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History : Confluence of 4 independent research directions,  now  intimately 

related : 

1. Fixed-Parameter Tractable algorithms for parameters reflecting hierarchical 

structurings : tree-width, clique-width. This research started with case studies for 

series-parallel graphs, cographs, partial k-trees. 

2. Extension to graphs of the main concepts of Formal Language Theory : 
grammars, recognizability, transductions, decidability questions 

3. Excluded minors and related notions of forbidden configurations (matroid minors, 

« vertex-minors »). 

4. Decidability of Monadic Second-Order logic  on  classes  of  finite  graphs. 
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 An  overview  chart  

 

Graph                   "Context-free" 

operations             sets  of  graphs 

 

Fixed   parameter  tractable 

algorithms             Language  theory 

                      for  graphs  

              Recognizable 

                                 sets of graphs        

Monadic  2nd-order           Monadic  2nd -order  

logic              transductions 
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  Key  concepts of Language  Theory  and  their  extensions 
 

Languages Graphs 

Algebraic structure : 
monoid  (X*,*,ε)  

Algebras based on graph operations : ⊕, ⊗, // 
quantifier-free definable operations 

Algebras :  HR,  VR 
Context-free languages : 

Equational subsets of (X*,*,ε) 
Equational sets of the 

algebras   HR,  VR 
Regular languages : 
Finite  automata  ≡ 

Finite congruences   ≡ 
Regular expressions   ≡ 

Recognizable sets  
of the algebras HR, VR 

 
defined by finite congruences 

≡   Monadic Second-order 
definable sets of words or terms

∪ 
Monadic Second-order definable sets of graphs 

Rational and other types of 
transductions 

Monadic Second-order transductions 
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Summary 
1.  Context-free  sets  defined   by   equation  systems         (blue = Language Theor. issues) 

2.  Two  graph  algebras. Tree-width  and  clique-width.       (red  =  new  notions) 

3.  Recognizability :  an algebraic notion. 

 

4.  Monadic second-order  sentences  define  recognizable  sets.  

5.  Fixed-parameter  tractable  algorithms                              (green = algorithms) 

6.  Monadic second-order  transductions. 

7.  Robustness  results : preservation of classes  under  direct and inverse monadic  

     second-order  transductions. Short  proofs  in graph theory.             (black= graph theory) 

8.  Logic  and  graph  structure theory :  Graph  classes  on  which  monadic     

     second-order  logic  is   decidable 

 

9.Open questions 
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1.  Equational   sets    (generalization of context-free languages) 

 
Equation systems  =  Context-Free  (Graph)  Grammars   

in an algebraic  setting 
 
 

In  the  case  of  words,   the  set  of  context-free  rules  

X  → a X Y ;    X  → b  ;  Y  → c Y Y X ;   Y  → a 
 

is equivalent to  the system  of  two  equations: 

    X  =  a X Y     ∪    { b }  

    Y  =  c Y Y X    ∪        { a } 

 

where   X   is  the language generated  by   X      (idem for Y  and  Y). 
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In  arbitrary  algebras   (in graph  algebras)   we consider  equation systems  like: 

 

  X  =  f( k( X  ), Y  )     ∪   { b }  

  Y  =  f( Y , f( g(Y ), m( X )))   ∪   { a } 

where : 

 f      is  a  binary  operation,   

g, k, m    are  unary operations on  graphs,   

a, b     denote  basic objects      (graphs  up  to  isomorphism).  

 

An  equational set  is  a component  of the least  solution  of such  an  

equation system.  This  is  well-defined in any  algebra. 
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 The  general  algebraic  setting 
 

F :  a  finite  set  of operation  symbols with (fixed) arities,  called  a  signature 

M  = < M, (fM)f ∈ F >  :   an  F-algebra. 

P(M)  its power-set  algebra  with domain  P(M)  and  operations  extended to 

sets :  fP(M)(A,B) =  { fM(a,b)  /  a ∈ A, b ∈ B }. 

