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Topics 

      Fixed-parameter  tractable (FPT) graph algorithms for 

monadic second-order (MSO) problems based on infinite “fly”-

automata  (FA) running  on clique-width  terms denoting the input 

graphs. 

      Generic, algebraic constructions of FA : for example, the 

number of accepting runs of a nondeterministic FA 

      Meta-dynamic-programming: constructions from logical 

descriptions of problems. 

   Here :  Numerical evaluations on MSO queries. 
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Review  of  definitions  and  basic facts. 

  

  Graphs are finite, simple, loop-free, directed or not. 

  A  graph  G is given  by  the logical  structure   

     ( VG , edgG(.,.) ) = (vertices, adjacency relation) 

 

  Monadic second-order (MSO)  formulas  ϕ  can express  

 p-colorability (and variants),  transitive closure,  properties  of paths, 

 connectedness,  planarity  (via Kuratowski), etc… 
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     Clique-width   (denoted by  cwd(G)).  
 

 Vertices are labelled  by  a,b,c, ... .  A  vertex  labelled by a  is an  a-vertex. 
 

Binary  operation:   disjoint  union  :   ⊕ 

Unary  operations:  edge  addition  denoted  by  Adda,b 

Adda,b (G)  is  G  augmented   

with  (un)directed edges  from (between) 

 every   a-vertex  to (and)  every  b-vertex. 

Vertex  relabellings : 

Relaba         b(G)  is  G  with  every  a-vertex   is  made  into  a  b-vertex 

 Basic graphs  :  a    denotes  a  vertex  labelled  by   a 
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 The clique-width  of    G  (denoted by cwd(G)) is the smallest  k  such 

that    G is  defined  by a  term  using  k   labels.  
 

 

 Theorem (B.C.): Each  MSO  property  ϕ  can be checked  in  time  

f(k).n  by a  finite  automaton   A(ϕ,k)  taking  as  input a term denoting a 

graph  of clique-width < k having n vertices. 
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Difficulty : The finite automaton A(ϕ,k) is much too large as soon as 

   k > 2 :  2^(2^(…2^k)..)) states            (because of quantifier alternations). 

 

  To overcome this difficulty, we use fly-automata whose states and 

transitions are described and not tabulated. Only the transitions 

necessary  for  an  input term are computed “on the fly”.   

 

  Sets of states can be infinite and fly-automata can compute values, 

e.g., the number of  p-colorings  of a graph.  
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Fly-automaton  (FA) 

A = < F, Q, δ, Out >       to   compute  a   function. 

F :  finite  or  countable (effective)  set of operations, 

Q :  finite or countable (effective)  set of states   (integers, pairs of integers, 

etc. : states are  encoded by finite words), 

Out : Q � D , computable  (D is effective, coded by finite  words). 

δ : computable  (bottom-up)  transition  function 

Nondeterministic  case :  δ   is  finitely  multi-valued.  Determinization  works.     

An  FA defines  a  computable  function : T(F) � D , a  decidable  

property  if  D  =  {True, False}. 
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The  MSO  meta-theorem  through  fly-automata 
  

                ϕ    (MSO  formula)

                             

      

             Fly-automaton constructor  

                  Yes  

G                   Graph analyzer                 t                 A(ϕ)           

                  No   

 A(ϕ): unique infinite fly-automaton. The time taken by A(ϕ) is O(f(k).n) 

where k depends on the operations occurring in t and bounds the tree-

width  or  clique-width of  G.  
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Computation  time  of  a  fly-automaton 

  

 F : all  clique-width  operations,   Fk : those  using k  labels. 

 On  term  t ∈ T(Fk)  defining  G(t)  with  n  vertices,  if  a  fly-automaton  

  takes  time  bounded by : 

  (k + n)c  �  it is a P-FA   (a   polynomial-time  FA), 

  f(k). nc  �    it is an FPT-FA, 

  a. ng(k)  �    it is an XP-FA. 

