

1

Query evaluations by fly-automata

Bruno Courcelle

Irène Durand

Bordeaux University, LaBRI (CNRS laboratory)

Reference : B.C, I.D. : Computations by fly-automata beyond MSO logic,
 Theor. Comput. Sci. Vol. 619 (2016)

2

Topics

 Fixed-parameter tractable (FPT) graph algorithms for

monadic second-order (MSO) problems based on infinite “fly”-

automata (FA) running on clique-width terms denoting the input

graphs.

 Generic, algebraic constructions of FA : for example, the

number of accepting runs of a nondeterministic FA

 Meta-dynamic-programming: constructions from logical

descriptions of problems.

 Here : Numerical evaluations on MSO queries.

3

Review of definitions and basic facts.

 Graphs are finite, simple, loop-free, directed or not.

 A graph G is given by the logical structure

 (VG , edgG(.,.)) = (vertices, adjacency relation)

 Monadic second-order (MSO) formulas ϕ can express

 p-colorability (and variants), transitive closure, properties of paths,

 connectedness, planarity (via Kuratowski), etc…

4

 Clique-width (denoted by cwd(G)).

 Vertices are labelled by a,b,c, A vertex labelled by a is an a-vertex.

Binary operation: disjoint union : ⊕

Unary operations: edge addition denoted by Adda,b

Adda,b (G) is G augmented

with (un)directed edges from (between)

 every a-vertex to (and) every b-vertex.

Vertex relabellings :

Relaba b(G) is G with every a-vertex is made into a b-vertex

 Basic graphs : a denotes a vertex labelled by a

5

 The clique-width of G (denoted by cwd(G)) is the smallest k such

that G is defined by a term using k labels.

 Theorem (B.C.): Each MSO property ϕ can be checked in time

f(k).n by a finite automaton A(ϕ,k) taking as input a term denoting a

graph of clique-width < k having n vertices.

6

Difficulty : The finite automaton A(ϕ,k) is much too large as soon as

 k > 2 : 2^(2^(…2^k)..)) states (because of quantifier alternations).

 To overcome this difficulty, we use fly-automata whose states and

transitions are described and not tabulated. Only the transitions

necessary for an input term are computed “on the fly”.

 Sets of states can be infinite and fly-automata can compute values,

e.g., the number of p-colorings of a graph.

7

Fly-automaton (FA)

A = < F, Q, δ, Out > to compute a function.

F : finite or countable (effective) set of operations,

Q : finite or countable (effective) set of states (integers, pairs of integers,

etc. : states are encoded by finite words),

Out : Q � D , computable (D is effective, coded by finite words).

δ : computable (bottom-up) transition function

Nondeterministic case : δ is finitely multi-valued. Determinization works.

An FA defines a computable function : T(F) � D , a decidable

property if D = {True, False}.

8

The MSO meta-theorem through fly-automata

 ϕ (MSO formula)

 Fly-automaton constructor

 Yes

G Graph analyzer t A(ϕ)

 No

 A(ϕ): unique infinite fly-automaton. The time taken by A(ϕ) is O(f(k).n)

where k depends on the operations occurring in t and bounds the tree-

width or clique-width of G.

9

Computation time of a fly-automaton

 F : all clique-width operations, Fk : those using k labels.

 On term t ∈ T(Fk) defining G(t) with n vertices, if a fly-automaton

 takes time bounded by :

 (k + n)c � it is a P-FA (a polynomial-time FA),

 f(k). nc � it is an FPT-FA,

 a. ng(k) � it is an XP-FA.

 The associated algorithm is polynomial-time, FPT or XP for clique-

width as parameter.

 All dynamic programming algorithms based on clique-width terms

can be described by FA.

10

Computing graph evaluations

P(X) is a property of tuples X of sets of vertices (usually MSO expressible).

∃ X.P(X) : the basic, “Boolean evaluation”.

 Sat X.P(X) : the set of all X that satisfy P(X): the “maximal evaluation”.

X.P(X) : number of satisfying tuples X.

Sp X.P(X) : spectrum = the set of tuples of cardinalities of the

components of the tuples X that satisfy P(X).