 

Equation  system  of  the  general  form : 

S   =  <  X1 = p1, …, Xn  = Xn >  

X1,…,Xn  are  unknowns  (ranging over sets)  

p1,…,pn are  polynomials  for example : 

   f( k( X1),X2)  ∪  f(X2, f( g(X3), X1))  ∪  c  
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Its   solutions   are   the   fixed-points  of  the  (recursive)  equation : 

X  =  SP(M)(X)                      (1)               where   X  =  (X1,…,Xn)   

SP(M)(X) : = (p1P(M)(X) ,…, pnP(M)(X)) 

 

The  set   P(M)n  ordered   by   component-wise  inclusion  is ω-complete,   

the  mapping   SP(M) is  monotone  and ω-continous,  hence  Equation (1)  

has   a  least  solution  defined  by  iteration : 

µX.SP(M)(X)    =  U i >0 SP(M)(X)i(∅, …,∅)        (increasing sequence)   

         

An  equational set  of M  is  a component  of  µX. SP(M)(X)    for  some  

equation  system  S.     Equat(M)  =  the equational  sets of  M 
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Classical  examples  

Algebra          Equational   sets  
 

<A* , ., ε , a,b,…,d>                       Context-free  languages 

 

<A* , ε , (λu∈A*.ua)a∈ A >               Regular  languages 

 

T(F), terms over F, (initial F-algebra)    Regular  sets  of  terms  

 

<Nk, + , (0,…,0), … (0,…,1,0,…,0) …>    Semi-linear  sets  =  

finite  unions  of  sets  { u + n1.v1+…+ np.vp  ⎜ n1,…,np ∈ N } 

for  u,v1,…,vp ∈ Nk 
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Properties of context-free languages  valid  at  the  algebraic  level  

1)  If  K and L  are  equational  sets  of  M, so are   K ∪ L  and  fP(M)(K,L). 

2)  The  emptiness  of  an  equational  set  is  decidable  

Proof :  A  system  S  can  be  solved in  P(T(F))  where  T(F)  is   the    

F-algebra of terms  over  F.  

 “Transfer”  of  least fixed-point  by  homomorphisms :  

If  h : M’    M   then    h(µX.SP(M’)(X))  =  µX.SP(M)(X) 

Hence µX.SP(M)(X) = valM(µ X.SP(T(F))(X)) (valM = value mapping : T(F)   M) 

Each  component of  µX.SP(T(F))(X)  is a context-free  language  

(terms are words   written in Polish prefix  notation).   

Emptiness  can  be  checked. 
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3)  If  M  is “effectively given”  and  the components  of  µX.SP(M)(X)  are all 

finite sets, µX.SP(M)(X)  can be computed   (by  straightforward iteration  and  stop 

as soon as   SP(M)(X)i(∅,…) = SP(M)(X)i+1(∅,…) ). 

 

4)  Finiteness  test  (with  some  natural  “size” conditions). 

 

5)  For every context-free  language  L  over k  letters :  a,…,d,  the set of k-

tuples  (⎜u⎜a, …., ⎜u⎜ d )  in  Nk , for  all  u  in  L,  is  semi-linear  (using  transfer  

theorem  for   least   fixed-points; “Parikh’s Theorem”). 

Here : each  function  f  has  a  weight  w(f)  in  Nk , the weight  w(t) of a  term t  is  

the  sum  of  weights of  its  symbols ; if  L  is equational  w(L)  is semi-linear. 

Application : The  set  of  terms  with  all  constants  at same depth  is  

  not  equational.   
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2.  The  graph algebras   HR   and    VR 
 

We  define  two  graph algebras    
Equational  sets  of graphs, two generalizations  of  context-free languages. 

 
HR operations :  Origin: Hyperedge Replacement hypergraph grammars  

Associated complexity measure : tree-width 
 

Graphs have  distinguished vertices called sources, (or terminals or boundary vertices) 

pointed  to  by  source  labels  from  a  finite set  :    {a, b, c,  ..., h}. 

Binary operation(s)  : Parallel  composition 

G // H     is  the  disjoint  union of  G  and  H  and sources  with  same  label  are   fused.  