 The  associated  algorithm  is  polynomial-time, FPT  or XP  for clique-

width  as  parameter.   

 All  dynamic programming algorithms  based on clique-width  terms 

can  be described by FA.        
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Computing   graph  evaluations 

P(X) is a property of tuples X of sets of vertices (usually MSO expressible). 

∃ X.P(X)  : the basic, “Boolean evaluation”. 
 

 Sat X.P(X) :  the set of all  X that  satisfy  P(X): the “maximal evaluation”. 
 

# X.P(X) : number of satisfying tuples X. 
 

Sp X.P(X)  : spectrum = the  set  of tuples of  cardinalities of  the 

components of the tuples  X  that satisfy  P(X). 
 

MSp X.P(X) : multispectrum  =  the corresponding  multiset.   

 (for X = X :  the  set  of  pairs  (m ,i)  such  that  i  > 0  is   

 the  number  of  sets  X  of  cardinality  m  that satisfy P(X) ).  
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 MinCard X.P(X) : minimum cardinality of  X satisfying P(X). 
 

  SetVal-α(X)/P(X) :  the set of values of α(X)  

      for  the  tuples  X   that  satisfy  P(X). 
 

 A  general  presentation for all these cases and others :  

   f(G) := f(SatX.P(X))  where  

   f is a computable function:  P(P(VG)p) � D  

 Theorem (Flum and Grohe) : One can compute Sat X.P(X) in time  

f(k)(n+ size of the result) where cwd(G) < k and n is the size of the term. 

 

 Question :  How  to  “shortcut”  the computation of  Sat X.P(X) ?  
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  Review : inductive  construction  for  ∃X.P(X)  based  

        on  an MSO formula  ϕ(X)  that defines  P(X)   

            
 

 Atomic formulas in ϕ(X)   :  direct constructions 

 ¬ P (negation) :  FA  are  run deterministically (see below), it suffices to 

exchange accepting and non-accepting states. 

 P ∧  Q, P  ∨  Q :  products of automata. 

 How  to  handle  free  variables  for  queries    and   ∃X.P(X) ? 
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 Terms  are  equipped  with  Booleans  that  encode  assignments  of  

vertex  sets  V1,…,Vp  to  the  free  set  variables  X1,…,Xp  of   MSO 

formulas   (formulas   are   written   without   first-order  variables): 

  1)  we   replace  in  F each  a   by  the nullary  symbol  

  (a, (w1,…,wp)), wi ∈ {0,1} :  we  get  F(p) (only  nullary symbols are  modified); 

  2)  a  term   s  in  T(F(p) )  encodes  a   term  t   in  T(F)  and  an  

 assignment  of  sets  V1,…,Vp   to  the  set  variables  X1,…,Xp :   

   if   u  is  an  occurrence  of  (a, (w1,..,wp)),  then    

   wi  =  1  if  and  only  if    u  ∈  Vi . 

  3)  s   is  denoted  by  t * (V1,…,Vp)    



 

14 

 

Example  

 

 

 

 

 

 

             

                         Graph  G(t)    

 

 

 

 

 

     

     

     Term   t      
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Example   (continued)  

 

 

 

 

 

               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

   Term   t * (V1,V2)       
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 By  an  induction  on  ϕ,  we  construct,  for  each  ϕ(X),  X=(X1,…,Xp),    

an  FA  A(ϕ(X))  that  recognizes: 

L(ϕ(X)) : =  { t * (V1,…,Vp) ∈ T(F(p) )  /  ( G( t ), V1,…,Vp )   =  ϕ } 

Quantifications:  Formulas   are   written   without   ∀  

  L(  ∃ Xp+1 . ϕ(X1, ..., Xp+1) )   = prp+1( L ( ϕ(X1, ..., Xp+1)  ) 

  A(  ∃ Xp+1 . ϕ(X1, ..., Xp+1) )   = prp+1( A ( ϕ(X1, ..., Xp+1)  ) 

 

where   prp+1  is  the  projection   that  eliminates   the  last  Boolean;         

�    a   non-deterministic  FA  denoted  by  prp+1( A ( ϕ(X1, ..., Xp+1)  ), 

to be  run deterministically. 
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Computation of  Sat X.P(X) 
 

 We start from a deterministic FA  A(ϕ(X))  over  F(p)  that computes 

L( ϕ(X)). At position u in a term  t*X, it reaches state q(u, X / u). 