MSp X.P(X) : multispectrum = the corresponding multiset.

 (for X = X : the set of pairs (m ,i) such that i > 0 is

 the number of sets X of cardinality m that satisfy P(X)).

11

 MinCard X.P(X) : minimum cardinality of X satisfying P(X).

 SetVal-α(X)/P(X) : the set of values of α(X)

 for the tuples X that satisfy P(X).

 A general presentation for all these cases and others :

 f(G) := f(SatX.P(X)) where

 f is a computable function: P(P(VG)p) � D

 Theorem (Flum and Grohe) : One can compute Sat X.P(X) in time

f(k)(n+ size of the result) where cwd(G) < k and n is the size of the term.

 Question : How to “shortcut” the computation of Sat X.P(X) ?

12

 Review : inductive construction for ∃X.P(X) based

 on an MSO formula ϕ(X) that defines P(X)

 Atomic formulas in ϕ(X) : direct constructions

 ¬ P (negation) : FA are run deterministically (see below), it suffices to

exchange accepting and non-accepting states.

 P ∧ Q, P ∨ Q : products of automata.

 How to handle free variables for queries and ∃X.P(X) ?

13

 Terms are equipped with Booleans that encode assignments of

vertex sets V1,…,Vp to the free set variables X1,…,Xp of MSO

formulas (formulas are written without first-order variables):

 1) we replace in F each a by the nullary symbol

 (a, (w1,…,wp)), wi ∈ {0,1} : we get F(p) (only nullary symbols are modified);

 2) a term s in T(F(p)) encodes a term t in T(F) and an

 assignment of sets V1,…,Vp to the set variables X1,…,Xp :

 if u is an occurrence of (a, (w1,..,wp)), then

 wi = 1 if and only if u ∈ Vi .

 3) s is denoted by t * (V1,…,Vp)

14

Example

 Graph G(t)

 Term t

15

Example (continued)

 V1 = {1,3,4}, V2 = {2,3}

 Term t * (V1,V2)

16

 By an induction on ϕ, we construct, for each ϕ(X), X=(X1,…,Xp),

an FA A(ϕ(X)) that recognizes:

L(ϕ(X)) : = { t * (V1,…,Vp) ∈ T(F(p)) / (G(t), V1,…,Vp) = ϕ }

Quantifications: Formulas are written without ∀

 L(∃ Xp+1 . ϕ(X1, ..., Xp+1)) = prp+1(L (ϕ(X1, ..., Xp+1))

 A(∃ Xp+1 . ϕ(X1, ..., Xp+1)) = prp+1(A (ϕ(X1, ..., Xp+1))

where prp+1 is the projection that eliminates the last Boolean;

� a non-deterministic FA denoted by prp+1(A (ϕ(X1, ..., Xp+1)),

to be run deterministically.

17

Computation of Sat X.P(X)

 We start from a deterministic FA A(ϕ(X)) over F(p) that computes

L(ϕ(X)). At position u in a term t*X, it reaches state q(u, X / u).

 We make it into a deterministic FA B over F(p) that reaches state

(q(u, X / u) , X / u) at each u. At the root, we get:

 Sat X.P(X) := the set of all X such that q(root, X) is accepting.

 The determinized run of C := prAll(B) computes at each u the set of all

pairs (q(u, X / u) , X / u) for all X / u.

 We can “factorize” this set as { (q, Sat(u,q)) / Sat(u,q) is the set of

tuples X / u such that q = q(u, X / u) and q is not Error }.

18

 Optimizations : How to avoid intermediate computations

 that do not contribute to the final result.

 Recall : One can compute Sat X.P(X) in time f(k)(n+ size of the result)

where cwd(G) < k and n is the size of the term.

 The bottom-up computation of the set of (q, Sat(u,q)) must “know”

whether q belongs to any accepting run on the input term.

 Method : A 3-pass algorithm

 1 : determinized bottom-up run keeping pointers showing how

states are obtained from others,

 2 : top-down run starting from the accepting states at root and

marking the useful states: set Q(u) at u.

 3 : bottom-up computation of the pairs (q, Sat(u,q)), only for the

useful states q in Q(u).

