), … (0,…,1,0,…,0) …> Finite unions of Cartesian

 products of k sets { u + n.v ⎜ n ∈ N } for u,v ∈ N

 32

The algebras HR and VR have infinite signatures
We introduce two notions of type (or sorts in a many-sorted framework).

For HR : G has type τ(G) = the set of labels of its sources.

τ has a homomorphic behaviour :

 τ(G//H) = τ(G) U τ(G) ; τ(Forgeta(G)) = τ(G) - {a} ;

τ(Rena b(G)) = τ(G)[a/b, b/a].

For VR : The type is π(G) = the set of vertex labels having an occurrence.

π has a homomorphic behaviour :

π(G ⊕ H) = τ(G)Uτ(H) ; π(Add-edga,b(G)) = τ(G) ;

π(Relaba b(G)) = π(G)[b/a].

 33

For defining recognizability of set L, we require that the congruence ≈ is

type preserving (for τ or π according to the case, HR or VR) :

G ≈ H implies τ(G) = τ(H)

locally finite : it has finitely many classes of each type.

and L is a union of classes (possibly of different types).

We can also use many-sorted algebras HR and VR with countably many

sorts, and τ(G) and π(G) as respective sorts of a graph G,

 (because the type function has a homomorphic behaviour).

 34

Two notions of a recognizable set of graphs, for algebras HR and VR.

Comparison of the two classes :

 Rec(VR) ⊆ Rec(HR)

 = sets in Rec(HR) whose graphs are without
 some fixed Kn,n as subgraph. (B.C.&P. Weil).
Recall :

 Equat(HR) ⊆ Equat(VR)

 = sets in Equat(VR) whose graphs are without
 some fixed Kn,n as subgraph.

Intuition : VR has more powerful operations than HR, but they make

difference only for graphs without some Kn,n as subgraph.

 35

 Properties of recognizable sets that follow from the algebraic setting :

 Closure under ∪, ∩ and - (difference)

 (from h : M → A and k : M → B, make hom. : M → A x B)

Closure under inverse homomorphisms and inverse unary derived

operations.

Filtering Theorem : The intersection of an equational set and a

recognizable one is equational

(generalizes the intersection of a context-free and a regular language)

With effective constructions.

 36

Properties of recognizable sets of graphs that do not follow “algebraically”

Closure under the binary operations of the algebras : //, ⊕,

under the unary operations.
 (This closure is even false for add-edg but is true if some “harmless”
 restriction of the use of this operation is made.)

 (It is more difficult to prove the closure under concatenation of regular
 languages than their closure under Boolean operations ; this is reflected
 by the sizes of syntactic monoids < n.p.2n.p vs. < n.p).

Properties do not hold as we could wish or expect.

Emptiness is not decidable (because of infinite signatures).

 Rec and Equat are incomparable (for HR and VR).

 Every set of square grids is HR- and VR-recognizable.

There are uncountably many recognizable sets and no

 characterization by finite automata or logical formulas.

 37

Inductive proofs and computations

Based on equations like the one that defines Series-Parallel graphs :

S = S // S ∪ S • S ∪ e

 “Proof that all series-parallel graphs are connected”

 (Connectedness is preserved by // and • , holds for e)

 “Number of directed paths from Entry to Exit in a given series-parallel graph”

Sometimes, auxiliary properties or functions are necessary.

 “Proof that all series-parallel graphs are planar”

 (// does not preserve planarity ; a stronger property is preserved by //

 and • , and holds for e)

Recognizability means that “finitely many auxiliary properties suffice”

 38

Inductive computation : Test of 2-colorability for series-parallel graphs

Not all series-parallel graphs are 2-colorable (see K3)

G, H 2-colorable does not imply that G//H is 2-colorable (because K3=P3//e).

One can check 2-colorability with 2 auxiliary properties :

 Same(G) = G is 2-colorable with sources of the same color,
 Diff(G) = G is 2-colorable with sources of different colors

by using rules :
 Diff(e) = True ; Same(e) = False

Same(G//H) ⇔ Same(G) ∧ Same(H)
Diff(G//H) ⇔ Diff(G) ∧ Diff(H)

Same(G•H) ⇔ (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H))
Diff(G•H) ⇔ (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧ Same(H))

 39

Application 1 : Linear algorithm

For every SP-term t, we can compute, by running a finite deterministic bottom-
automaton on t, the pair of Boolean values (Same(Val(t)) , Diff(Val(t))).

 We get the answer for G = Val(t) (the graph that is the value of t) regarding
2-colorability.

Example : σ at node u means that Same(Val(t/u)) is true, σ that it is false,
δ that Diff (Val(t/u)) is true, etc… Computation is done bottom-up with the rules :

 The graph is not 2-colorable.

 40

Application 2 : Equation system for 2-colorable series-parallel graphs

We let Sσ,δ be the set of series-parallel graphs that satisfy Same (σ) and Diff (δ)
Sσ,δ be the set of those that satisfy Same and not Diff , etc …

From the equation : S = S // S ∪ S • S ∪ e we get the equation system :

 41

In equation

Sσ,δ is in all terms of the righthand side. Hence, it defines (least solution)
the empty set. This proves (a small theorem) :

Fact : No series-parallel graph satisfies Same and Diff.

We can simplify the system {(a), (b), (c), (d)} into :

By replacing Sσ,δ by Tσ, Sσ,δ by Tδ, by using commutativity of // , we get the system

 (defining 2-colorable series-parallel graphs)

 42

Recognizability and inductive sets of properties

Definition : A set P of properties on an F-algebra M is F-inductive if, for
every p ∈ P and f ∈ F, there exists a Boolean formula B such that :

p(fM(a,b)) = B […,q(a),…,q'(b),….] for all a and b in M

 q, q' ∈ P , q(a),…, q(b) ∈ {True, False}.

Proposition : A subset L of M is recognizable if and only if it is the set of

elements that satisfy a property belonging to a finite inductive set P of

properties

Inductive sets formalize the notion of “auxiliary properties” in inductive proofs.

 43

Inductive sets of properties and automata on terms

The simultaneous computation of m inductive properties can be implemented

by a finite deterministic bottom-up automaton with 2m states running on terms t.

This computation takes time O(⎜t ⎜): this fact is the key to fixed-parameter

tractable algorithms.

Remark : Membership of an element m of M in a recognizable set L can

be tested by such an automaton on any term t in T(F) defining m
 (in some term if L is equational, i.e. “context-free”).

Next section : An inductive set of properties can be effectively constructed

(at least theoretically !) from every monadic-second order formula.

 44

Exercises

1) Construct congruences proving that the set of connected graphs is HR- and VR-

recognizable.

2) Prove that the image of a recognizable language under an alphabetical homomorphism h

(replacement of letter a by h(a)) is recognizable, by constructing a congruence for the image

from one for the given language.

3) Prove the Filtering Theorem.

Hint : Let (L1, …,Ln) be the least solution of a system S in P(M) and h : M → A be a

homomorphism with A finite. Construct a system S’ with unknowns xi,a for all i = 1,…,n

and a in A, such that the component of the least solution of S’ corresponding

to xi,a is Li ∩ h-1(a).

4) Prove “inductively” that every series-parallel graph is 3-colorable.