 We make it into a deterministic FA  B  over  F(p)  that reaches state  

(q(u, X / u) , X / u ) at each  u.  At the root, we get: 

  Sat X.P(X) := the set of all X   such that  q(root, X ) is accepting. 

 The determinized run of  C := prAll(B) computes at each u  the set of all 

pairs   (q(u, X / u) , X / u)   for  all  X / u.  

 We can “factorize” this set as { (q, Sat(u,q))  /  Sat(u,q) is the set of  

tuples  X / u   such that q  = q(u, X / u)   and q is not Error }. 
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  Optimizations :  How to avoid intermediate computations  

       that do not contribute to the final result. 

 Recall : One can compute Sat X.P(X) in time  f(k)(n+ size of the result) 

where cwd(G) < k and n is the size of the term. 

 The bottom-up computation of the set of (q, Sat(u,q)) must “know” 

whether  q   belongs  to any accepting run on the input  term. 

 Method : A  3-pass algorithm 

  1 : determinized bottom-up run keeping pointers showing how 

states are obtained from others, 

  2 : top-down run starting from the accepting states at root and 

marking the useful states: set Q(u)  at u. 

    3 : bottom-up computation of the pairs (q, Sat(u,q)), only for the 

useful states q in Q(u).
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Efficient  evaluations 
 

 For computing f(Sat X.P(X)) as opposed to Sat X.P(X), one can (in good 

cases)  maintain “light” information by replacing in the pairs (q, Sat(u,q)), 

each tuple  X /u  by some value  h(X /u ). 

 

 Good case : f :P(P(VG)p) � D  is  goh where h  is  a  semi-ring 

homomorphism : P(P(VG)p) � R  and  g  is computable : R � D. 
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 The two needed operations on P(P(VG)p) are  disjoint union  ∪  , and: 

 A * B := the set of pairs (A1∪B1, … , Ap∪Bp) such that :  

          (A1, …, Ap) ∈ A    and (B1, … , Bp) ∈ B , where Ai ∩ Bj = ∅. 

 

 Commutative  semi-ring  structure : 

 ∪   and *  are  associative  and  commutative with respective units  ∅ 

and   (∅, …,∅).   Also ∅  is a zero for   *   and : 

  A * (B1  ∪  B2 )  =  A  *  B1   ∪   A  *  B2 . 
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 They are useful  because  at position u  of   ⊕ : 

  Sat(u,q) is the disjoint union of the sets  

  Sat(u1,q1) * Sat(u2,q2) such that  we have   ⊕ [q1,q2] � q 

 At  an occurrence  of an  Add or Relab  operation, only ∪ is needed.  

 We need a semi-ring R  = <R, +, * ,0, 1> and h homo : P(P(VG)p) � R.   

 

 Example : For computing #X.P(X), Sat(u,q) is replaced by its 

cardinality, informally, the number of  X /u  that yield state q at u.     

    Here  R  = <N, +, * , 0, 1>.  