19

20

Efficient evaluations

 For computing f(Sat X.P(X)) as opposed to Sat X.P(X), one can (in good

cases) maintain “light” information by replacing in the pairs (q, Sat(u,q)),

each tuple X /u by some value h(X /u).

 Good case : f :P(P(VG)p) � D is goh where h is a semi-ring

homomorphism : P(P(VG)p) � R and g is computable : R � D.

21

 The two needed operations on P(P(VG)p) are disjoint union ∪ , and:

 A * B := the set of pairs (A1∪B1, … , Ap∪Bp) such that :

 (A1, …, Ap) ∈ A and (B1, … , Bp) ∈ B , where Ai ∩ Bj = ∅.

 Commutative semi-ring structure :

 ∪ and * are associative and commutative with respective units ∅

and (∅, …,∅). Also ∅ is a zero for * and :

 A * (B1 ∪ B2) = A * B1 ∪ A * B2 .

22

 They are useful because at position u of ⊕ :

 Sat(u,q) is the disjoint union of the sets

 Sat(u1,q1) * Sat(u2,q2) such that we have ⊕ [q1,q2] � q

 At an occurrence of an Add or Relab operation, only ∪ is needed.

 We need a semi-ring R = <R, +, * ,0, 1> and h homo : P(P(VG)p) � R.

 Example : For computing #X.P(X), Sat(u,q) is replaced by its

cardinality, informally, the number of X /u that yield state q at u.

 Here R = <N, +, * , 0, 1>.

23

 R h(A) a + b
 a * b

SpX.P(X) Pf(N
p) Set of p-tuples

of cardinalities

 a ∪ b Set of sums α+β,

α ∈ a, β ∈ b

MSpX.P(X) Finite multisets

over Np

Multiset of p-tuples

of cardinalities

Union of

multisets

Multiset of sums

α+β,

α ∈ a, β ∈ b

24

 R h(A) a + b a * b

MinCardX.P(X) N ∪{∝ } Min. card. of set

α ∈ A ;

∝ if A = ∅

Min{a, b} a + b

MinSetX.P(X)

w.r.t. some

partial order

 <

Min(P(P(VG)))

= antichains in

P(VG)

Set of minimal sets

in A

Min(a∪b) Minimal sets

in the set of

α∪β, α ∈ a,

β ∈ b

Partial orders X < Y : X ⊆ Y ; X < Y ;

 X < Y or { X = Y and X <lex Y }

25

 The 3-pass algorithm is applicable to these computations.

 Example : Checking that a graph has a unique 3-coloring.

 1st method : expressing this in MSO : possible but cumbersome.

 2nd method : computing the total number of 3-colorings: we want

result 6 (assume the graph is not 2-colorable) : OK but lengthy.

 3rd method : “optimized” counting that reports a Failure if a useful

intermediate result more than 6 is found.

 This is applicable to ∃! X.P(X) for every MSO property P.

26

Digression : Data structures for Sat X.P(X)

 1. A p-dimensional Boolean matrix of size 2 n.p

2. A list of p-tuples of sets, of global size < n.p. Sat X.P(X)

3. Factorized such list: for p = 2 , the set of tuples

 (X,Y1, …,YnX) , such that P(X,Yi) , nX > 0.

4. Term T (or dag) over operations ∪ , * and nullaries of the form

 { (A1, …,Ap) } such that Ai < 1,

 of size < t . Max{ Q(u) / u position of t }, cf. page 22.

Question : For which f is f(value of T) efficiently computable ?

27

Different types of evaluations

 (1) Numerical values from Sat X.P(X), as seen above

 (2) Extracting tuples from Sat X.P(X) :

 any one,

 or the first one w.r.t. some linear order,

 or the set of minimal ones w.r.t. to some partial order.

28

 (3) Parametrized evaluations :

 Examples : (3.1) Given i, what is the number of sets X of cardinality at

most i that satisfy P(X) ?

 (3.2) Given j, what is the number of sets X such that j is the number

of sets Y that satisfy P(X,Y) ? (Weird question !)

 (3.3) Given (i,j), what is the number of sets X such that j is the

number of sets Y such that some Z of cardinality < i satisfies P(X,Y,Z) ?