(If G  and  H are  not  

disjoint,  one  first  makes   

a  copy  of  H 

disjoint from  G). 
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Unary operations   :     

 Forget   some   source  label  
     

    Forgeta(G)   is  G  without  a-source: the  source  is  no longer distinguished ;  

(it is  made  "internal"). 

       Source renaming : 
 

Rena     b(G)  exchanges  source  labels  a  and b     

(replaces  a  by  b   if  b  is not the label of a source) 
 

Nullary operations   denote  basic  graphs  : edge graphs, isolated vertices. 
 

 

Terms  over  these  operations  define  (or denote)  graphs  (with or without sources) 
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Example : Trees  

Constructed with two source labels, r  (root)  and   n  (new root).  

Fusion  of  two  trees   

at  their roots  :  

 

 

 
 

  

 

 

 

 

 

Trees  are  defined  by  equation :    T =  T // T  ∪  extension(T)  ∪  r  

 

Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root"  as  current  root : 

e  =  r  •_________•  n 

Renn         r  (Forgetr (G // e ))  
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Example : Series-parallel graphs  
  defined  as  directed  graphs  with  sources  1  and  2,   

  generated from  e = 1          2  by  the operations  //  (parallel-composition)   

and  the   series-composition   defined   from  the  basic  operations by : 

G • H =  Forget3(Ren2        3 (G) // Ren1      3 (H)) 

Example  :  

 

  1 •        G              •        H                            •  2 

        3 

 

   1   •                   • 2 

 

Their   defining   equation   is  :      S  =  S // S  ∪  S • S  ∪  e  
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Relation  to   tree-decompositions   and    tree-width 

 

 

                                                  Tree   T 

 

         Graph  G                                                                                 Tree-decomposition  

                   (T,f)   of   G  

Dotted  lines  - - - -   link  copies  of  the  same  vertex.  

Width  = Max. size  of  a  box  -1.      Tree- width    =  Min.  width  of   a  tree-dec. 
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Proposition:    A  graph  has   tree-width  ≤  k   

if  and  only  if    it  can  be  constructed  from  edges  by using   

the  operations  // , Rena     b  and  Forgeta   with  ≤  k+1  labels  a,b,….   

 

Consequences :  

 Representation  of  tree-decompositions  by  terms  

 Algebraic  characterization  of  tree-width. 

 The  set  of  graphs  of  tree-width  at  most  k  is  equational  for  each  k. 

 Every  HR  equational  set  of  graphs  has  bounded tree-width   
(an upper bound is easy to obtain from a system  S : just count  the  number   

of  source labels used  in  S). 
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From  an algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc)) (Constant  ab  denotes  an edge from  a   to  b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                         The  tree-decomposition  associated  with  this term. 
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Negative  facts  :  what  does  not  hold  as  we  could  wish  
 
  The set of all  finite  graphs is not  HR-equational. 
 
  Not even is the set of all square grids   (planar graphs of degree 4) 
 
       Parsing  is   NP-complete  for certain  fixed  equation systems  
           (graphs  of  circular   bandwidth  <  2) 

 
 But  finding  a tree-decomposition of  width < k   (if  it exists)  can  be  

done  in  “linear”  time   ( O(2p.n)  where n = number of vertices  and  p  =  32.k2 ) 
 

 Examples  of  HR-equational  equational  sets. 
 
 Every  context-free language. The non-context-free language  {anbncn  ⎜ n> 0}. 
         (A  word  is  a directed   path  with  edges  labelled  by  letters.) 
 

 Outerplanar  graphs (having  a planar  embedding  with  all vertices on the  infinite  
(external)  face)  and   

Halin  graphs  (planar,  made  of  a  tree  with  a  cycle  linking all leaves). 
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The   VR   graph  algebra      
 

Origin : Vertex Replacement graph grammars. 

Associated complexity measure: clique-width. 
 

 

Graphs are simple, directed or not.   

We   use   labels  :  a , b , c,  ..., h.    

Each  vertex  has  one  and  only  one  label ;   several vertices may  

have same label                                (a source name designates a unique vertex) 
 

One  binary operation:   disjoint  union    :   ⊕ 
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Unary  operations:  Edge addition denoted  by  Add-edga,b 
 

Add-edga,b(G)   is  G augmented  with  edges  between  every   a-port  and every  

b-port (undirected case)   or  from  every  a-port  to  every  b-port  (directed case).  

