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Topics 

     Fixed-parameter  tractable (FPT) graph algorithms  

  based  on  infinite “fly”-automata  (FA) running  on  

  clique-width  terms denoting the input graphs. 

     Generic constructions of  FA : example, the number of  

  accepting runs of a nondeterministic FA,  based  on  

  attributed   FA. 

     Meta-dynamic-programming: constructions from  

      logical descriptions of problems. 
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Part 1 : review  of  definitions  and  basic facts. 

  

  Graphs are finite, simple, loop-free, directed or not. 

  A  graph  G is given  by  the logical  structure   

     ( VG , edgG(.,.) ) = (vertices, adjacency relation) 

 

  Monadic second-order (MSO)  formulas  ϕ  can express  

 p-colorability (and variants),  transitive closure,  properties  of paths, 

 connectedness,  planarity  (via Kuratowski). 
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     Clique-width   (denoted by  cwd(G)).  
 

 Vertices are labelled  by  a,b,c, ... .  A  vertex  labelled by a  is an  a-vertex. 
 

Binary  operation:   disjoint  union  :   ⊕ 

Unary  operations:  edge  addition  denoted  by  Adda,b 

Adda,b (G)  is  G  augmented   

with  (un)directed edges  from (between) 

 every   a-vertex  to (and)  every  b-vertex. 

Vertex  relabellings : 

Relaba         b(G)  is  G  with  every  a-vertex   is  made  into  a  b-vertex 

 Basic graphs  :  a    denotes  a  vertex  labelled  by   a 
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 The clique-width  of    G  (denoted by cwd(G)) is the smallest  k  such 

that    G is  defined  by a  term  using  k   labels.  
 

 

 Each  MSO  property  ϕ  can be checked  in polynomial  time  by a  

finite  automaton   A(ϕ,k)  taking  as  inputs terms denoting graphs of 

clique-width < k. 



 

6 

 

Difficulty : The finite automaton A(ϕ,k) is much too large as soon as 

   k > 2 :  2^(2^(…2^k)..)) states            (because of quantifier alternations). 

 

  To overcome this difficulty, we use fly-automata whose states and 

transitions are described and not tabulated. Only the transitions 

necessary  for  an  input term are computed “on the fly”.   

 

  Sets of states can be infinite and fly-automata can compute values, 

e.g., the number of  p-colorings  of a graph.  
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Part  2 :   Fly-automaton  (FA) 

A = < F, Q, δ, Out >       to   compute  a function. 

F :  finite  or  countable (effective)  set of operations, 

Q :  finite or countable (effective)  set of states   (integers, pairs of integers, 

etc. : states are  encoded by finite words), 

Out : Q � D , computable  (D is effective, coded by finite  words). 

δ : computable  (bottom-up)  transition  function 

Nondeterministic  case :  δ   is  finitely  multi-valued.  Determinization  works.     

An  FA defines  a  computable  function : T(F) � D , a  decidable  

property  if  D  =  {True, False}. 
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The  MSO  meta-theorem  through fly-automata 
  

                ϕ    (MSO  formula)

                             

      

             Fly-automaton constructor  

                  Yes  

G                   Graph analyzer                 t                 A(ϕ)           

                  No   

 A(ϕ): unique infinite fly-automaton. The time taken by A(ϕ) is O(f(k).n) 

where k depends on the operations occurring in t and bounds the tree-

width  or  clique-width of  G.  
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Computation  time  of  a  fly-automaton 

  

 F : all  clique-width  operations,   Fk : those  using k  labels. 

 On  term  t ∈ T(Fk)  defining  G(t)  with  n  vertices,  if  a  fly-automaton  

  takes  time  bounded by : 

  (k + n)c  �  it is a P-FA   (a   polynomial-time  FA), 

  f(k).nc  �    it is an FPT-FA, 

  a.ng(k)  �    it is an XP-FA. 

 The  associated  algorithm  is  polynomial-time, FPT  or XP  for clique-

width  as  parameter.   