 We may wish the results for given i,j or the table of values for all i,j.

 In (3.1) the “table” is computable from MSp X.P(X). For fixed i, one can

adapt the computation of MSp X.P(X) (limit info to sets of card. < i).

 Cases (3.2) and (3.3) are more difficult.

29

 Difficulty for (3.2) :

 For R ⊆ A x B let

 fR(j) := Number of a ∈ A s.t. j = number of b ∈ B s.t. (a,b) ∈ R.

 If R = R1 ∪ R2, then fR cannot be determined from fR1 and fR2

 Method : a 2-level construction.

 For describing it, we consider in a more concrete way the

computations of Sp X.P(X) and MSp X.P(X).

 Let f(G,X) ∈ D for X ⊆ VG be defined by a deterministic FA over F(1)

of the form : A = < F(1), Q, δ, Out >. We fix a term t*X that defines G,X.

 The state of A at position u is q(u,X/ u) and :

 f(G,X) = Out(q(root,X)), undefined if q(root,X) is not accepting.

30

 Let fSet(G): = { f(G,X) / all X } and

 fMSet(G): = [[f(G,X) / all X]], the multiset of values f(G,X)

 (where we count how many X give each value).

 fSet(G) is computed by det(pr(A)), the determinization of pr(A). Its

state at u is qSet(u) := { q(u,X/ u) / all X } and fSet(G) = Out(qSet(root)).

 fMSet(G) is computed by c-det(pr(A)), the counting-determinization of

pr(A). Its state at u is qMSet(u) := [[q(u,X/u) / all X/u]], a multiset of

states, equivalently { (q,i) / i is the number of sets X/ u s.t. q= q(u,X/u) }.

 Then fMSet(G) = Out(qMSet(root)). The image of a multiset “counts

occurrences”.

 Rk : det(B) has states in Pf(Q) and c-det(B) in Mf(Q) = [Q � N]f

31

 Applications : Let A be a deterministic FA over F(p) that decides P(X)

 # X.P(X) is computed by c-det(prAll(A)):

 # X.P(X) (G) = the size of qMSet(root) restricted to

 accepting states := Σ {i / (q,i) ∈ qMSet(root), q accepting }

 Sp X.P(X) : From A we build B that reaches state qB(u,X/u) =

 (qA(u,X/u), X1/u ,..., Xp/u) and C = det(prAll(B)). Then

 Sp X.P(X) (G) = fSet(G) where f(q,w) := w for q accepting.

 MSp X.P(X) (G) = fMSet(G) from A,B,C as above.

32

 Example (3.2) : Given j, what is fG(j) := the number of sets X such that j

is the number of sets Y that satisfy P(X,Y) ? (For fixed graph G).

 Let A be a deterministic FA over F(2) that decides P(X,Y); states in Q.

 Let B = c-det(prY(A)) (we neglect Y). Its states are in [Q � N]f :

functions σ such that σ(q) ≠ 0 for finitely many q (effectively codable).

 Let C = c-det(pr(B)) (we neglect X). Its states are in

[[Q � N]f � N]f : functions θ such that θ(σ) ≠ 0 for finitely many σ.

 Then fG(j) = Σ { θ(σ) / σ is “j-accepting for B” }, θ = qC(root),

 σ is “j-accepting” ⇔ j = Σ { σ(q) / q accepting for A }.

33

 Optimizations : (1) By 2 preliminary passes, one determines, at each

position u the set Q(u) of states of A that are useful (in some accepting

run of A for some X,Y). All states in Q(root) are accepting. One gets A’,

deterministic but not complete.

 The state of B’:= c-det(prY(A’)) at u is in [Q(u) � N]f . The state of

C’:= c-det(pr(B’)) at u is in [[Q(u) � N]f � N]f, accepting as for C.

 (2) For computing fG(k) for a particular value k, we eliminate in the

runs of B’ the values σ(q) > k because they cannot be “k-accepting”.

This optimization is combined with the previous one.

34

Question : Is that better than computing Sat(X,Y).P(X,Y) and extracting

from it the function fG ?

Examples : n = number of vertices.

