

1

Computation and enumeration

by fly-automata

Bruno Courcelle

Irène Durand

Bordeaux University, LaBRI (CNRS laboratory)

2

Topics

 Fixed-parameter tractable (FPT) graph algorithms

 based on infinite “fly”-automata (FA) running on

 clique-width terms denoting the input graphs.

 Generic constructions of FA : example, the number of

 accepting runs of a nondeterministic FA, based on

 attributed FA.

 Meta-dynamic-programming: constructions from

 logical descriptions of problems.

3

Part 1 : review of definitions and basic facts.

 Graphs are finite, simple, loop-free, directed or not.

 A graph G is given by the logical structure

 (VG , edgG(.,.)) = (vertices, adjacency relation)

 Monadic second-order (MSO) formulas ϕ can express

 p-colorability (and variants), transitive closure, properties of paths,

 connectedness, planarity (via Kuratowski).

4

 Clique-width (denoted by cwd(G)).

 Vertices are labelled by a,b,c, A vertex labelled by a is an a-vertex.

Binary operation: disjoint union : ⊕

Unary operations: edge addition denoted by Adda,b

Adda,b (G) is G augmented

with (un)directed edges from (between)

 every a-vertex to (and) every b-vertex.

Vertex relabellings :

Relaba b(G) is G with every a-vertex is made into a b-vertex

 Basic graphs : a denotes a vertex labelled by a

5

 The clique-width of G (denoted by cwd(G)) is the smallest k such

that G is defined by a term using k labels.

 Each MSO property ϕ can be checked in polynomial time by a

finite automaton A(ϕ,k) taking as inputs terms denoting graphs of

clique-width < k.

6

Difficulty : The finite automaton A(ϕ,k) is much too large as soon as

 k > 2 : 2^(2^(…2^k)..)) states (because of quantifier alternations).

 To overcome this difficulty, we use fly-automata whose states and

transitions are described and not tabulated. Only the transitions

necessary for an input term are computed “on the fly”.

 Sets of states can be infinite and fly-automata can compute values,

e.g., the number of p-colorings of a graph.

7

Part 2 : Fly-automaton (FA)

A = < F, Q, δ, Out > to compute a function.

F : finite or countable (effective) set of operations,

Q : finite or countable (effective) set of states (integers, pairs of integers,

etc. : states are encoded by finite words),

Out : Q � D , computable (D is effective, coded by finite words).

δ : computable (bottom-up) transition function

Nondeterministic case : δ is finitely multi-valued. Determinization works.

An FA defines a computable function : T(F) � D , a decidable

property if D = {True, False}.

8

The MSO meta-theorem through fly-automata

 ϕ (MSO formula)

 Fly-automaton constructor

 Yes

G Graph analyzer t A(ϕ)

 No

 A(ϕ): unique infinite fly-automaton. The time taken by A(ϕ) is O(f(k).n)

where k depends on the operations occurring in t and bounds the tree-

width or clique-width of G.

9

Computation time of a fly-automaton

 F : all clique-width operations, Fk : those using k labels.

 On term t ∈ T(Fk) defining G(t) with n vertices, if a fly-automaton

 takes time bounded by :

 (k + n)c � it is a P-FA (a polynomial-time FA),

 f(k).nc � it is an FPT-FA,

 a.ng(k) � it is an XP-FA.

 The associated algorithm is polynomial-time, FPT or XP for clique-

width as parameter.

 All dynamic programming algorithms based on clique-width terms

can be described by FA.

10

Part 3 : Computating graph evaluations

P(X) is a property of tuples of sets of vertices.

∃ X.P(X) (basic, Boolean evaluation).

X.P(X) : number of satisfying tuples.

SpX.P(X) : spectrum = the set of tuples of cardinalities of the

components of the X that satisfy P(X).

MSpX.P(X) : multispectrum = the corresponding multiset.

 (for X = X : the set of pairs (m ,i) such that i > 0 is

 the number of sets X of cardinality m that satisfy P(X)).

 MinCard X.P(X) : minimum cardinality of X satisfying P(X).

11

 SetVal-α(X)/P(X) : the set of values of α(X)

 for the tuples X that satisfy P(X).

 SatX.P(X) : the set of all tuples X that satisfy P(X).

12

 Inductive construction for ∃X.P(X) based

 on an MSO formula ϕ(X)

 Atomic formulas : direct constructions

 ¬ P (negation) : FA are run deterministically, it suffices to exchange

accepting/non-accepting states.

 P ∧ Q, P ∨ Q : products of automata.

 How to handle free variables and ∃X.P(X) ?

13

 Terms are equipped with Booleans that encode assignments of

vertex sets V1,…,Vn to the free set variables X1,…,Xn of MSO

formulas (formulas are written without first-order variables):

 1) we replace in F each a by the nullary symbol

 (a, (w1,…,wn)), wi ∈ {0,1} : we get F(n) (only nullary symbols are modified);

 2) a term s in T(F(n)) encodes a term t in T(F) and an

 assignment of sets V1,…,Vn to the set variables X1,…,Xn :

 if u is an occurrence of (a, (w1,..,wn)), then

 wi = 1 if and only if u ∈ Vi .