 

 

      H = Add-edga,b(G) ; only  5  edges added  

The  number  of  added  edges  depends  on  the  argument graph. 
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Vertex  relabellings :  

Relaba       b(G)  is  G with every vertex  labelled by a  relabelled into b 

 

Basic graphs   are those with a single vertex   a   
 

Definition: A  graph  G has  clique-width ≤ k ⇔ it can be constructed from basic 

graphs  with  the  operations ⊕, Add-edga,b  and  Relaba      b  by using  k labels. 

        Its  clique-width  cwd(G)  is the   smallest  such  k. 
 

Clique-width  has no  combinatorial  characterization (like tree-width) but is defined in terms 

of  few  very simple  graph operations, giving easy  inductive proofs. 

Equivalent notion: rank-width (Oum and Seymour) with better structural and algorithmic 

properties (characterization by excluded vertex-minors, exact cubic decomposition algorithm). 
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 Example  1  : Cliques have clique-width 2.  

 
 

Kn  is   defined  by  tn  where   tn+1   =   Relabb       a( Add-edga,b(tn ⊕ b)) 
 

Cliques  are  defined  by  the   equation : 

K =  Relabb        a( Add-edga,b(K ⊕ b))  ∪  a  
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Example 2  :  Cographs   
 

They  are generated  by  ⊕   and  ⊗  (the  complete  join) defined  by : 

G ⊗ H  =  Relabb      a( Add-edga,b (G ⊕ Relaba      b(H))) 

            = G ⊕ H  with  “all  possible”  undirected  edges  between  G  and  H. 
 

Hence  by the equation : 
 

C  =  C ⊕ C     ∪  C ⊗ C   ∪  a  
 

Fact :  A simple  undirected  loop-free  graph  is a cograph  if  and  only if it has 

clique-width  at most 2. 

 

Example 3  :  Distance hereditary  graphs  have  clique-width  at most  3  (and are 

those of rank-width 1).    
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 Proposition : (1) Bounded  tree-width  implies  bounded clique-width, but not  

conversely.  
 

(2) Unlike tree-width, clique-width is  sensible to  edge directions : Cliques 

have clique-width  2,  tournaments have unbounded clique-width. 
 

 

Classes of unbounded tree-width and bounded clique-width: 
 

 Cographs (2), Distance hereditary graphs (3),  

 Graphs  without  {P5 , 1⊗P4}  (5),   or {1⊕P4 , 1⊗P4} (16)   
as induced   subgraphs.  
(many similar results for exclusion of induced subgraphs  with 4 and 5 vertices).  

 
 

Classes of unbounded clique-width : 

 Planar graphs of degree 3,   Tournaments,    Interval graphs,  

 Graphs   without   induced   P5.          (Pn = path  with  n  vertices). 
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Summary  :  Two  algebras   of  (finite)  graphs   HR  and  VR    
 Two  notions  of  “context-free  sets”  :  the equational  sets  of  algebras  HR  
and VR,  (and  two  notions  of recognizable  sets, based  on congruences). 
 

1)  Comparison  of the two classes : 
 

 Equat(HR)  ⊆  Equat(VR)   
 

    =    sets  in  Equat(VR)  whose  graphs  are  without   
     some  fixed  Kn,n   as  subgraph. 
 

2) Why not using  a  third  algebra ?   One  could,  but  Equat(HR)  and 
Equat(VR)  are  robust  in  the  following  sense : 

 

  * Iogical  characterizations  independent  of  the  initial definitions, 
* stability  under  certain  logically  defined  transductions,   
* generation  from trees.    
    

    For  other  algebras, we  would  loose  these  properties  (proofs  below). 
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3) Properties of equational  sets  of  graphs  following  from the  algebraic  

setting : 
 

Closure  under  union, // ,  ⊕  and  the unary operations 
   Emptiness and  finiteness   are decidable (finite  sets  are  computable) 
   Semi-linearity Theorem   (extends  “Parikh’s Theorem) 
   Derivation  trees 
   Denotation of the  generated  graphs  by  terms, 
   Upper bounds  to  tree-width  and  clique-width. 
 