 



 

23 

 R h(A )     a + b 
      a * b 

SpX.P(X) Pf(N
p) Set of p-tuples  

of cardinalities 

    a ∪ b  Set of sums α+β,  

α ∈ a, β ∈ b 

MSpX.P(X) Finite multisets 

over Np  

Multiset of p-tuples  

of cardinalities 

Union of 

multisets 

Multiset of sums 

α+β,  

α ∈ a, β ∈ b 
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 R h(A )     a + b       a * b 

MinCardX.P(X) N ∪{∝ }  Min. card. of set  

α ∈ A ;  

∝ if A  =  ∅ 

Min{a, b}      a + b 

MinSetX.P(X)  

w.r.t. some  

partial order 

 <  

Min(P(P(VG))) 

= antichains in 

P(VG) 

Set of minimal sets 

in A  

Min(a∪b) Minimal sets 

in the set of 

α∪β, α ∈ a,  

β ∈ b  

 

Partial orders  X < Y :  X ⊆ Y ;         X < Y  ; 

     X  < Y  or {  X  = Y  and    X <lex Y  } 
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 The  3-pass algorithm is applicable to these computations. 
 

 Example : Checking that a graph has a unique 3-coloring. 

  1st  method : expressing this in MSO : possible but cumbersome. 

  2nd method : computing the total number of 3-colorings: we want 

result 6 (assume the graph is not 2-colorable) : OK but lengthy. 

  3rd method : “optimized” counting that reports a Failure if a useful 

intermediate result more than 6 is found. 

  

 This is applicable to    ∃! X.P(X)    for  every  MSO property  P. 
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Digression : Data structures for  Sat X.P(X) 

 

 1. A  p-dimensional  Boolean matrix  of size 2 n.p  

2.  A list of p-tuples of sets, of global size  < n.p. Sat X.P(X)  

3.  Factorized such list: for p = 2 , the set of tuples  

    (X,Y1, …,YnX) , such that  P(X,Yi) , nX > 0. 

4.  Term  T  (or dag) over operations  ∪  , *  and nullaries of the form  

    { (A1, …,Ap) }   such  that  Ai   < 1, 

  of size < t . Max{ Q(u)     /  u  position  of  t }, cf. page 22. 

Question : For which f  is  f( value of T )  efficiently  computable ? 
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Different types of evaluations 
 

 (1) Numerical values from  Sat X.P(X), as seen above 

 
 

 (2) Extracting  tuples  from  Sat X.P(X) : 

  any one,   

  or  the first one w.r.t. some linear order,  

  or the set of minimal ones w.r.t. to some partial order. 
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 (3)  Parametrized  evaluations : 

 Examples : (3.1) Given i, what is the number of sets X of cardinality at 

most i that satisfy P(X)  ?   

       (3.2) Given j, what is the number of sets X such that j is the number 

of sets Y that satisfy P(X,Y)  ?  (Weird  question !) 

       (3.3) Given (i,j), what is the number of sets X such that j is the 

number of sets Y such that some Z of cardinality < i satisfies P(X,Y,Z) ?  
 

 We may wish the results for given i,j or the table of values for all i,j. 
 

 In (3.1) the “table” is computable from MSp X.P(X). For fixed i, one can 

adapt the computation of MSp X.P(X)        (limit info to sets of card. < i). 
 

 Cases (3.2) and (3.3) are more difficult. 
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 Difficulty for (3.2) : 

 For  R ⊆ A x B  let  

 fR(j) := Number of a ∈ A   s.t.    j = number of b ∈ B  s.t. (a,b) ∈ R. 

 If R = R1 ∪ R2, then fR  cannot be determined from fR1 and fR2   

 Method : a   2-level  construction.  

 For describing it,  we  consider in a more concrete way the  

computations of   Sp X.P(X)  and  MSp X.P(X). 

 Let  f(G,X) ∈ D for X ⊆ VG  be defined by a deterministic FA over F(1) 

of the form : A  =  < F(1), Q, δ, Out >. We fix a  term t*X  that  defines  G,X. 