 3) s is denoted by t * (V1,…,Vn)

14

Example

 Graph G(t)

 Term t

15

Example (continued)

 V1 = {1,3,4}, V2 = {2,3}

 Term t * (V1,V2)

16

 By an induction on ϕ, we construct for each ϕ(X1,…,Xn) an FA

A(ϕ(X1,…,Xn)) that recognizes:

L(ϕ(X1,…,Xn)) : = { t * (V1,…,Vn) ∈ T(F(n)) / (G(t), V1,…,Vn)  = ϕ }

Quantifications: Formulas are written without ∀

 L(∃ Xn+1 . ϕ(X1, ..., Xn+1)) = pr(L (ϕ(X1, ..., Xn+1))

 A(∃ Xn+1 . ϕ(X1, ..., Xn+1)) = pr(A (ϕ(X1, ..., Xn+1))

where pr is the projection that eliminates the last Boolean;

� a non-deterministic automaton B = pr(A (ϕ(X1, ..., Xn+1)).

17

Determinized runs of B by deterministic FA C

 For ∃X.P(X): the state of C at position u is

 { state q of B / some run reaches q at position u }

 For # X.P(X) : the state of C at position u is

 { (q,m) / m = the number of runs that reach q at u }

 equivalently, the corresponding multiset of states q, cf. ∃X.P(X)

 For SpX.P(X) : the state of C at position u is

 { (q,S) / S = the set of tuples of cardinalities of

 the “components of X below u” that yield q at u }.

For MSpX.P(X) : S is the corresponding multiset.

18

 For MinCard X.P(X) : the state of C at position u is

 { (q, s) / s = the minimum cardinality of “X below u” that

 yields q at u }.

For SetVal-α(X) / P(X) where α(X) is a linear combination of the

cardinalities of the components of X that satisfy P, we use a variant

of SpX.P(X) .

 For SatX.P(X) : the set of all tuples X that satisfy P(X), the state of

 C at position u is { (q, S) / S = the set of all tuples below u that yield q }

19

 A common presentation for all this cases:

 We call the component s in state (q,s) is an attribute of q.

 An attribute s of q at u collects certain information about all the

runs that yield q at u. Computations of attribute correspond to variants of

the basic determinization: they use, according to the cases :

 Set union (for basic determinization)

 Union of multisets, (for counting runs)

 Selection of minimal number or minimal set (e.g. for inclusion),

 A + B where A and B are sets of numbers,

 etc…

 Distributive algebras offer a formal setting (see article to appear).

20

 Optimizations : How to avoid intermediate computations

 that do not contribute to the final result.

 Theorem (Flum and Grohe) : One can compute SatX.P(X) in time

f(k).(n+ size of the result) where cwd(G) < k and n is the size of the term.

 The bottom-up inductive computation must “know” that certain states

will not belong to any accepting run on the considered term.

 Method : 3 pass algorithm

 1 : determinized bottom-up run keeping pointers showing how

states are obtained from others,

 2 : top-down run starting from the accepting states at the root and

marking the useful states,

 3 : bottom-up computation of attributes only for the useful states.

21

22

 This 3-pass algorithm is applicable for all our computations of

attributes.

 Example : Checking that a graph has a unique 3-coloring.

 1st method : expressing that in MSO : possible but cumbersome.

 2nd method : computing the total number of 3-colorings: we want

result 6 (assume the graph is not 2-colorable) : OK but lengthy.

 3rd method : “optimized” counting with reporting Failure if a useful

intermediate result more than 6 is found.

 This is applicable to : ∃! X.P(X) for every MSO property P.

23

 Probabilities

 Let P(X) be an MSO property.

 Assume that each vertex of G that is created by nullary symbol a is

put in component Xi of X with probability pa,i .

 We can compute the probability that X satisfies P(X).

 We can also compute the polynomial in the indeterminates pa,i that

gives for G this probability (either factorized or developed, obtained easily

from SatX.P(X); to be explored!).

oOo

 Thanks for any suggestion of application, variant or

 related question!

24

 Conclusion

 By uniform constructions, we get XP or FPT dynamic

programming algorithms (that could be obtained independently). They

are based on fly-automata, that can be quickly constructed from logical

descriptions � flexibility.

 These constructions are applicable to bounded tree-width and

MSO with set quantifications by means of incidence graphs.

 They are implemented. Tests have been made for colorability and

connectedness problems.

 Enumeration is our next theoretical and practical topic.

 Also optimizations (annotations) will be investigated.

25

Appendix (if anybody wants)

Examples of MSO definability : G is 3-colorable :

∃X ,Y (X ∩ Y = ∅ ∧
 ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧

 (u ∉ X ∪ Y ⇒ v ∈ X ∪ Y)]

 })

G is not connected :

∃Z (∃x ∈ Z ∧ ∃y ∉ Z ∧ (∀u,v (u ∈ Z ∧ edg(u,v) ⇒ v ∈ Z))

Planarity is MSO-expressible (no minor K5 or K3,3).