 
   4)  Properties   that  do  not  hold  as  we  could  wish : 
 

The set of all finite  (even planar) graphs is neither   

HR-  nor   VR-equational. 

   Parsing  is  sometimes  NP-complete. 
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Exercises   
  
1)     Prove that   {anbncn  ⎜  n  > 0 }   and  the  set of  square  words (ww)  are   HR-equational.  
 
2)     Construct  HR equation systems  for  outerplanar  and  Halin  graphs. 
 
3)     Construct  an  HR equation system  for  series-parallel  graphs  having  an  even  number  of 
vertices. 
 
4)     Construct  a  VR equation system  for  trees  having  a  number  of  nodes  multiple  of  3. 

 
5) Construct  a  VR  equation  system  for  cographs  having  an  even number  of  edges. 

 
6)     Prove  that  the non-context-free language   {an  ⎜  n=2p for some  p> 0 }  is  HR-equational for 
some  appropriate  algebra  extending   the  monoid  of   words.   
 
7)     Complete  the proof  of  the  algebraic  characterization  of  tree-width :  transform  a  tree-

decomposition  into  a  term  of  the  HR  algebra  defining  the  same  graph. 



 30

3.   Recognizable  sets  : an   algebraic   definition 
 

M = < M, (fM)f ∈ F >  :   an  F-algebra   where   F  is  a  finite  signature. 

Definition :  L  ⊆ M   is   (M-)recognizable  if  it  is  a  union  of  equivalence 

classes for a  finite congruence   ≈   on  M. 

Congruence  = equivalence  relation  such that : 

m ≈ m’   and     p ≈ p’     ⇒     fM(m,p) ≈ fM(m’,p’).   

 Finite   means  that   M / ≈   is  finite,  i.e., ≈  has  finitely many classes. 

Equivalently, L = h-1(D)  for  a  homomorphism  h :  M → A,  where  

A  is  a  finite   F-algebra    and    D ⊆  A.  

   

Rec(M) = the recognizable subsets of M .  This notion  is   relative  to  the 

algebra  M. 
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Classical  examples  

Algebra          Recognizable    sets  
 

<A* , ., ε , a,b,…,d>                       Regular  languages 
             (syntactic  monoid) 
 

<A* , ε , (λu∈A*.ua)a∈ A >               Regular  languages 
             (Myhill-Nerode)  
 

T(F), terms over F, (initial F-algebra)    Regular  sets  of  terms  
On terms,  h  is the run of a  finite  deterministic bottom-up  automaton 

<Nk, + , (0,…,0), … (0,…,1,0,…,0) …>    Finite  unions  of Cartesian 

    products  of   k  sets  { u + n.v  ⎜ n  ∈ N }       for  u,v ∈ N 
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The  algebras  HR  and  VR  have  infinite  signatures 
We introduce  two  notions  of  type  (or  sorts  in a  many-sorted  framework). 

For HR :  G  has  type  τ(G)  =  the  set  of  labels  of  its   sources.  

τ   has  a  homomorphic  behaviour :  

      τ(G//H) = τ(G) U τ(G)       ;      τ(Forgeta(G)) = τ(G) - {a}      ;  

τ(Rena     b(G))  =  τ(G)[a/b, b/a]. 

For VR  : The  type  is  π(G)  =  the  set  of  vertex  labels  having  an  occurrence.  

π  has  a  homomorphic  behaviour : 

π(G ⊕ H)  = τ(G)Uτ(H)     ;       π(Add-edga,b(G)) = τ(G)        ;  

π(Relaba        b(G) )  =  π(G)[b/a]. 

 
 



 33

For defining recognizability  of  set   L, we  require  that  the  congruence  ≈  is   

type  preserving   (for  τ  or  π  according  to  the case, HR  or  VR ) : 

G ≈ H  implies  τ(G)  =  τ(H)  

locally  finite  :  it  has  finitely  many classes  of  each  type. 

and    L    is  a  union  of  classes  (possibly  of  different  types). 