P(X,Y) = True : fG(j) = if j = 2n then 2n else 0

P(X,Y) = False : fG(j) = if j = 0 then 2n else 0

 Similar computations by automata (as we will see), but the sets

 Sat(X,Y).P(X,Y) have cardinalities 22n or 0.

P(X,Y) : ⇔ X = Y : fG(j) = if j = 1 then 2n else 0 (here 2n satisf. pairs)

P(X,Y) : ⇔ X ⊆ Y : fG(j) = if j = 2n-q then (q n) else 0 (here fG has n

non-null values)

35

Cases P(X,Y) = True and P(X,Y) = False

 Automaton A over F(2) has one state, call it Ok.

 Let B = c-det(prY(A)) (we neglect Y). Its state at position u is the

mapping σm such that σm (Ok) = 2m, wh. m is number of vertices below u

 Let C = c-det(pr(B)) (we neglect X). Its state at position u maps

 σm to 2m and any other map in [{ Ok } � N]f to 0.

 Then fG(j) = Σ { θ(σ) / σ is “j-accepting for B” }

 σ is “j-accepting” ⇔ j = Σ { σ(q) / q accepting for A }.

 P=True : At the root, σn is 2n –accepting, which gives 2n iff j = 2n

 P=False : At the root, σn is 0 –accepting, which gives 2n iff j = 0

 In both cases, other values are 0.

36

Case P(X,Y) : ⇔ X = Y

 Automaton A over F(2) has 2 states, Ok (accepting) and Error.

 Let B = c-det(prY(A)) (we neglect Y). Its state at position u is the

mapping σm such that σm (Ok) = 1, σm (Error) = 2m-1.

 Let C = c-det(pr(B)) (we neglect X). Its state at position u maps

 σm to 2m and any other map in [{ Ok, Error } � N]f to 0.

 Then fG(j) = Σ { θ(σ) / σ is “j-accepting for B” }

 σ is “j-accepting” ⇔ j = Σ { σ(q) / q accepting for A }.

 At the root, σn is 1 –accepting, which gives 2n iff j = 1 (and 0

otherwise). Using the optimization of p. 33, we can omit Error.

37

Example : P(X,Y) : ⇔ X < Y , the lexicographic order.

 The set of vertices is linearly ordered (leaves of an ordered tree, MSO

definable) and

 X < Y is defined by : X = Y , or,

 letting u be the smallest element that distinguishes X and Y

 then u > X or u ∈ X and u is not > Y

 If X is the p–th in the set P(V), the number of Y > X is 2n – p +1.

 Hence, fG(2n – p +1) = 1 for 1 < p < 2n and so, fG has an

exponential number of non-null values.

 They are all equal !!

 The “matrix” of Sat(X,Y).P(X,Y) is diagonal.

38

Case of example (3.3) :

 Given (i,j), what is the number of sets X such that j is the number of

sets Y such that some Z of cardinality < i satisfies P(X,Y,Z) ?

39

 Conclusion

1) By uniform constructions, we get dynamic programming

algorithms based on fly-automata, that can be quickly

constructed from logical descriptions � flexibility.

2) In many cases they are implemented. Tests have been made

for colorability and connectedness problems. It is hard to

obtain upperbounds to time computations. We do not get better

algorithms than the specific ones that have been developed.

3) These constructions are applicable to bounded tree-width and

MSO with edge set quantifications by means of incidence

graphs.

40

4) Basic numerical evaluations (cardinality, spectrum, multi-

spectrum) have been implemented (by I. Durand). Fly-

automata can also handled combinations of these basic

evaluations. It remains to see if implementation is feasible.

41

Appendix (if anybody wants)

Examples of MSO definability : G is 3-colorable :

∃X ,Y (X ∩ Y = ∅ ∧
 ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧

 (u ∉ X ∪ Y ⇒ v ∈ X ∪ Y)]

 })

G is not connected :

∃Z (∃x ∈ Z ∧ ∃y ∉ Z ∧ (∀u,v (u ∈ Z ∧ edg(u,v) ⇒ v ∈ Z))

Planarity is MSO-expressible (no minor K5 or K3,3).