 The state of A  at position u  is  q(u,X/ u)  and :  

         f(G,X) = Out(q(root,X)), undefined if q(root,X)  is  not  accepting. 
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 Let    fSet(G): =  { f(G,X) /  all  X }   and  

     fMSet(G): =  [[ f(G,X) /  all  X ]], the multiset of values  f(G,X)  

      (where we count how many  X  give  each  value). 

 fSet(G)  is computed by det(pr(A)), the determinization of pr(A). Its 

state at u  is qSet(u) := { q(u,X/ u) /  all X } and  fSet(G) = Out(qSet(root)). 

 fMSet(G)  is computed by c-det(pr(A)), the counting-determinization of 

pr(A). Its state at u  is qMSet(u)  := [[q(u,X/u) /  all X/u ]], a multiset of 

states, equivalently  { (q,i)  /  i is the number of sets X/ u  s.t. q= q(u,X/u) }. 

 Then  fMSet(G)  = Out(qMSet(root)). The image of a  multiset “counts 

occurrences”. 

 Rk :  det(B) has states in Pf(Q) and  c-det(B)  in  Mf(Q) =  [ Q � N ]f 



 

31 

 Applications : Let  A  be a deterministic FA over F(p) that decides  P(X)   

  # X.P(X) is computed by c-det(prAll(A)):  

    # X.P(X) (G)  = the  size  of qMSet(root) restricted  to  

   accepting states  := Σ {i / (q,i) ∈ qMSet(root), q accepting } 
 

  Sp X.P(X) : From A  we build B  that reaches state qB(u,X/u) = 

   (qA(u,X/u), X1/u ,...,  Xp/u )  and   C = det(prAll(B)). Then 

   Sp X.P(X) (G) =  fSet(G)  where f(q,w) := w for q accepting. 
 

  MSp X.P(X) (G) = fMSet(G)  from A,B,C as above. 
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 Example (3.2) : Given j, what is fG(j) := the number of sets X such that j 

is the number of sets Y that satisfy P(X,Y)  ? (For fixed graph G). 

 Let  A  be a deterministic FA over F(2) that decides  P(X,Y); states in Q.  

 Let  B  = c-det(prY(A)) (we neglect Y). Its states are  in  [ Q � N ]f : 

functions σ  such that  σ(q) ≠ 0  for finitely many q   (effectively codable). 

 Let  C  = c-det(pr(B)) (we neglect X). Its states are in  

[ [ Q � N ]f � N ]f : functions θ such that  θ(σ) ≠ 0  for finitely many σ.  

 Then fG(j) = Σ { θ(σ) / σ  is  “j-accepting  for  B”  }, θ = qC(root), 

   σ  is  “j-accepting” ⇔ j  =  Σ { σ(q)  / q  accepting for A }. 
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 Optimizations : (1)  By  2 preliminary passes, one determines, at each 

position u the set  Q(u) of states of A that are useful (in some accepting 

run of A for some X,Y). All states in Q(root) are accepting. One gets A’, 

deterministic but not complete. 

 The state of B’:= c-det(prY(A’))  at u is in [ Q(u) � N ]f . The state of 

C’:= c-det(pr(B’)) at u is in [ [ Q(u) � N ]f � N ]f, accepting as for C. 

 (2) For computing  fG(k) for a particular value k, we eliminate in the 

runs of  B’  the values  σ(q) > k because they cannot be  “k-accepting”.  

This optimization is combined with the previous one. 
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Question : Is that better than computing Sat(X,Y).P(X,Y) and extracting 

from it the function fG ? 

 

Examples : n = number of vertices. 

P(X,Y) = True :  fG(j) = if  j = 2n   then  2n  else  0  

P(X,Y) = False :  fG(j) = if  j = 0   then  2n  else  0  

 Similar  computations by automata (as we will see), but the sets    

  Sat(X,Y).P(X,Y) have cardinalities 22n  or  0.  

P(X,Y) : ⇔ X = Y  :  fG(j) = if  j = 1   then  2n  else 0  (here 2n satisf. pairs) 

P(X,Y) : ⇔ X ⊆ Y  :  fG(j) = if  j = 2n-q   then (q n)  else 0   (here fG  has n 

non-null values) 
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Cases P(X,Y) = True    and    P(X,Y) = False 

 Automaton  A  over F(2)   has one state, call it Ok.  