 

 

We can  also  use  many-sorted  algebras  HR  and  VR  with countably many 

sorts, and  τ(G)  and  π(G)  as  respective  sorts   of   a  graph G,  

      (because  the  type  function  has  a  homomorphic  behaviour). 
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Two  notions  of  a  recognizable  set  of  graphs, for  algebras  HR  and  VR.  
 

 

Comparison  of  the  two  classes : 
 

 Rec(VR)  ⊆  Rec(HR)   
 

      =   sets  in  Rec(HR)  whose  graphs  are  without   
        some  fixed  Kn,n   as  subgraph.    (B.C.&P. Weil). 
Recall :  
 

 Equat(HR)  ⊆  Equat(VR)   
 

    =    sets  in  Equat(VR)  whose  graphs  are  without   
        some  fixed  Kn,n   as  subgraph. 
 
Intuition  :  VR  has  more  powerful  operations   than  HR, but   they  make 

difference  only  for  graphs  without  some  Kn,n   as  subgraph. 
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 Properties  of  recognizable  sets  that  follow  from the  algebraic setting : 
 

  Closure  under  ∪, ∩   and   -  (difference)     

  (from   h :  M → A   and   k :  M → B,   make  hom. : M → A x B ) 

 

Closure  under inverse homomorphisms  and  inverse  unary derived 

operations. 

 
Filtering  Theorem : The  intersection  of  an  equational  set  and  a 

recognizable one  is   equational   
 

(generalizes  the  intersection of  a  context-free  and  a  regular  language) 
 
With  effective  constructions. 
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Properties  of  recognizable  sets  of  graphs  that  do  not  follow  “algebraically”   

 

Closure  under  the  binary  operations  of  the  algebras : //, ⊕, 

under  the unary operations.  
 (This closure  is  even  false  for  add-edg  but  is  true if  some  “harmless” 
   restriction  of   the use  of  this  operation  is made.) 
 
 (It  is  more difficult  to prove the closure under concatenation  of  regular  
 languages  than their closure under Boolean operations ; this is reflected  
 by the  sizes  of  syntactic  monoids  < n.p.2n.p   vs.   <  n.p). 
 

Properties  do  not  hold  as  we  could  wish  or  expect. 
 

Emptiness  is  not  decidable  (because  of  infinite  signatures). 

  Rec  and  Equat  are  incomparable  (for HR  and  VR).    

  Every  set  of  square  grids  is HR- and  VR-recognizable.  

There are  uncountably many  recognizable  sets   and  no  

 characterization  by   finite automata   or   logical  formulas.
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Inductive  proofs  and  computations  
 

Based  on  equations  like the one that defines  Series-Parallel graphs : 

S  =  S // S  ∪ S  • S ∪  e 

 “Proof that  all  series-parallel graphs  are  connected” 

  (Connectedness  is  preserved   by  //   and  • , holds for e ) 
 

  “Number of directed paths  from  Entry  to  Exit  in a  given series-parallel graph” 
 

Sometimes, auxiliary  properties   or   functions   are   necessary. 

 “Proof  that  all  series-parallel  graphs  are  planar” 

  (//  does not preserve  planarity ; a stronger  property  is  preserved   by  //    

  and  • , and  holds for e ) 
 

Recognizability   means  that   “finitely  many  auxiliary  properties suffice” 
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Inductive  computation  :  Test  of  2-colorability   for  series-parallel  graphs 

Not  all  series-parallel  graphs  are  2-colorable  (see  K3)  
 

G, H    2-colorable does not imply that  G//H  is  2-colorable  (because  K3=P3//e). 
 
 

One can check  2-colorability  with  2  auxiliary  properties : 
 

        Same(G)  =  G is 2-colorable with sources of the same color, 
           Diff(G)    =  G is 2-colorable with sources  of different colors 
 
by  using rules :  
    Diff(e)  =  True  ;  Same(e)  = False 
 

Same(G//H)  ⇔  Same(G) ∧ Same(H) 
Diff(G//H)  ⇔   Diff(G) ∧  Diff(H) 
 

Same(G•H)  ⇔  (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H)) 
Diff(G•H)   ⇔  (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧  Same(H)) 
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Application  1  : Linear  algorithm 
 

For every SP-term t, we can compute, by running a finite deterministic bottom- 
automaton  on   t,  the  pair  of   Boolean  values   (Same(Val(t)) ,  Diff(Val(t)) ).   