 All  dynamic programming algorithms  based on clique-width  terms 

can  be described by FA.        



 

10 

Part  3 : Computating   graph  evaluations 

P(X) is a property of tuples of  sets of vertices. 

∃ X.P(X)  (basic, Boolean evaluation). 

# X.P(X) : number of satisfying tuples. 

SpX.P(X)  : spectrum = the  set  of tuples of  cardinalities of  the 

components of the X  that satisfy  P(X). 
 

MSpX.P(X) : multispectrum  =  the corresponding  multiset.   

 (for X = X :  the  set  of  pairs  (m ,i)  such  that  i  > 0  is   

 the  number  of  sets  X  of  cardinality  m  that satisfy P(X) ).  

 MinCard X.P(X) : minimum cardinality of  X satisfying P(X). 
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  SetVal-α(X)/P(X) :  the set of values of α(X)  

      for  the  tuples  X   that  satisfy  P(X). 

 

 SatX.P(X) :  the set of all   tuples  X   that  satisfy  P(X). 
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   Inductive  construction  for  ∃X.P(X)  based  

   on  an MSO formula  ϕ(X)   

            
 

 Atomic formulas :  direct constructions 

 ¬ P (negation) :  FA  are  run deterministically, it suffices to exchange 

accepting/non-accepting states. 

 P ∧  Q, P  ∨  Q :  products of automata. 

 How to handle free variables  and  ∃X.P(X) ? 
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 Terms  are  equipped  with  Booleans  that  encode  assignments  of  

vertex  sets  V1,…,Vn  to  the  free  set  variables  X1,…,Xn  of   MSO 

formulas   (formulas   are   written   without   first-order  variables): 

  1)  we   replace  in  F each  a   by  the nullary  symbol  

  (a, (w1,…,wn)), wi ∈ {0,1} :  we  get  F(n) (only  nullary symbols are  modified); 

  2)  a  term   s  in  T(F(n) )  encodes  a   term  t   in  T(F)  and  an  

 assignment  of  sets  V1,…,Vn   to  the  set  variables  X1,…,Xn :   

   if   u  is  an  occurrence  of  (a, (w1,..,wn)),  then    

   wi  =  1  if  and  only  if    u  ∈  Vi . 

  3)  s   is  denoted  by  t * (V1,…,Vn)    



 

14 

 

Example  

 

 

 

 

 

 

             

                         Graph  G(t)    

 

 

 

 

 

     

     

     Term   t      
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Example   (continued)  

 

 

 

 

 

               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

   Term   t * (V1,V2)       
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 By  an  induction  on  ϕ,  we  construct  for  each  ϕ(X1,…,Xn)   an  FA  

A(ϕ(X1,…,Xn))  that  recognizes: 

L(ϕ(X1,…,Xn)) : =  { t * (V1,…,Vn) ∈ T(F(n) )  /  ( G( t ), V1,…,Vn )   =  ϕ } 

Quantifications:  Formulas   are   written   without   ∀  

  L(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( L ( ϕ(X1, ..., Xn+1)  ) 

  A(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( A ( ϕ(X1, ..., Xn+1)  ) 

 

where   pr  is  the  projection   that  eliminates   the  last  Boolean;         

�    a   non-deterministic   automaton B = pr( A ( ϕ(X1, ..., Xn+1)  ). 
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Determinized   runs  of  B  by  deterministic  FA  C 

 

   For ∃X.P(X):  the state  of  C  at position  u  is  

    { state q of  B /  some run reaches q  at position u } 

 For  # X.P(X) : the state  of  C  at position  u  is  

   { (q,m) / m = the number of runs that reach q at u } 

   equivalently, the corresponding multiset of states q, cf. ∃X.P(X) 

 For  SpX.P(X)  : the state  of  C  at position  u  is  

  { (q,S) / S = the set of tuples of cardinalities of  

  the “components  of X below u” that yield  q  at  u }. 