 Let  B  = c-det(prY(A)) (we neglect Y). Its state at position u  is  the 

mapping σm such that  σm (Ok) = 2m, wh. m  is number of vertices below u 

 Let  C  = c-det(pr(B)) (we neglect X). Its state at position u  maps   

 σm  to  2m  and any other map in [ { Ok } � N ]f  to 0.  

 Then fG(j) = Σ { θ(σ) / σ  is  “j-accepting  for  B”  } 

   σ  is  “j-accepting” ⇔ j  =  Σ { σ(q)  / q  accepting for A }. 

 P=True : At the root, σn  is 2n –accepting, which gives 2n iff j  = 2n  

 P=False : At the root, σn  is 0 –accepting, which gives 2n iff j  = 0 

   In both cases, other values are 0.  
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Case P(X,Y) : ⇔ X = Y    

 Automaton  A  over F(2)   has 2 states,  Ok (accepting) and  Error. 

 Let  B  = c-det(prY(A)) (we neglect Y). Its state at position u  is  the 

mapping σm such that  σm (Ok) = 1, σm (Error) = 2m-1. 

 Let  C  = c-det(pr(B)) (we neglect X). Its state at position u  maps   

 σm  to  2m  and any other map in [ { Ok, Error } � N ]f  to 0.  

 Then fG(j) = Σ { θ(σ) / σ  is  “j-accepting  for  B”  } 

   σ  is  “j-accepting” ⇔ j  =  Σ { σ(q)  / q  accepting for A }. 

 At the root, σn  is 1 –accepting, which gives 2n iff j  = 1 (and 0  

otherwise). Using the optimization of  p. 33, we can omit Error.  
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Example : P(X,Y) : ⇔ X < Y  , the lexicographic order. 

 The set of vertices is linearly ordered (leaves of an ordered  tree, MSO 

definable) and  

  X < Y  is defined by : X = Y , or,  

  letting  u be  the smallest element that distinguishes X and Y  

    then   u  > X  or  u ∈ X  and  u is not > Y  

 If  X is the  p–th  in  the set  P(V), the number of Y  >   X is  2n – p +1.   

 Hence, fG(2n – p +1) = 1  for  1 < p <  2n   and so, fG has an 

exponential number of non-null values. 

 They are all equal !!  

 The “matrix”  of  Sat(X,Y).P(X,Y) is diagonal. 

 



 

38 

 

Case of example (3.3) : 

 Given (i,j), what is the number of sets X such that j is the number of 

sets Y such that some Z of cardinality < i satisfies P(X,Y,Z) ?  
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        Conclusion 
 

1) By uniform constructions, we get  dynamic programming  

algorithms based on fly-automata, that can be quickly 

constructed  from  logical  descriptions  �  flexibility.  

2) In many cases they are implemented. Tests have been made 

for colorability  and  connectedness problems. It is hard to 

obtain upperbounds to time computations. We do not get better 

algorithms than the specific ones that have been developed.   
 

3) These constructions are applicable to bounded  tree-width and  

MSO  with edge set quantifications  by means of incidence 

graphs. 
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4) Basic numerical evaluations (cardinality, spectrum, multi-

spectrum)  have been implemented (by I. Durand). Fly-

automata can also handled combinations of these basic 

evaluations. It remains to see if implementation is feasible. 
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Appendix (if anybody wants) 
 

Examples of MSO definability :  G  is  3-colorable  : 
 

∃X ,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  

    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 

      } )  
 
 

G  is  not  connected : 

∃Z ( ∃x ∈ Z  ∧  ∃y ∉ Z  ∧  (∀u,v (u ∈ Z  ∧  edg(u,v) ⇒ v ∈ Z)  ) 

 

  

Planarity  is  MSO-expressible  (no minor  K5  or  K3,3). 
 