 

 We  get  the answer  for  G  = Val(t)   (the graph  that  is  the  value  of  t )  regarding 
2-colorability. 
 

Example : σ  at node u means that  Same(Val(t/u)) is true, σ   that it is false,   
δ  that  Diff (Val(t/u)) is true, etc… Computation is  done bottom-up  with  the  rules : 
 
            
 
 
 
 
 
 
 
 
 
 
 The  graph   is   not   2-colorable. 
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Application 2  :  Equation  system  for  2-colorable  series-parallel  graphs 
 
We  let  Sσ,δ  be the set of series-parallel  graphs  that  satisfy  Same (σ)  and  Diff  (δ) 
Sσ,δ  be  the set   of   those that satisfy  Same  and not   Diff , etc  … 
 
From the equation :  S  =  S // S  ∪ S • S  ∪  e     we  get  the equation  system : 
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In equation 

 

 
Sσ,δ    is  in  all  terms  of the  righthand side. Hence, it  defines  (least solution)   
the  empty set.  This  proves  (a  small  theorem) : 
 
Fact : No  series-parallel graph  satisfies  Same  and   Diff. 
 

We can simplify the system {(a), (b), (c), (d)}    into : 

 

 

 

 

 

By replacing  Sσ,δ  by  Tσ, Sσ,δ by Tδ, by  using commutativity  of  // , we get   the  system  

               (defining  2-colorable  series-parallel  graphs) 
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Recognizability  and  inductive  sets  of  properties  
 

Definition : A  set  P  of  properties  on an  F-algebra  M  is  F-inductive   if,  for  
every  p ∈ P  and   f ∈ F, there exists  a  Boolean  formula  B  such  that  : 
 

p(fM(a,b) )  =  B […,q(a),…,q'(b),….] for  all  a  and  b  in  M 
   

     q, q' ∈ P ,  q(a),…, q(b)  ∈  {True, False}. 
 
Proposition :  A  subset  L of  M  is recognizable  if and only if  it is the set of 

elements  that satisfy a property belonging to a  finite  inductive  set  P  of 

properties  
 

Inductive  sets  formalize  the  notion  of  “auxiliary  properties”  in  inductive  proofs.  
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Inductive  sets  of   properties  and  automata  on  terms 

 

The simultaneous computation of m inductive properties can be implemented 

by a finite deterministic  bottom-up automaton  with 2m  states running on terms  t.  

 

This computation  takes time O( ⎜t ⎜): this  fact  is  the key  to  fixed-parameter  

tractable algorithms. 
 

Remark : Membership  of  an element  m  of  M  in a recognizable set  L  can 

be  tested  by  such  an  automaton  on  any   term   t   in  T(F)  defining  m   
       (in some  term  if  L  is  equational, i.e. “context-free” ). 

Next  section : An  inductive  set  of  properties can be  effectively  constructed 

(at  least  theoretically ! )  from  every  monadic-second  order  formula. 
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Exercises   
  
1)  Construct  congruences  proving  that  the  set  of  connected  graphs  is   HR- and  VR-

recognizable. 

 

2)   Prove  that  the image of  a  recognizable  language  under  an  alphabetical  homomorphism h 

(replacement of letter  a  by h(a) )  is  recognizable, by  constructing  a congruence  for  the image  

from one  for  the  given language. 

 

3)    Prove the Filtering Theorem.  

Hint : Let   (L1, …,Ln)   be the  least  solution  of  a system  S  in P(M)  and   h :  M → A   be a 

homomorphism  with  A  finite.   Construct  a  system  S’  with  unknowns  xi,a    for all  i  = 1,…,n  

and  a  in  A, such that  the  component  of   the  least  solution  of   S’   corresponding   

to   xi,a     is    Li ∩ h-1(a). 

4)   Prove  “inductively”  that  every  series-parallel  graph is  3-colorable.   