For  MSpX.P(X) :  S is the  corresponding  multiset.     
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 For  MinCard X.P(X) : the state  of  C  at position  u  is  

  { (q, s) / s = the minimum cardinality of   “X  below u”  that  

         yields  q  at  u }. 
 

For SetVal-α(X) / P(X)  where α(X)  is a linear combination of the 

cardinalities of  the components of X  that satisfy P,  we use a variant 

of  SpX.P(X) . 
 

 For  SatX.P(X) :  the set of all  tuples X that  satisfy  P(X), the state of   

 C at position u  is { (q, S) / S = the set of all tuples below u that yield q }  
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 A   common  presentation for all this cases: 

  We call the component s in state (q,s) is an attribute of q.  

  An attribute s of q  at u collects certain information about all the 

runs that yield q at u. Computations of attribute correspond to variants of 

the basic determinization: they use, according to the cases : 

  Set union      (for basic determinization) 

  Union of multisets, (for counting runs) 

  Selection of minimal number or minimal set (e.g. for inclusion), 

  A + B  where  A and B are sets of numbers, 

  etc…  

  Distributive algebras  offer a formal setting  (see article to appear). 

 



 

20 

  Optimizations :  How to avoid intermediate computations  

       that do not contribute to the final result. 

 Theorem (Flum and Grohe) : One can compute SatX.P(X) in time  

f(k).(n+ size of the result) where cwd(G) < k and n is the size of the term. 

 The bottom-up inductive computation must “know” that certain states 

will not belong to any accepting run on the considered term. 

 Method : 3 pass algorithm 

  1 : determinized bottom-up run keeping pointers showing how 

states are obtained from others, 

  2 : top-down run starting from the accepting states at the root and 

marking the useful states, 

  3 : bottom-up computation of attributes  only for the useful states. 
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22 

 

  

 This 3-pass algorithm is applicable for all our computations of 

attributes. 

 Example : Checking that a graph has a unique 3-coloring. 

  1st  method : expressing that in MSO : possible but cumbersome. 

  2nd method : computing the total number of 3-colorings: we want 

result 6 (assume the graph is not 2-colorable) : OK but lengthy. 

  3rd method : “optimized” counting with reporting Failure if a useful 

intermediate result more than 6 is found. 

  

 This is applicable to : ∃! X.P(X)  for  every  MSO property  P. 
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        Probabilities 
 

 Let P(X) be an MSO property. 

 Assume  that each vertex of G that is created by nullary symbol  a  is 

put  in component Xi  of  X  with  probability  pa,i . 

 We can compute the probability that X satisfies P(X). 

 We can also compute the polynomial in the indeterminates  pa,i  that 

gives  for  G  this probability (either factorized or developed, obtained easily 

from SatX.P(X); to be explored!). 

oOo 
  

  Thanks for any suggestion of application, variant  or   

    related question! 
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        Conclusion 
 

  By uniform constructions, we  get  XP  or  FPT dynamic 

programming  algorithms (that could be obtained  independently). They 

are based on fly-automata, that can be quickly constructed  from  logical  

descriptions  �  flexibility.  
 

  These constructions are applicable to bounded  tree-width and  

MSO  with set quantifications  by means of incidence graphs. 
 

  They are implemented. Tests have been made for colorability  and  

connectedness problems.  
 

  Enumeration is  our  next theoretical and practical topic.  

  Also  optimizations (annotations)  will  be  investigated.  
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Appendix (if anybody wants) 
 

Examples of MSO definability :  G  is  3-colorable  : 
 

∃X ,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  

    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 

      } )  
 
 

G  is  not  connected : 

∃Z ( ∃x ∈ Z  ∧  ∃y ∉ Z  ∧  (∀u,v (u ∈ Z  ∧  edg(u,v) ⇒ v ∈ Z)  ) 

 

  

Planarity  is  MSO-expressible  (no minor  K5  or  K3,3). 
 

 


